Publication:
Eyes in the Sky, Boots on the Ground: Assessing Satellite, and Ground-Based Approaches to Crop Yield Measurement and Analysis

Abstract
Understanding the determinants of agricultural productivity requires accurate measurement of crop output and yield. In smallholder production systems across low- and middle-income countries, crop yields have traditionally been assessed based on farmer-reported production and land areas in household and farm surveys, occasionally by objective crop cuts for a sub-section of a farmer’s plot, and rarely using full-plot harvests. In parallel, satellite data continue to improve in terms of spatial, temporal, and spectral resolution needed to discern performance on smallholder plots. This study evaluates ground and satellite-based approaches to estimating crop yields and yield responsiveness to inputs, using data on maize from Eastern Uganda. Using unique, simultaneous ground data on yields based on farmer reporting, sub-plot crop cutting, and full-plot harvests across hundreds of smallholder plots, we document large discrepancies among the ground-based measures, particularly among yields based on farmer-reporting versus sub-plot or full-plot crop cutting. Compared to yield measures based on either farmer-reporting or sub-plot crop cutting, satellite-based yield measures explain as much or more variation in yields based on (gold-standard) full-plot crop cuts. Further, estimates of the association between maize yield and various production factors (e.g., fertilizer, soil quality) are similar across crop cut- and satellite-based yield measures, with the use of the latter at times leading to more significant results due to larger sample sizes. Overall, the results suggest a substantial role for satellite-based yield estimation in measuring and understanding agricultural productivity in the developing world.
Link to Data Set
Citation
David B. Lobell; George Azzari; Burke,Marshall Benajah; Gourlay,Sydney; Zhenong Jin; Kilic,Talip; Murray,Siobhan. 2022. Eyes in the Sky, Boots on the Ground: Assessing Satellite, and Ground-Based Approaches to Crop Yield Measurement and Analysis. © World Bank. http://hdl.handle.net/10986/37749 License: CC BY 3.0 IGO.
Associated URLs
Associated content
Report Series
Other publications in this report series
Journal
Journal Volume
Journal Issue

Related items

Showing items related by metadata.

  • Publication
    Eyes in the Sky, Boots on the Ground
    (World Bank, Washington, DC, 2018-03) Lobell, David B.; Azzari, George; Marshall, Burke; Gourlay, Sydney; Jin, Zhenong; Kilic, Talip; Murray, Siobhan
    Crop yields in smallholder systems are traditionally assessed using farmer-reported information in surveys, occasionally by crop cuts for a sub-section of a farmer's plot, and rarely using full-plot harvests. Accuracy and cost vary dramatically across methods. In parallel, satellite data is improving in terms of spatial, temporal, and spectral resolution needed to discern performance on smallholder plots. This study uses data from a survey experiment in Uganda, and evaluates the accuracy of Sentinel-2 imagery-based, remotely-sensed plot-level maize yields with respect to ground-based measures relying on farmer self-reporting, sub-plot crop cutting (CC), and full-plot crop cutting (FP). Remotely-sensed yields include two versions calibrated to FP and CC yields (calibrated), and an alternative based on crop model simulations, using no ground data (uncalibrated). On the ground, self-reported yields explained less than 1 percent of FP (and CC) yield variability, and while the average difference between CC and FP yields was not significant, CC yields captured one-quarter of FP yield variability. With satellite data, both calibrated and uncalibrated yields captured FP yield variability on pure stand plots similarly well, and both captured half of FP yield variability on pure stand plots above 0.10 hectare. The uncalibrated yields were consistently 1 ton per hectare higher than FP or CC yields, and the satellite-based yields were less well correlated with the ground-based measures on intercropped plots compared with pure stand ones. Importantly, regressions using CC, FP and remotely-sensed yields as dependent variables all produced very similar coefficients for yield response to production factors.
  • Publication
    Dynamic, High-Resolution Wealth Measurement in Data-Scarce Environments
    (Washington, DC: World Bank, 2025-02-06) Zheng, Zhuo; Wu, Timothy; Lee, Richard; Newhouse, David; Kilic, Talip; Burke, Marshall; Ermon, Stefano; Lobell, David B.
    Accurate and comprehensive measurement of household livelihoods is critical for monitoring progress toward poverty alleviation and targeting social assistance programs for those who most need it. However, the high cost of traditional data collection has historically made comprehensive measurement a difficult task. This paper evaluates alternative satellite-based deep learning approaches using detailed household census extracts from four African countries to accelerate progress toward comprehensive, fine-scale, and dynamic measurement of asset wealth at scale. The results indicate that transformer architectures solve multiple open measurement problems, by providing the most accurate measurement of local-level variation in household asset wealth across countries and cities, as well as changes in household asset wealth over time. Experiments that artificially restrict data availability show the model’s ability to achieve high performance with limited data. The proposed approach demonstrates the promise of combining satellite imagery, publicly available geo-features, and new deep learning architectures for hyperlocal and dynamic measurement of wealth in data-scarce environments.
  • Publication
    Could the Debate Be Over?
    (World Bank, Washington, DC, 2017-09) Gourlay, Sydney; Kilic, Talip; Lobell, David
    Based on a two-round household panel survey conducted in Eastern Uganda, this study shows that the analysis of the inverse scale-productivity relationship is highly sensitive to how plot-level maize production, hence yield (production divided by GPS-based plot area), is measured. Although farmer-reported production-based plot-level maize yield regressions consistently lend support to the inverse scale-productivity relationship, the comparable regressions estimated with maize yields based on sub-plot crop cutting, full-plot crop cutting, and remote sensing point toward constant returns to scale, at the mean as well as throughout the distributions of objective measures of maize yield. In deriving the much-debated coefficient for GPS-based plot area, the maize yield regressions control for objective measures of soil fertility, maize genetic heterogeneity, and edge effects at the plot level; a rich set of plot, household, and plot manager attributes; as well as time-invariant household- and parcel-level unobserved heterogeneity in select specifications that exploit the panel nature of the data. The core finding is driven by persistent overestimation of farmer-reported maize production and yield vis-à-vis their crop cutting–based counterparts, particularly in the lower half of the plot area distribution. Although the results contribute to a larger, and renewed, body of literature questioning the inverse scale-productivity relationship based on omitted explanatory variables or alternative formulations of the agricultural productivity measure, the paper is among the first documenting how the inverse relationship could be a statistical artifact, driven by errors in farmer-reported survey data on crop production.
  • Publication
    Understanding the Requirements for Surveys to Support Satellite-Based Crop Type Mapping
    (World Bank, Washington, DC, 2021-04) Azzari, George; Jain, Shruti; Jeffries, Graham; Kilic, Talip; Murray, Siobhan
    With the surge in publicly available high-resolution satellite imagery, satellite-based monitoring of smallholder agricultural outcomes is gaining momentum. This paper provides recommendations on how large-scale household surveys should be conducted to generate the data needed to train models for satellite-based crop type mapping in smallholder farming systems. The analysis focuses on maize cultivation in Malawi and Ethiopia, and leverages rich, georeferenced plot-level data from national household surveys that were conducted in 2018–20 and that are integrated with Sentinel-2 satellite imagery and complementary geospatial data. To identify the approach to survey data collection that yields optimal data for training remote sensing models, 26,250 in silico experiments are simulated within a machine learning framework. The best model is then applied to map seasonal maize cultivation from 2016 to 2019 at 10-meter resolution in both countries. The analysis reveals that smallholder plots with maize cultivation can be identified with up to 75 percent accuracy. However, the predictive accuracy varies with the approach to georeferencing plot locations and the number of observations in the training data. Collecting full plot boundaries or complete plot corner points provides the best quality of information for model training. Classification performance peaks with slightly less than 60 percent of the training data. Seemingly small erosion in accuracy under less preferable approaches to georeferencing plots results in total area under maize cultivation being overestimated by 0.16 to 0.47 million hectares (8 to 24 percent) in Malawi.
  • Publication
    Cheaper, Faster, and More Than Good Enough
    (World Bank, Washington, DC, 2016-07) Carletto, Calogero; Gourlay, Sydney; Murray, Siobhan; Zezza, Alberto
    In rural societies of low- and middle-income countries, land is a major measure of wealth, a critical input in agricultural production, and a key variable for assessing agricultural performance and productivity. In the absence of cadastral information to refer to, measures of land plots have historically been taken with one of two approaches: traversing (accurate, but cumbersome), and farmers' self-report (cheap, but marred by measurement error). Recently, the advent of cheap handheld GPS devices has held promise for balancing cost and precision. Guided by purposely collected primary data from Ethiopia, Nigeria, and Tanzania (Zanzibar), and with consideration for practical household survey implementation, the paper assesses the nature and magnitude of measurement error under different measurement methods and proposes a set of recommendations for plot area measurement. The results largely point to the support of GPS measurement, with simultaneous collection of farmer self-reported areas.

Users also downloaded

Showing related downloaded files

  • Publication
    Global Economic Prospects, June 2025
    (Washington, DC: World Bank, 2025-06-10) World Bank
    The global economy is facing another substantial headwind, emanating largely from an increase in trade tensions and heightened global policy uncertainty. For emerging market and developing economies (EMDEs), the ability to boost job creation and reduce extreme poverty has declined. Key downside risks include a further escalation of trade barriers and continued policy uncertainty. These challenges are exacerbated by subdued foreign direct investment into EMDEs. Global cooperation is needed to restore a more stable international trade environment and scale up support for vulnerable countries grappling with conflict, debt burdens, and climate change. Domestic policy action is also critical to contain inflation risks and strengthen fiscal resilience. To accelerate job creation and long-term growth, structural reforms must focus on raising institutional quality, attracting private investment, and strengthening human capital and labor markets. Countries in fragile and conflict situations face daunting development challenges that will require tailored domestic policy reforms and well-coordinated multilateral support.
  • Publication
    Business Ready 2024
    (Washington, DC: World Bank, 2024-10-03) World Bank
    Business Ready (B-READY) is a new World Bank Group corporate flagship report that evaluates the business and investment climate worldwide. It replaces and improves upon the Doing Business project. B-READY provides a comprehensive data set and description of the factors that strengthen the private sector, not only by advancing the interests of individual firms but also by elevating the interests of workers, consumers, potential new enterprises, and the natural environment. This 2024 report introduces a new analytical framework that benchmarks economies based on three pillars: Regulatory Framework, Public Services, and Operational Efficiency. The analysis centers on 10 topics essential for private sector development that correspond to various stages of the life cycle of a firm. The report also offers insights into three cross-cutting themes that are relevant for modern economies: digital adoption, environmental sustainability, and gender. B-READY draws on a robust data collection process that includes specially tailored expert questionnaires and firm-level surveys. The 2024 report, which covers 50 economies, serves as the first in a series that will expand in geographical coverage and refine its methodology over time, supporting reform advocacy, policy guidance, and further analysis and research.
  • Publication
    Digital Progress and Trends Report 2023
    (Washington, DC: World Bank, 2024-03-05) World Bank
    Digitalization is the transformational opportunity of our time. The digital sector has become a powerhouse of innovation, economic growth, and job creation. Value added in the IT services sector grew at 8 percent annually during 2000–22, nearly twice as fast as the global economy. Employment growth in IT services reached 7 percent annually, six times higher than total employment growth. The diffusion and adoption of digital technologies are just as critical as their invention. Digital uptake has accelerated since the COVID-19 pandemic, with 1.5 billion new internet users added from 2018 to 2022. The share of firms investing in digital solutions around the world has more than doubled from 2020 to 2022. Low-income countries, vulnerable populations, and small firms, however, have been falling behind, while transformative digital innovations such as artificial intelligence (AI) have been accelerating in higher-income countries. Although more than 90 percent of the population in high-income countries was online in 2022, only one in four people in low-income countries used the internet, and the speed of their connection was typically only a small fraction of that in wealthier countries. As businesses in technologically advanced countries integrate generative AI into their products and services, less than half of the businesses in many low- and middle-income countries have an internet connection. The growing digital divide is exacerbating the poverty and productivity gaps between richer and poorer economies. The Digital Progress and Trends Report series will track global digitalization progress and highlight policy trends, debates, and implications for low- and middle-income countries. The series adds to the global efforts to study the progress and trends of digitalization in two main ways: · By compiling, curating, and analyzing data from diverse sources to present a comprehensive picture of digitalization in low- and middle-income countries, including in-depth analyses on understudied topics. · By developing insights on policy opportunities, challenges, and debates and reflecting the perspectives of various stakeholders and the World Bank’s operational experiences. This report, the first in the series, aims to inform evidence-based policy making and motivate action among internal and external audiences and stakeholders. The report will bring global attention to high-performing countries that have valuable experience to share as well as to areas where efforts will need to be redoubled.
  • Publication
    Global Economic Prospects, January 2025
    (Washington, DC: World Bank, 2025-01-16) World Bank
    Global growth is expected to hold steady at 2.7 percent in 2025-26. However, the global economy appears to be settling at a low growth rate that will be insufficient to foster sustained economic development—with the possibility of further headwinds from heightened policy uncertainty and adverse trade policy shifts, geopolitical tensions, persistent inflation, and climate-related natural disasters. Against this backdrop, emerging market and developing economies are set to enter the second quarter of the twenty-first century with per capita incomes on a trajectory that implies substantially slower catch-up toward advanced-economy living standards than they previously experienced. Without course corrections, most low-income countries are unlikely to graduate to middle-income status by the middle of the century. Policy action at both global and national levels is needed to foster a more favorable external environment, enhance macroeconomic stability, reduce structural constraints, address the effects of climate change, and thus accelerate long-term growth and development.
  • Publication
    The Container Port Performance Index 2023
    (Washington, DC: World Bank, 2024-07-18) World Bank
    The Container Port Performance Index (CPPI) measures the time container ships spend in port, making it an important point of reference for stakeholders in the global economy. These stakeholders include port authorities and operators, national governments, supranational organizations, development agencies, and other public and private players in trade and logistics. The index highlights where vessel time in container ports could be improved. Streamlining these processes would benefit all parties involved, including shipping lines, national governments, and consumers. This fourth edition of the CPPI relies on data from 405 container ports with at least 24 container ship port calls in the calendar year 2023. As in earlier editions of the CPPI, the ranking employs two different methodological approaches: an administrative (technical) approach and a statistical approach (using matrix factorization). Combining these two approaches ensures that the overall ranking of container ports reflects actual port performance as closely as possible while also being statistically robust. The CPPI methodology assesses the sequential steps of a container ship port call. ‘Total port hours’ refers to the total time elapsed from the moment a ship arrives at the port until the vessel leaves the berth after completing its cargo operations. The CPPI uses time as an indicator because time is very important to shipping lines, ports, and the entire logistics chain. However, time, as captured by the CPPI, is not the only way to measure port efficiency, so it does not tell the entire story of a port’s performance. Factors that can influence the time vessels spend in ports can be location-specific and under the port’s control (endogenous) or external and beyond the control of the port (exogenous). The CPPI measures time spent in container ports, strictly based on quantitative data only, which do not reveal the underlying factors or root causes of extended port times. A detailed port-specific diagnostic would be required to assess the contribution of underlying factors to the time a vessel spends in port. A very low ranking or a significant change in ranking may warrant special attention, for which the World Bank generally recommends a detailed diagnostic.