Publication: Piloting a Machine Learning-Based Job-Matching Algorithm: Summary of Results from Pomerania

Thumbnail Image
Files in English
English PDF (651.21 KB)
25 downloads

English Text (73.14 KB)
4 downloads
Date
2023-11-20
ISSN
Published
2023-11-20
Author(s)
Ferré, Céline
Gajderowicz, Tomasz
Abstract
The objective of this note is to present and discuss the findings of piloting a task-based job matching tool developed by the World Bank and implemented in partnership with the Regional Labor Office of Pomerania, Poland. The aim of the pilot was to assess whether simple ML-based tools could contribute to improve the efficiency of PES delivery and job-seeking behaviors compared to rule-based, knowledge-driven approaches. By combining labor demand data from local occupational barometers and the descriptions of tasks in the national taxonomy of occupations, the tool provides jobseekers a menu of potential jobs available in the local labor markets that match the tasks performed in previous work experiences. Results show that jobseekers were satisfied with the proposed occupations resulting from the tool (as beyond their thinking) and had the intention to expand job search efforts, though job-seeking behaviors could not be monitored. Career advisers recognized that the lack of information on jobseekers’ education, skills, and preferences limited the efficiency of the proposed job matches.
Link to Data Set
Citation
Honorati, Maddalena; Ferré, Céline; Gajderowicz, Tomasz. 2023. Piloting a Machine Learning-Based Job-Matching Algorithm: Summary of Results from Pomerania. Jobs Notes; Issue No.17. © Washington, DC: World Bank. http://hdl.handle.net/10986/40628 License: CC BY-NC 3.0 IGO.
Report Series
Other publications in this report series
Journal
Journal Volume
Journal Issue
Associated URLs
Associated content
Citations