Publication: The Important Role of Equivalence Scales: Household Size, Composition, and Poverty Dynamics in the Russian Federation
Loading...
Published
2020-06
ISSN
Date
2020-06-11
Author(s)
Editor(s)
Abstract
Hardly any literature exists on the relationship between equivalence scales and poverty dynamics for transitional countries. This paper offers a new study on the impacts of equivalence scale adjustments on poverty dynamics in the Russian Federation, using equivalence scales constructed from subjective wealth and more than 20 waves of household panel survey data from the Russia Longitudinal Monitoring Survey. The analysis suggests that the equivalence scale elasticity is sensitive to household demographic composition. The adjustments for the equivalence of scales result in lower estimates of poverty lines. The study decomposes poverty into chronic and transient components and finds that chronic poverty is positively related to the adult scale parameter. However, chronic poverty is less sensitive to the child scale factor compared with the adult scale factor. Interestingly, the direction of income mobility might change depending on the specific scale parameters that are employed. The results are robust to different measures of chronic poverty, income expectations, reference groups, functional forms, and various other specifications.
Link to Data Set
Citation
“Abanokova, Kseniya; Dang, Hai-Anh H.; Lokshin, Michael M.; Abanokova, Ksenia. 2020. The Important Role of Equivalence Scales: Household Size, Composition, and Poverty Dynamics in the Russian Federation. Policy Research Working Paper;No. 9270. © World Bank. http://hdl.handle.net/10986/33872 License: CC BY 3.0 IGO.”
Digital Object Identifier
Associated URLs
Associated content
Other publications in this report series
Publication The Economic Value of Weather Forecasts: A Quantitative Systematic Literature Review(Washington, DC: World Bank, 2025-09-10)This study systematically reviews the literature that quantifies the economic benefits of weather observations and forecasts in four weather-dependent economic sectors: agriculture, energy, transport, and disaster-risk management. The review covers 175 peer-reviewed journal articles and 15 policy reports. Findings show that the literature is concentrated in high-income countries and most studies use theoretical models, followed by observational and then experimental research designs. Forecast horizons studied, meteorological variables and services, and monetization techniques vary markedly by sector. Estimated benefits even within specific subsectors span several orders of magnitude and broad uncertainty ranges. An econometric meta-analysis suggests that theoretical studies and studies in richer countries tend to report significantly larger values. Barriers that hinder value realization are identified on both the provider and user sides, with inadequate relevance, weak dissemination, and limited ability to act recurring across sectors. Policy reports rely heavily on back-of-the-envelope or recursive benefit-transfer estimates, rather than on the methods and results of the peer-reviewed literature, revealing a science-to-policy gap. These findings suggest substantial socioeconomic potential of hydrometeorological services around the world, but also knowledge gaps that require more valuation studies focusing on low- and middle-income countries, addressing provider- and user-side barriers and employing rigorous empirical valuation methods to complement and validate theoretical models.Publication The Macroeconomic Implications of Climate Change Impacts and Adaptation Options(Washington, DC: World Bank, 2025-05-29)Estimating the macroeconomic implications of climate change impacts and adaptation options is a topic of intense research. This paper presents a framework in the World Bank's macrostructural model to assess climate-related damages. This approach has been used in many Country Climate and Development Reports, a World Bank diagnostic that identifies priorities to ensure continued development in spite of climate change and climate policy objectives. The methodology captures a set of impact channels through which climate change affects the economy by (1) connecting a set of biophysical models to the macroeconomic model and (2) exploring a set of development and climate scenarios. The paper summarizes the results for five countries, highlighting the sources and magnitudes of their vulnerability --- with estimated gross domestic product losses in 2050 exceeding 10 percent of gross domestic product in some countries and scenarios, although only a small set of impact channels is included. The paper also presents estimates of the macroeconomic gains from sector-level adaptation interventions, considering their upfront costs and avoided climate impacts and finding significant net gross domestic product gains from adaptation opportunities identified in the Country Climate and Development Reports. Finally, the paper discusses the limits of current modeling approaches, and their complementarity with empirical approaches based on historical data series. The integrated modeling approach proposed in this paper can inform policymakers as they make proactive decisions on climate change adaptation and resilience.Publication Labor Demand in the Age of Generative AI: Early Evidence from the U.S. Job Posting Data(Washington, DC: World Bank, 2025-11-18)This paper examines the causal impact of generative artificial intelligence on U.S. labor demand using online job posting data. Exploiting ChatGPT’s release in November 2022 as an exogenous shock, the paper applies difference-in-differences and event study designs to estimate the job displacement effects of generative artificial intelligence. The identification strategy compares labor demand for occupations with high versus low artificial intelligence substitution vulnerability following ChatGPT’s launch, conditioning on similar generative artificial intelligence exposure levels to isolate substitution effects from complementary uses. The analysis uses 285 million job postings collected by Lightcast from the first quarter of 2018 to the second quarter of 2025Q2. The findings show that the number of postings for occupations with above-median artificial intelligence substitution scores fell by an average of 12 percent relative to those with below-median scores. The effect increased from 6 percent in the first year after the launch to 18 percent by the third year. Losses were particularly acute for entry-level positions that require neither advanced degrees (18 percent) nor extensive experience (20 percent), as well as those in administrative support (40 percent) and professional services (30 percent). Although generative artificial intelligence generates new occupations and enhances productivity, which may increase labor demand, early evidence suggests that some occupations may be less likely to be complemented by generative artificial intelligence than others.Publication The Lasting Effects of Working while in School(Washington, DC: World Bank, 2025-08-18)This paper provides the first experimental evidence on the long-term effects of work-study programs, leveraging a randomized lottery design from a national program in Uruguay. Participation leads to a persistent 11 percent increase in formal labor earnings, observable seven years after the program. Effects are stronger for youth who participate during pivotal educational transitions and are larger for vulnerable youth and men, while remaining positive for women and non-vulnerable youth. The program is highly cost-effective, with average impacts exceeding those of job training programs and comparable to early childhood investments.Publication It’s Not (Just) the Tariffs: Rethinking Non-Tariff Measures in a Fragmented Global Economy(Washington, DC: World Bank, 2025-10-22)As tariffs have declined, non-tariff measures (NTMs) have become central to trade policy, especially in high-income countries and regulated sectors like food and green technologies. Although NTMs may serve legitimate goals, they could also sort countries and firms into or out of markets based on compliance capacity and differences in product mix. Documenting recent advances in the estimation of ad valorem equivalents (AVEs), this paper uncovers new patterns of use and exposure of NTMs. High-income countries rely more heavily on NTMs relative to tariffs, while low- and middle-income countries face steeper AVEs on their exports. Firm-level evidence shows that NTMs disproportionately affect smaller firms, leading to market exit and concentration. Poorly designed NTMs can harm productivity and welfare, while coordinated, capacity-aware use can deliver inclusive outcomes. Policy design, transparency, and diagnostics must evolve to reflect the growing role—and risks—of NTMs in a fragmented global trade landscape.
Journal
Journal Volume
Journal Issue
Collections
Related items
Showing items related by metadata.
Publication Inequality and Welfare Dynamics in the Russian Federation during 1994-2015(World Bank, Washington, DC, 2018-10)The Russian Federation offers the unique example of a leading centrally planned economy swiftly transforming itself into a market-oriented economy. This paper offers a comprehensive study of inequality and mobility patterns for Russia, using multiple rounds of the Russian Longitudinal Monitoring Surveys over the past two decades spanning this transition. The findings show rising income levels and decreasing inequality, with the latter being mostly caused by pro-poor growth rather than redistribution. The poorest tercile experienced a growth rate that was more than 10 times that of the richest tercile, leading to less long-term inequality than short-term inequality. The analysis also finds that switching from a part-time job to a full-time job, from a lower-skill job to a higher-skill job, or staying in the formal sector is statistically significantly associated with reduced downward mobility and increased income growth. However, a similar transition from the private sector to the public sector is negatively associated with income growth.Publication Poverty Imputation in Contexts without Consumption Data(World Bank, Washington, DC, 2021-11)A key challenge with poverty measurement is that household consumption data are often unavailable or infrequently collected or may be incomparable over time. In a development project setting, it is seldom feasible to collect full consumption data for estimating the poverty impacts. While survey-to-survey imputation is a cost-effective approach to address these gaps, its effective use calls for a combination of both ex-ante design choices and ex-post modeling efforts that are anchored in validated protocols. This paper refines various aspects of existing poverty imputation models using 14 multi-topic household surveys conducted over the past decade in Ethiopia, Malawi, Nigeria, Tanzania, and Vietnam. The analysis reveals that including an additional predictor that captures household utility consumption expenditures—as part of a basic imputation model with household-level demographic and employment variables—provides poverty estimates that are not statistically significantly different from the true poverty rates. In many cases, these estimates even fall within one standard error of the true poverty rates. Adding geospatial variables to the imputation model improves imputation accuracy on a cross-country basis. Bringing in additional community-level predictors (available from survey and census data in Vietnam) related to educational achievement, poverty, and asset wealth can further enhance accuracy. Yet, there is within-country spatial heterogeneity in model performance, with certain models performing well for either urban areas or rural areas only. The paper provides operationally-relevant and cost-saving inputs into the design of future surveys implemented with a poverty imputation objective and suggests directions for future research.Publication Imputing Poverty Indicators without Consumption Data(Washington, DC: World Bank, 2024-08-19)Accurate poverty measurement relies on household consumption data, but such data are often inadequate, outdated, or display inconsistencies over time in poorer countries. To address these data challenges, this paper employs survey-to-survey imputation to produce estimates for several poverty indicators, including headcount poverty, extreme poverty, poverty gap, near-poverty rates, as well as mean consumption levels and the entire consumption distribution. Analysis of 22 multi-topic household surveys conducted over the past decade in Bangladesh, Ethiopia, Malawi, Nigeria, Tanzania, and Viet Nam yields encouraging results. Adding household utility expenditures or food expenditures to basic imputation models with household-level demographic, employment, and asset variables could improve the probability of imputation accuracy by 0.1 to 0.4. Adding predictors from geospatial data could further increase imputation accuracy. The analysis also shows that a larger time interval between surveys is associated with a lower probability of predicting some poverty indicators, and that a better imputation model goodness-of-fit (R2) does not necessarily help. The results offer cost-saving inputs for future survey design.Publication Using Survey-to-Survey Imputation to Fill Poverty Data Gaps at a Low Cost(Washington, DC: World Bank, 2024-03-26)Survey data on household consumption are often unavailable or incomparable over time in many low- and middle-income countries. Based on a unique randomized survey experiment implemented in Tanzania, this study offers new and rigorous evidence demonstrating that survey-to-survey imputation can fill consumption data gaps and provide low-cost and reliable poverty estimates. Basic imputation models featuring utility expenditures, together with a modest set of predictors on demographics, employment, household assets, and housing, yield accurate predictions. Imputation accuracy is robust to varying the survey questionnaire length, the choice of base surveys for estimating the imputation model, different poverty lines, and alternative (quarterly or monthly) Consumer Price Index deflators. The proposed approach to imputation also performs better than multiple imputation and a range of machine learning techniques. In the case of a target survey with modified (shortened or aggregated) food or non-food consumption modules, imputation models including food or non-food consumption as predictors do well only if the distributions of the predictors are standardized vis-à-vis the base survey. For the best-performing models to reach acceptable levels of accuracy, the minimum required sample size should be 1,000 for both the base and target surveys. The discussion expands on the implications of the findings for the design of future surveys.Publication Impact of COVID-19 on Learning(World Bank, Washington, DC, 2021-05)The COVID-19 pandemic has wreaked havoc upon global learning, with many countries facing severe school disruptions and closures. An emerging literature based on household survey data points to the pandemic as having exacerbated inequalities in education and learning in countries from Italy to Denmark, the United Kingdom, and the United States. This brief offers new analysis on the impacts of the COVID-19 pandemic on learning outcomes for six sub-Saharan African countries. The authors analyze detailed household level data from several rounds of panel phone surveys collected by the World Bank in Burkina Faso, Ethiopia, Malawi, Mali, Nigeria, and Uganda. These surveys were first implemented between late April and early June 2020, after school closures due to the pandemic. In each survey round, the surveyed households were asked a set of core questions on topics such as knowledge of COVID and mitigation measures, access to educational activities during school closures, dynamics of employment, household income and livelihood, income loss and coping strategies, and received assistance.O
Users also downloaded
Showing related downloaded files
Publication The Container Port Performance Index 2023(Washington, DC: World Bank, 2024-07-18)The Container Port Performance Index (CPPI) measures the time container ships spend in port, making it an important point of reference for stakeholders in the global economy. These stakeholders include port authorities and operators, national governments, supranational organizations, development agencies, and other public and private players in trade and logistics. The index highlights where vessel time in container ports could be improved. Streamlining these processes would benefit all parties involved, including shipping lines, national governments, and consumers. This fourth edition of the CPPI relies on data from 405 container ports with at least 24 container ship port calls in the calendar year 2023. As in earlier editions of the CPPI, the ranking employs two different methodological approaches: an administrative (technical) approach and a statistical approach (using matrix factorization). Combining these two approaches ensures that the overall ranking of container ports reflects actual port performance as closely as possible while also being statistically robust. The CPPI methodology assesses the sequential steps of a container ship port call. ‘Total port hours’ refers to the total time elapsed from the moment a ship arrives at the port until the vessel leaves the berth after completing its cargo operations. The CPPI uses time as an indicator because time is very important to shipping lines, ports, and the entire logistics chain. However, time, as captured by the CPPI, is not the only way to measure port efficiency, so it does not tell the entire story of a port’s performance. Factors that can influence the time vessels spend in ports can be location-specific and under the port’s control (endogenous) or external and beyond the control of the port (exogenous). The CPPI measures time spent in container ports, strictly based on quantitative data only, which do not reveal the underlying factors or root causes of extended port times. A detailed port-specific diagnostic would be required to assess the contribution of underlying factors to the time a vessel spends in port. A very low ranking or a significant change in ranking may warrant special attention, for which the World Bank generally recommends a detailed diagnostic.Publication Digital Progress and Trends Report 2023(Washington, DC: World Bank, 2024-03-05)Digitalization is the transformational opportunity of our time. The digital sector has become a powerhouse of innovation, economic growth, and job creation. Value added in the IT services sector grew at 8 percent annually during 2000–22, nearly twice as fast as the global economy. Employment growth in IT services reached 7 percent annually, six times higher than total employment growth. The diffusion and adoption of digital technologies are just as critical as their invention. Digital uptake has accelerated since the COVID-19 pandemic, with 1.5 billion new internet users added from 2018 to 2022. The share of firms investing in digital solutions around the world has more than doubled from 2020 to 2022. Low-income countries, vulnerable populations, and small firms, however, have been falling behind, while transformative digital innovations such as artificial intelligence (AI) have been accelerating in higher-income countries. Although more than 90 percent of the population in high-income countries was online in 2022, only one in four people in low-income countries used the internet, and the speed of their connection was typically only a small fraction of that in wealthier countries. As businesses in technologically advanced countries integrate generative AI into their products and services, less than half of the businesses in many low- and middle-income countries have an internet connection. The growing digital divide is exacerbating the poverty and productivity gaps between richer and poorer economies. The Digital Progress and Trends Report series will track global digitalization progress and highlight policy trends, debates, and implications for low- and middle-income countries. The series adds to the global efforts to study the progress and trends of digitalization in two main ways: · By compiling, curating, and analyzing data from diverse sources to present a comprehensive picture of digitalization in low- and middle-income countries, including in-depth analyses on understudied topics. · By developing insights on policy opportunities, challenges, and debates and reflecting the perspectives of various stakeholders and the World Bank’s operational experiences. This report, the first in the series, aims to inform evidence-based policy making and motivate action among internal and external audiences and stakeholders. The report will bring global attention to high-performing countries that have valuable experience to share as well as to areas where efforts will need to be redoubled.Publication Global Economic Prospects, January 2025(Washington, DC: World Bank, 2025-01-16)Global growth is expected to hold steady at 2.7 percent in 2025-26. However, the global economy appears to be settling at a low growth rate that will be insufficient to foster sustained economic development—with the possibility of further headwinds from heightened policy uncertainty and adverse trade policy shifts, geopolitical tensions, persistent inflation, and climate-related natural disasters. Against this backdrop, emerging market and developing economies are set to enter the second quarter of the twenty-first century with per capita incomes on a trajectory that implies substantially slower catch-up toward advanced-economy living standards than they previously experienced. Without course corrections, most low-income countries are unlikely to graduate to middle-income status by the middle of the century. Policy action at both global and national levels is needed to foster a more favorable external environment, enhance macroeconomic stability, reduce structural constraints, address the effects of climate change, and thus accelerate long-term growth and development.Publication Global Economic Prospects, June 2025(Washington, DC: World Bank, 2025-06-10)The global economy is facing another substantial headwind, emanating largely from an increase in trade tensions and heightened global policy uncertainty. For emerging market and developing economies (EMDEs), the ability to boost job creation and reduce extreme poverty has declined. Key downside risks include a further escalation of trade barriers and continued policy uncertainty. These challenges are exacerbated by subdued foreign direct investment into EMDEs. Global cooperation is needed to restore a more stable international trade environment and scale up support for vulnerable countries grappling with conflict, debt burdens, and climate change. Domestic policy action is also critical to contain inflation risks and strengthen fiscal resilience. To accelerate job creation and long-term growth, structural reforms must focus on raising institutional quality, attracting private investment, and strengthening human capital and labor markets. Countries in fragile and conflict situations face daunting development challenges that will require tailored domestic policy reforms and well-coordinated multilateral support.Publication Business Ready 2024(Washington, DC: World Bank, 2024-10-03)Business Ready (B-READY) is a new World Bank Group corporate flagship report that evaluates the business and investment climate worldwide. It replaces and improves upon the Doing Business project. B-READY provides a comprehensive data set and description of the factors that strengthen the private sector, not only by advancing the interests of individual firms but also by elevating the interests of workers, consumers, potential new enterprises, and the natural environment. This 2024 report introduces a new analytical framework that benchmarks economies based on three pillars: Regulatory Framework, Public Services, and Operational Efficiency. The analysis centers on 10 topics essential for private sector development that correspond to various stages of the life cycle of a firm. The report also offers insights into three cross-cutting themes that are relevant for modern economies: digital adoption, environmental sustainability, and gender. B-READY draws on a robust data collection process that includes specially tailored expert questionnaires and firm-level surveys. The 2024 report, which covers 50 economies, serves as the first in a series that will expand in geographical coverage and refine its methodology over time, supporting reform advocacy, policy guidance, and further analysis and research.