Publication:
Poverty Imputation in Contexts without Consumption Data: A Revisit with Further Refinements

Loading...
Thumbnail Image
Files in English
English PDF (4.06 MB)
244 downloads
English Text (297.27 KB)
32 downloads
Published
2021-11
ISSN
Date
2021-11-12
Author(s)
Kilic, Talip
Carletto, Calogero
Abanokova, Kseniya
Editor(s)
Abstract
A key challenge with poverty measurement is that household consumption data are often unavailable or infrequently collected or may be incomparable over time. In a development project setting, it is seldom feasible to collect full consumption data for estimating the poverty impacts. While survey-to-survey imputation is a cost-effective approach to address these gaps, its effective use calls for a combination of both ex-ante design choices and ex-post modeling efforts that are anchored in validated protocols. This paper refines various aspects of existing poverty imputation models using 14 multi-topic household surveys conducted over the past decade in Ethiopia, Malawi, Nigeria, Tanzania, and Vietnam. The analysis reveals that including an additional predictor that captures household utility consumption expenditures—as part of a basic imputation model with household-level demographic and employment variables—provides poverty estimates that are not statistically significantly different from the true poverty rates. In many cases, these estimates even fall within one standard error of the true poverty rates. Adding geospatial variables to the imputation model improves imputation accuracy on a cross-country basis. Bringing in additional community-level predictors (available from survey and census data in Vietnam) related to educational achievement, poverty, and asset wealth can further enhance accuracy. Yet, there is within-country spatial heterogeneity in model performance, with certain models performing well for either urban areas or rural areas only. The paper provides operationally-relevant and cost-saving inputs into the design of future surveys implemented with a poverty imputation objective and suggests directions for future research.
Link to Data Set
Citation
Kilic, Talip; Dang, Hai-Anh H.; Carletto, Calogero; Abanokova, Kseniya; Abanokova, Ksenia. 2021. Poverty Imputation in Contexts without Consumption Data: A Revisit with Further Refinements. Policy Research Working Paper;No. 9838. © World Bank. http://hdl.handle.net/10986/36550 License: CC BY 3.0 IGO.
Associated URLs
Associated content
Report Series
Report Series
Other publications in this report series
  • Publication
    The Economic Value of Weather Forecasts: A Quantitative Systematic Literature Review
    (Washington, DC: World Bank, 2025-09-10) Farkas, Hannah; Linsenmeier, Manuel; Talevi, Marta; Avner, Paolo; Jafino, Bramka Arga; Sidibe, Moussa
    This study systematically reviews the literature that quantifies the economic benefits of weather observations and forecasts in four weather-dependent economic sectors: agriculture, energy, transport, and disaster-risk management. The review covers 175 peer-reviewed journal articles and 15 policy reports. Findings show that the literature is concentrated in high-income countries and most studies use theoretical models, followed by observational and then experimental research designs. Forecast horizons studied, meteorological variables and services, and monetization techniques vary markedly by sector. Estimated benefits even within specific subsectors span several orders of magnitude and broad uncertainty ranges. An econometric meta-analysis suggests that theoretical studies and studies in richer countries tend to report significantly larger values. Barriers that hinder value realization are identified on both the provider and user sides, with inadequate relevance, weak dissemination, and limited ability to act recurring across sectors. Policy reports rely heavily on back-of-the-envelope or recursive benefit-transfer estimates, rather than on the methods and results of the peer-reviewed literature, revealing a science-to-policy gap. These findings suggest substantial socioeconomic potential of hydrometeorological services around the world, but also knowledge gaps that require more valuation studies focusing on low- and middle-income countries, addressing provider- and user-side barriers and employing rigorous empirical valuation methods to complement and validate theoretical models.
  • Publication
    The Macroeconomic Implications of Climate Change Impacts and Adaptation Options
    (Washington, DC: World Bank, 2025-05-29) Abalo, Kodzovi; Boehlert, Brent; Bui, Thanh; Burns, Andrew; Castillo, Diego; Chewpreecha, Unnada; Haider, Alexander; Hallegatte, Stephane; Jooste, Charl; McIsaac, Florent; Ruberl, Heather; Smet, Kim; Strzepek, Ken
    Estimating the macroeconomic implications of climate change impacts and adaptation options is a topic of intense research. This paper presents a framework in the World Bank's macrostructural model to assess climate-related damages. This approach has been used in many Country Climate and Development Reports, a World Bank diagnostic that identifies priorities to ensure continued development in spite of climate change and climate policy objectives. The methodology captures a set of impact channels through which climate change affects the economy by (1) connecting a set of biophysical models to the macroeconomic model and (2) exploring a set of development and climate scenarios. The paper summarizes the results for five countries, highlighting the sources and magnitudes of their vulnerability --- with estimated gross domestic product losses in 2050 exceeding 10 percent of gross domestic product in some countries and scenarios, although only a small set of impact channels is included. The paper also presents estimates of the macroeconomic gains from sector-level adaptation interventions, considering their upfront costs and avoided climate impacts and finding significant net gross domestic product gains from adaptation opportunities identified in the Country Climate and Development Reports. Finally, the paper discusses the limits of current modeling approaches, and their complementarity with empirical approaches based on historical data series. The integrated modeling approach proposed in this paper can inform policymakers as they make proactive decisions on climate change adaptation and resilience.
  • Publication
    Labor Demand in the Age of Generative AI: Early Evidence from the U.S. Job Posting Data
    (Washington, DC: World Bank, 2025-11-18) Liu, Yan; Wang, He; Yu, Shu
    This paper examines the causal impact of generative artificial intelligence on U.S. labor demand using online job posting data. Exploiting ChatGPT’s release in November 2022 as an exogenous shock, the paper applies difference-in-differences and event study designs to estimate the job displacement effects of generative artificial intelligence. The identification strategy compares labor demand for occupations with high versus low artificial intelligence substitution vulnerability following ChatGPT’s launch, conditioning on similar generative artificial intelligence exposure levels to isolate substitution effects from complementary uses. The analysis uses 285 million job postings collected by Lightcast from the first quarter of 2018 to the second quarter of 2025Q2. The findings show that the number of postings for occupations with above-median artificial intelligence substitution scores fell by an average of 12 percent relative to those with below-median scores. The effect increased from 6 percent in the first year after the launch to 18 percent by the third year. Losses were particularly acute for entry-level positions that require neither advanced degrees (18 percent) nor extensive experience (20 percent), as well as those in administrative support (40 percent) and professional services (30 percent). Although generative artificial intelligence generates new occupations and enhances productivity, which may increase labor demand, early evidence suggests that some occupations may be less likely to be complemented by generative artificial intelligence than others.
  • Publication
    The Lasting Effects of Working while in School
    (Washington, DC: World Bank, 2025-08-18) Ferrando, Mery; Katzkowicz, Noemi; Le Barbanchon, Thomas; Ubfal, Diego
    This paper provides the first experimental evidence on the long-term effects of work-study programs, leveraging a randomized lottery design from a national program in Uruguay. Participation leads to a persistent 11 percent increase in formal labor earnings, observable seven years after the program. Effects are stronger for youth who participate during pivotal educational transitions and are larger for vulnerable youth and men, while remaining positive for women and non-vulnerable youth. The program is highly cost-effective, with average impacts exceeding those of job training programs and comparable to early childhood investments.
  • Publication
    It’s Not (Just) the Tariffs: Rethinking Non-Tariff Measures in a Fragmented Global Economy
    (Washington, DC: World Bank, 2025-10-22) Taglioni, Daria; KEE, Hiau Looi
    As tariffs have declined, non-tariff measures (NTMs) have become central to trade policy, especially in high-income countries and regulated sectors like food and green technologies. Although NTMs may serve legitimate goals, they could also sort countries and firms into or out of markets based on compliance capacity and differences in product mix. Documenting recent advances in the estimation of ad valorem equivalents (AVEs), this paper uncovers new patterns of use and exposure of NTMs. High-income countries rely more heavily on NTMs relative to tariffs, while low- and middle-income countries face steeper AVEs on their exports. Firm-level evidence shows that NTMs disproportionately affect smaller firms, leading to market exit and concentration. Poorly designed NTMs can harm productivity and welfare, while coordinated, capacity-aware use can deliver inclusive outcomes. Policy design, transparency, and diagnostics must evolve to reflect the growing role—and risks—of NTMs in a fragmented global trade landscape.
Journal
Journal Volume
Journal Issue

Related items

Showing items related by metadata.

  • Publication
    Imputing Poverty Indicators without Consumption Data
    (Washington, DC: World Bank, 2024-08-19) Dang, Hai-Anh H.; Kilic, Talip; Abanokova, Kseniya; Carletto, Calogero; Abanokova, Ksenia
    Accurate poverty measurement relies on household consumption data, but such data are often inadequate, outdated, or display inconsistencies over time in poorer countries. To address these data challenges, this paper employs survey-to-survey imputation to produce estimates for several poverty indicators, including headcount poverty, extreme poverty, poverty gap, near-poverty rates, as well as mean consumption levels and the entire consumption distribution. Analysis of 22 multi-topic household surveys conducted over the past decade in Bangladesh, Ethiopia, Malawi, Nigeria, Tanzania, and Viet Nam yields encouraging results. Adding household utility expenditures or food expenditures to basic imputation models with household-level demographic, employment, and asset variables could improve the probability of imputation accuracy by 0.1 to 0.4. Adding predictors from geospatial data could further increase imputation accuracy. The analysis also shows that a larger time interval between surveys is associated with a lower probability of predicting some poverty indicators, and that a better imputation model goodness-of-fit (R2) does not necessarily help. The results offer cost-saving inputs for future survey design.
  • Publication
    Using Survey-to-Survey Imputation to Fill Poverty Data Gaps at a Low Cost
    (Washington, DC: World Bank, 2024-03-26) Dang, Hai-Anh; Kilic, Talip; Hlasny, Vladimir; Abanokova, Kseniya; Carletto, Calogero; Abanokova, Ksenia
    Survey data on household consumption are often unavailable or incomparable over time in many low- and middle-income countries. Based on a unique randomized survey experiment implemented in Tanzania, this study offers new and rigorous evidence demonstrating that survey-to-survey imputation can fill consumption data gaps and provide low-cost and reliable poverty estimates. Basic imputation models featuring utility expenditures, together with a modest set of predictors on demographics, employment, household assets, and housing, yield accurate predictions. Imputation accuracy is robust to varying the survey questionnaire length, the choice of base surveys for estimating the imputation model, different poverty lines, and alternative (quarterly or monthly) Consumer Price Index deflators. The proposed approach to imputation also performs better than multiple imputation and a range of machine learning techniques. In the case of a target survey with modified (shortened or aggregated) food or non-food consumption modules, imputation models including food or non-food consumption as predictors do well only if the distributions of the predictors are standardized vis-à-vis the base survey. For the best-performing models to reach acceptable levels of accuracy, the minimum required sample size should be 1,000 for both the base and target surveys. The discussion expands on the implications of the findings for the design of future surveys.
  • Publication
    Data Gaps, Data Incomparability, and Data Imputation
    (World Bank, Washington, DC, 2017-12) Carletto, Calogero; Dang, Hai-Anh; Jolliffe, Dean
    This paper reviews methods that have been employed to estimate poverty in contexts where household consumption data are unavailable or missing. These contexts range from completely missing and partially missing consumption data in cross-sectional household surveys, to missing panel household data. The paper focuses on methods that aim to compare trends and dynamic patterns of poverty outcomes over time. It presents the various methods under a common framework, with pedagogical discussion on the intuition. Empirical illustrations are provided using several rounds of household survey data from Vietnam. Furthermore, the paper provides a practical guide with detailed instructions on computer programs that can be used to implement the reviewed techniques.
  • Publication
    Updating Poverty Estimates at Frequent Intervals in the Absence of Consumption Data : Methods and Illustration with Reference to a Middle-Income Country
    (World Bank Group, Washington, DC, 2014-09) Lanjouw, Peter F.; Dang, Hai-Anh H.; Serajuddin, Umar
    Obtaining consistent estimates on poverty over time as well as monitoring poverty trends on a timely basis is a priority concern for policy makers. However, these objectives are not readily achieved in practice when household consumption data are neither frequently collected, nor constructed using consistent and transparent criteria. This paper develops a formal framework for survey-to-survey poverty imputation in an attempt to overcome these obstacles, and to elevate the discussion of these methods beyond the largely ad-hoc efforts in the existing literature. The framework introduced here imposes few restrictive assumptions, works with simple variance formulas, provides guidance on the selection of control variables for model building, and can be generally applied to imputation either from one survey to another survey with the same design, or to another survey with a different design. Empirical results analyzing the Household Expenditure and Income Survey and the Unemployment and Employment Survey in Jordan are quite encouraging, with imputation-based poverty estimates closely tracking the direct estimates of poverty.
  • Publication
    Missing(ness) in Action : Selectivity Bias in GPS-Based Land Area Measurements
    (World Bank, Washington, DC, 2013-06) Kilic, Talip; Zezza, Alberto; Carletto, Calogero; Savastano, Sara
    Land area is a fundamental component of agricultural statistics, and of analyses undertaken by agricultural economists. While household surveys in developing countries have traditionally relied on farmers' own, potentially error-prone, land area assessments, the availability of affordable and reliable Global Positioning System (GPS) units has made GPS-based area measurement a practical alternative. Nonetheless, in an attempt to reduce costs, keep interview durations within reasonable limits, and avoid the difficulty of asking respondents to accompany interviewers to distant plots, survey implementing agencies typically require interviewers to record GPS-based area measurements only for plots within a given radius of dwelling locations. It is, therefore, common for as much as a third of the sample plots not to be measured, and research has not shed light on the possible selection bias in analyses relying on partial data due to gaps in GPS-based area measures. This paper explores the patterns of missingness in GPS-based plot areas, and investigates their implications for land productivity estimates and the inverse scale-land productivity relationship. Using Multiple Imputation (MI) to predict missing GPS-based plot areas in nationally-representative survey data from Uganda and Tanzania, the paper highlights the potential of MI in reliably simulating the missing data, and confirms the existence of an inverse scale-land productivity relationship, which is strengthened by using the complete, multiply-imputed dataset. The study demonstrates the usefulness of judiciously reconstructed GPS-based areas in alleviating concerns over potential measurement error in farmer-reported areas, and with regards to systematic bias in plot selection for GPS-based area measurement.

Users also downloaded

Showing related downloaded files

  • Publication
    Lebanon Economic Monitor, Fall 2022
    (Washington, DC, 2022-11) World Bank
    The economy continues to contract, albeit at a somewhat slower pace. Public finances improved in 2021, but only because spending collapsed faster than revenue generation. Testament to the continued atrophy of Lebanon’s economy, the Lebanese Pound continues to depreciate sharply. The sharp deterioration in the currency continues to drive surging inflation, in triple digits since July 2020, impacting the poor and vulnerable the most. An unprecedented institutional vacuum will likely further delay any agreement on crisis resolution and much needed reforms; this includes prior actions as part of the April 2022 International Monetary Fund (IMF) staff-level agreement (SLA). Divergent views among key stakeholders on how to distribute the financial losses remains the main bottleneck for reaching an agreement on a comprehensive reform agenda. Lebanon needs to urgently adopt a domestic, equitable, and comprehensive solution that is predicated on: (i) addressing upfront the balance sheet impairments, (ii) restoring liquidity, and (iii) adhering to sound global practices of bail-in solutions based on a hierarchy of creditors (starting with banks’ shareholders) that protects small depositors.
  • Publication
    Digital Africa
    (Washington, DC: World Bank, 2023-03-13) Begazo, Tania; Dutz, Mark Andrew; Blimpo, Moussa
    All African countries need better and more jobs for their growing populations. "Digital Africa: Technological Transformation for Jobs" shows that broader use of productivity-enhancing, digital technologies by enterprises and households is imperative to generate such jobs, including for lower-skilled people. At the same time, it can support not only countries’ short-term objective of postpandemic economic recovery but also their vision of economic transformation with more inclusive growth. These outcomes are not automatic, however. Mobile internet availability has increased throughout the continent in recent years, but Africa’s uptake gap is the highest in the world. Areas with at least 3G mobile internet service now cover 84 percent of Africa’s population, but only 22 percent uses such services. And the average African business lags in the use of smartphones and computers as well as more sophisticated digital technologies that catalyze further productivity gains. Two issues explain the usage gap: affordability of these new technologies and willingness to use them. For the 40 percent of Africans below the extreme poverty line, mobile data plans alone would cost one-third of their incomes—in addition to the price of access devices, apps, and electricity. Data plans for small- and medium-size businesses are also more expensive than in other regions. Moreover, shortcomings in the quality of internet services—and in the supply of attractive, skills-appropriate apps that promote entrepreneurship and raise earnings—dampen people’s willingness to use them. For those countries already using these technologies, the development payoffs are significant. New empirical studies for this report add to the rapidly growing evidence that mobile internet availability directly raises enterprise productivity, increases jobs, and reduces poverty throughout Africa. To realize these and other benefits more widely, Africa’s countries must implement complementary and mutually reinforcing policies to strengthen both consumers’ ability to pay and willingness to use digital technologies. These interventions must prioritize productive use to generate large numbers of inclusive jobs in a region poised to benefit from a massive, youthful workforce—one projected to become the world’s largest by the end of this century.
  • Publication
    Argentina Country Climate and Development Report
    (World Bank, Washington, DC, 2022-11) World Bank Group
    The Argentina Country Climate and Development Report (CCDR) explores opportunities and identifies trade-offs for aligning Argentina’s growth and poverty reduction policies with its commitments on, and its ability to withstand, climate change. It assesses how the country can: reduce its vulnerability to climate shocks through targeted public and private investments and adequation of social protection. The report also shows how Argentina can seize the benefits of a global decarbonization path to sustain a more robust economic growth through further development of Argentina’s potential for renewable energy, energy efficiency actions, the lithium value chain, as well as climate-smart agriculture (and land use) options. Given Argentina’s context, this CCDR focuses on win-win policies and investments, which have large co-benefits or can contribute to raising the country’s growth while helping to adapt the economy, also considering how human capital actions can accompany a just transition.
  • Publication
    World Development Report 2006
    (Washington, DC, 2005) World Bank
    This year’s Word Development Report (WDR), the twenty-eighth, looks at the role of equity in the development process. It defines equity in terms of two basic principles. The first is equal opportunities: that a person’s chances in life should be determined by his or her talents and efforts, rather than by pre-determined circumstances such as race, gender, social or family background. The second principle is the avoidance of extreme deprivation in outcomes, particularly in health, education and consumption levels. This principle thus includes the objective of poverty reduction. The report’s main message is that, in the long run, the pursuit of equity and the pursuit of economic prosperity are complementary. In addition to detailed chapters exploring these and related issues, the Report contains selected data from the World Development Indicators 2005‹an appendix of economic and social data for over 200 countries. This Report offers practical insights for policymakers, executives, scholars, and all those with an interest in economic development.
  • Publication
    Classroom Assessment to Support Foundational Literacy
    (Washington, DC: World Bank, 2025-03-21) Luna-Bazaldua, Diego; Levin, Victoria; Liberman, Julia; Gala, Priyal Mukesh
    This document focuses primarily on how classroom assessment activities can measure students’ literacy skills as they progress along a learning trajectory towards reading fluently and with comprehension by the end of primary school grades. The document addresses considerations regarding the design and implementation of early grade reading classroom assessment, provides examples of assessment activities from a variety of countries and contexts, and discusses the importance of incorporating classroom assessment practices into teacher training and professional development opportunities for teachers. The structure of the document is as follows. The first section presents definitions and addresses basic questions on classroom assessment. Section 2 covers the intersection between assessment and early grade reading by discussing how learning assessment can measure early grade reading skills following the reading learning trajectory. Section 3 compares some of the most common early grade literacy assessment tools with respect to the early grade reading skills and developmental phases. Section 4 of the document addresses teacher training considerations in developing, scoring, and using early grade reading assessment. Additional issues in assessing reading skills in the classroom and using assessment results to improve teaching and learning are reviewed in section 5. Throughout the document, country cases are presented to demonstrate how assessment activities can be implemented in the classroom in different contexts.