Publication:
Dynamic, High-Resolution Wealth Measurement in Data-Scarce Environments

Abstract
Accurate and comprehensive measurement of household livelihoods is critical for monitoring progress toward poverty alleviation and targeting social assistance programs for those who most need it. However, the high cost of traditional data collection has historically made comprehensive measurement a difficult task. This paper evaluates alternative satellite-based deep learning approaches using detailed household census extracts from four African countries to accelerate progress toward comprehensive, fine-scale, and dynamic measurement of asset wealth at scale. The results indicate that transformer architectures solve multiple open measurement problems, by providing the most accurate measurement of local-level variation in household asset wealth across countries and cities, as well as changes in household asset wealth over time. Experiments that artificially restrict data availability show the model’s ability to achieve high performance with limited data. The proposed approach demonstrates the promise of combining satellite imagery, publicly available geo-features, and new deep learning architectures for hyperlocal and dynamic measurement of wealth in data-scarce environments.
Link to Data Set
Citation
Zheng, Zhuo; Wu, Timothy; Lee, Richard; Newhouse, David; Kilic, Talip; Burke, Marshall; Ermon, Stefano; Lobell, David B.. 2025. Dynamic, High-Resolution Wealth Measurement in Data-Scarce Environments. Policy Research Working Paper; 11058. © World Bank. http://hdl.handle.net/10986/42772 License: CC BY 3.0 IGO.
Associated URLs
Associated content
Report Series
Report Series
Other publications in this report series
  • Publication
    The Economic Value of Weather Forecasts: A Quantitative Systematic Literature Review
    (Washington, DC: World Bank, 2025-09-10) Farkas, Hannah; Linsenmeier, Manuel; Talevi, Marta; Avner, Paolo; Jafino, Bramka Arga; Sidibe, Moussa
    This study systematically reviews the literature that quantifies the economic benefits of weather observations and forecasts in four weather-dependent economic sectors: agriculture, energy, transport, and disaster-risk management. The review covers 175 peer-reviewed journal articles and 15 policy reports. Findings show that the literature is concentrated in high-income countries and most studies use theoretical models, followed by observational and then experimental research designs. Forecast horizons studied, meteorological variables and services, and monetization techniques vary markedly by sector. Estimated benefits even within specific subsectors span several orders of magnitude and broad uncertainty ranges. An econometric meta-analysis suggests that theoretical studies and studies in richer countries tend to report significantly larger values. Barriers that hinder value realization are identified on both the provider and user sides, with inadequate relevance, weak dissemination, and limited ability to act recurring across sectors. Policy reports rely heavily on back-of-the-envelope or recursive benefit-transfer estimates, rather than on the methods and results of the peer-reviewed literature, revealing a science-to-policy gap. These findings suggest substantial socioeconomic potential of hydrometeorological services around the world, but also knowledge gaps that require more valuation studies focusing on low- and middle-income countries, addressing provider- and user-side barriers and employing rigorous empirical valuation methods to complement and validate theoretical models.
  • Publication
    The Macroeconomic Implications of Climate Change Impacts and Adaptation Options
    (Washington, DC: World Bank, 2025-05-29) Abalo, Kodzovi; Boehlert, Brent; Bui, Thanh; Burns, Andrew; Castillo, Diego; Chewpreecha, Unnada; Haider, Alexander; Hallegatte, Stephane; Jooste, Charl; McIsaac, Florent; Ruberl, Heather; Smet, Kim; Strzepek, Ken
    Estimating the macroeconomic implications of climate change impacts and adaptation options is a topic of intense research. This paper presents a framework in the World Bank's macrostructural model to assess climate-related damages. This approach has been used in many Country Climate and Development Reports, a World Bank diagnostic that identifies priorities to ensure continued development in spite of climate change and climate policy objectives. The methodology captures a set of impact channels through which climate change affects the economy by (1) connecting a set of biophysical models to the macroeconomic model and (2) exploring a set of development and climate scenarios. The paper summarizes the results for five countries, highlighting the sources and magnitudes of their vulnerability --- with estimated gross domestic product losses in 2050 exceeding 10 percent of gross domestic product in some countries and scenarios, although only a small set of impact channels is included. The paper also presents estimates of the macroeconomic gains from sector-level adaptation interventions, considering their upfront costs and avoided climate impacts and finding significant net gross domestic product gains from adaptation opportunities identified in the Country Climate and Development Reports. Finally, the paper discusses the limits of current modeling approaches, and their complementarity with empirical approaches based on historical data series. The integrated modeling approach proposed in this paper can inform policymakers as they make proactive decisions on climate change adaptation and resilience.
  • Publication
    Labor Demand in the Age of Generative AI: Early Evidence from the U.S. Job Posting Data
    (Washington, DC: World Bank, 2025-11-18) Liu, Yan; Wang, He; Yu, Shu
    This paper examines the causal impact of generative artificial intelligence on U.S. labor demand using online job posting data. Exploiting ChatGPT’s release in November 2022 as an exogenous shock, the paper applies difference-in-differences and event study designs to estimate the job displacement effects of generative artificial intelligence. The identification strategy compares labor demand for occupations with high versus low artificial intelligence substitution vulnerability following ChatGPT’s launch, conditioning on similar generative artificial intelligence exposure levels to isolate substitution effects from complementary uses. The analysis uses 285 million job postings collected by Lightcast from the first quarter of 2018 to the second quarter of 2025Q2. The findings show that the number of postings for occupations with above-median artificial intelligence substitution scores fell by an average of 12 percent relative to those with below-median scores. The effect increased from 6 percent in the first year after the launch to 18 percent by the third year. Losses were particularly acute for entry-level positions that require neither advanced degrees (18 percent) nor extensive experience (20 percent), as well as those in administrative support (40 percent) and professional services (30 percent). Although generative artificial intelligence generates new occupations and enhances productivity, which may increase labor demand, early evidence suggests that some occupations may be less likely to be complemented by generative artificial intelligence than others.
  • Publication
    The Lasting Effects of Working while in School
    (Washington, DC: World Bank, 2025-08-18) Ferrando, Mery; Katzkowicz, Noemi; Le Barbanchon, Thomas; Ubfal, Diego
    This paper provides the first experimental evidence on the long-term effects of work-study programs, leveraging a randomized lottery design from a national program in Uruguay. Participation leads to a persistent 11 percent increase in formal labor earnings, observable seven years after the program. Effects are stronger for youth who participate during pivotal educational transitions and are larger for vulnerable youth and men, while remaining positive for women and non-vulnerable youth. The program is highly cost-effective, with average impacts exceeding those of job training programs and comparable to early childhood investments.
  • Publication
    It’s Not (Just) the Tariffs: Rethinking Non-Tariff Measures in a Fragmented Global Economy
    (Washington, DC: World Bank, 2025-10-22) Taglioni, Daria; KEE, Hiau Looi
    As tariffs have declined, non-tariff measures (NTMs) have become central to trade policy, especially in high-income countries and regulated sectors like food and green technologies. Although NTMs may serve legitimate goals, they could also sort countries and firms into or out of markets based on compliance capacity and differences in product mix. Documenting recent advances in the estimation of ad valorem equivalents (AVEs), this paper uncovers new patterns of use and exposure of NTMs. High-income countries rely more heavily on NTMs relative to tariffs, while low- and middle-income countries face steeper AVEs on their exports. Firm-level evidence shows that NTMs disproportionately affect smaller firms, leading to market exit and concentration. Poorly designed NTMs can harm productivity and welfare, while coordinated, capacity-aware use can deliver inclusive outcomes. Policy design, transparency, and diagnostics must evolve to reflect the growing role—and risks—of NTMs in a fragmented global trade landscape.
Journal
Journal Volume
Journal Issue

Related items

Showing items related by metadata.

  • Publication
    Eyes in the Sky, Boots on the Ground
    (Washington, DC: World Bank, 2022-07-15) David B. Lobell; George Azzari; Burke,Marshall Benajah; Gourlay,Sydney; Zhenong Jin; Kilic,Talip; Murray,Siobhan
    Understanding the determinants of agricultural productivity requires accurate measurement of crop output and yield. In smallholder production systems across low- and middle-income countries, crop yields have traditionally been assessed based on farmer-reported production and land areas in household and farm surveys, occasionally by objective crop cuts for a sub-section of a farmer’s plot, and rarely using full-plot harvests. In parallel, satellite data continue to improve in terms of spatial, temporal, and spectral resolution needed to discern performance on smallholder plots. This study evaluates ground and satellite-based approaches to estimating crop yields and yield responsiveness to inputs, using data on maize from Eastern Uganda. Using unique, simultaneous ground data on yields based on farmer reporting, sub-plot crop cutting, and full-plot harvests across hundreds of smallholder plots, we document large discrepancies among the ground-based measures, particularly among yields based on farmer-reporting versus sub-plot or full-plot crop cutting. Compared to yield measures based on either farmer-reporting or sub-plot crop cutting, satellite-based yield measures explain as much or more variation in yields based on (gold-standard) full-plot crop cuts. Further, estimates of the association between maize yield and various production factors (e.g., fertilizer, soil quality) are similar across crop cut- and satellite-based yield measures, with the use of the latter at times leading to more significant results due to larger sample sizes. Overall, the results suggest a substantial role for satellite-based yield estimation in measuring and understanding agricultural productivity in the developing world.
  • Publication
    Eyes in the Sky, Boots on the Ground
    (World Bank, Washington, DC, 2018-03) Lobell, David B.; Azzari, George; Marshall, Burke; Gourlay, Sydney; Jin, Zhenong; Kilic, Talip; Murray, Siobhan
    Crop yields in smallholder systems are traditionally assessed using farmer-reported information in surveys, occasionally by crop cuts for a sub-section of a farmer's plot, and rarely using full-plot harvests. Accuracy and cost vary dramatically across methods. In parallel, satellite data is improving in terms of spatial, temporal, and spectral resolution needed to discern performance on smallholder plots. This study uses data from a survey experiment in Uganda, and evaluates the accuracy of Sentinel-2 imagery-based, remotely-sensed plot-level maize yields with respect to ground-based measures relying on farmer self-reporting, sub-plot crop cutting (CC), and full-plot crop cutting (FP). Remotely-sensed yields include two versions calibrated to FP and CC yields (calibrated), and an alternative based on crop model simulations, using no ground data (uncalibrated). On the ground, self-reported yields explained less than 1 percent of FP (and CC) yield variability, and while the average difference between CC and FP yields was not significant, CC yields captured one-quarter of FP yield variability. With satellite data, both calibrated and uncalibrated yields captured FP yield variability on pure stand plots similarly well, and both captured half of FP yield variability on pure stand plots above 0.10 hectare. The uncalibrated yields were consistently 1 ton per hectare higher than FP or CC yields, and the satellite-based yields were less well correlated with the ground-based measures on intercropped plots compared with pure stand ones. Importantly, regressions using CC, FP and remotely-sensed yields as dependent variables all produced very similar coefficients for yield response to production factors.
  • Publication
    Scaling up Social Assistance Where Data is Scarce
    (Washington, DC: World Bank, 2024-05-15) Okamura, Yuko; Ohlenburg, Tim; Tesliuc, Emil
    During the recent Covid-19 shock (2020/21), most countries used cash transfers to protect the livelihoods of those affected by the pandemic or by restrictions on mobility or economic activities, including the poor and vulnerable. While a large majority of countries mobilized existing programs and/or administrative databases to expand support to new beneficiaries, countries without such programs or databases were severely limited in their capacity to respond. Leveraging the Covid-19 shock as an opportunity to leapfrog and innovate, various low-income countries used new sources of data and computational methods to rapidly develop -level welfare-targeted programs. This paper reviews both crisis-time programs and regular social protection operations to distill lessons that could be applicable for both contexts. It examines three programs from the Democratic Republic of Congo, Togo, and Nigeria that used geospatial and mobile phone usage data and/or artificial intelligence (AI), particularly machine learning methods to estimate the welfare of applicants for individual-level welfare targeting and deliver emergency cash transfers in response to the pandemic. Additionally, it reviews two post-pandemic programs, in Lomé, Togo and in rural Lilongwe, Malawi, that incorporated those innovations into the more traditional delivery infrastructure and expanded their monitoring and evaluation framework. The rationale, key achievements, and main challenges of the various approaches are considered, and cases from other countries, as well as innovations beyond targeting, are taken into account. The paper concludes with policy recommendations and promising research topics to inform the discourse on leveraging novel data sources and estimation methods for improved social assistance in and beyond emergency settings.
  • Publication
    Protected Areas and Deforestation : New Results from High Resolution Panel Data
    (World Bank Group, Washington, DC, 2014-11) Blankespoor, Brian; Dasgupta, Susmita; Wheeler, David
    This paper investigates the effectiveness of protected areas in slowing tropical forest clearing in 64 countries in Asia/Pacific, Africa, and Latin America for the period 2001-2012. The investigation compares deforestation rates inside and within 10 kilometers outside the boundary of protected areas. Annual time series of these deforestation rates were constructed from recently published high-resolution data on forest clearing. For 4,028 parks, panel estimation based on a variety of park characteristics was conducted to test if deforestation is lower in protected areas because of their protected status, or if other factors explain the difference. For a sample of 726 parks established since 2002, a test also was conducted to investigate the effect of park establishment on protection. The findings suggest park size, national park status, and management by indigenous people all have significant association with effective protection across regions. For the Asia/Pacific region, the test offers compelling evidence that park establishment has a near-immediate and powerful effect.
  • Publication
    Small Area Estimation of Poverty and Wealth Using Geospatial Data
    (World Bank, Washington, DC, 2023-07-18) Newhouse, David
    This paper offers a nontechnical review of selected applications that combine survey and geospatial data to generate small area estimates of wealth or poverty. Publicly available data from satellites and phones predicts poverty and wealth accurately across space, when evaluated against census data, and their use in model-based estimates improve the accuracy and efficiency of direct survey estimates. Although the evidence is scant, models based on interpretable features appear to predict at least as well as estimates derived from Convolutional Neural Networks. Estimates for sampled areas are significantly more accurate than those for non-sampled areas due to informative sampling. In general, estimates benefit from using geospatial data at the most disaggregated level possible. Tree-based machine learning methods appear to generate more accurate estimates than linear mixed models. Small area estimates using geospatial data can improve the design of social assistance programs, particularly when the existing targeting system is poorly designed.

Users also downloaded

Showing related downloaded files

  • Publication
    Business Ready 2024
    (Washington, DC: World Bank, 2024-10-03) World Bank
    Business Ready (B-READY) is a new World Bank Group corporate flagship report that evaluates the business and investment climate worldwide. It replaces and improves upon the Doing Business project. B-READY provides a comprehensive data set and description of the factors that strengthen the private sector, not only by advancing the interests of individual firms but also by elevating the interests of workers, consumers, potential new enterprises, and the natural environment. This 2024 report introduces a new analytical framework that benchmarks economies based on three pillars: Regulatory Framework, Public Services, and Operational Efficiency. The analysis centers on 10 topics essential for private sector development that correspond to various stages of the life cycle of a firm. The report also offers insights into three cross-cutting themes that are relevant for modern economies: digital adoption, environmental sustainability, and gender. B-READY draws on a robust data collection process that includes specially tailored expert questionnaires and firm-level surveys. The 2024 report, which covers 50 economies, serves as the first in a series that will expand in geographical coverage and refine its methodology over time, supporting reform advocacy, policy guidance, and further analysis and research.
  • Publication
    Digital Progress and Trends Report 2023
    (Washington, DC: World Bank, 2024-03-05) World Bank
    Digitalization is the transformational opportunity of our time. The digital sector has become a powerhouse of innovation, economic growth, and job creation. Value added in the IT services sector grew at 8 percent annually during 2000–22, nearly twice as fast as the global economy. Employment growth in IT services reached 7 percent annually, six times higher than total employment growth. The diffusion and adoption of digital technologies are just as critical as their invention. Digital uptake has accelerated since the COVID-19 pandemic, with 1.5 billion new internet users added from 2018 to 2022. The share of firms investing in digital solutions around the world has more than doubled from 2020 to 2022. Low-income countries, vulnerable populations, and small firms, however, have been falling behind, while transformative digital innovations such as artificial intelligence (AI) have been accelerating in higher-income countries. Although more than 90 percent of the population in high-income countries was online in 2022, only one in four people in low-income countries used the internet, and the speed of their connection was typically only a small fraction of that in wealthier countries. As businesses in technologically advanced countries integrate generative AI into their products and services, less than half of the businesses in many low- and middle-income countries have an internet connection. The growing digital divide is exacerbating the poverty and productivity gaps between richer and poorer economies. The Digital Progress and Trends Report series will track global digitalization progress and highlight policy trends, debates, and implications for low- and middle-income countries. The series adds to the global efforts to study the progress and trends of digitalization in two main ways: · By compiling, curating, and analyzing data from diverse sources to present a comprehensive picture of digitalization in low- and middle-income countries, including in-depth analyses on understudied topics. · By developing insights on policy opportunities, challenges, and debates and reflecting the perspectives of various stakeholders and the World Bank’s operational experiences. This report, the first in the series, aims to inform evidence-based policy making and motivate action among internal and external audiences and stakeholders. The report will bring global attention to high-performing countries that have valuable experience to share as well as to areas where efforts will need to be redoubled.
  • Publication
    Commodity Markets Outlook, April 2025
    (Washington, DC: World Bank, 2025-04-29) World Bank
    Commodity prices are set to fall sharply this year, by about 12 percent overall, as weakening global economic growth weighs on demand. In 2026, commodity prices are projected to reach a six-year low. Oil prices are expected to exert substantial downward pressure on the aggregate commodity index in 2025, as a marked slowdown in global oil consumption coincides with expanding supply. The anticipated commodity price softening is broad-based, however, with more than half of the commodities in the forecast set to decrease this year, many by more than 10 percent. The latest shocks to hit commodity markets extend a so far tumultuous decade, marked by the highest level of commodity price volatility in at least half a century. Between 2020 and 2024, commodity price swings were frequent and sharp, with knock-on consequences for economic activity and inflation. In the next two years, commodity prices are expected to put downward pressure on global inflation. Risks to the commodity price projections are tilted to the downside. A sharper-than-expected slowdown in global growth—driven by worsening trade relations or a prolonged tightening of financial conditions—could further depress commodity demand, especially for industrial products. In addition, if OPEC+ fully unwinds its voluntary supply cuts, oil production will far exceed projected consumption. There are also important upside risks to commodity prices—for instance, if geopolitical tensions worsen, threatening oil and gas supplies, or if extreme weather events lead to agricultural and energy price spikes.
  • Publication
    Global Economic Prospects, June 2025
    (Washington, DC: World Bank, 2025-06-10) World Bank
    The global economy is facing another substantial headwind, emanating largely from an increase in trade tensions and heightened global policy uncertainty. For emerging market and developing economies (EMDEs), the ability to boost job creation and reduce extreme poverty has declined. Key downside risks include a further escalation of trade barriers and continued policy uncertainty. These challenges are exacerbated by subdued foreign direct investment into EMDEs. Global cooperation is needed to restore a more stable international trade environment and scale up support for vulnerable countries grappling with conflict, debt burdens, and climate change. Domestic policy action is also critical to contain inflation risks and strengthen fiscal resilience. To accelerate job creation and long-term growth, structural reforms must focus on raising institutional quality, attracting private investment, and strengthening human capital and labor markets. Countries in fragile and conflict situations face daunting development challenges that will require tailored domestic policy reforms and well-coordinated multilateral support.
  • Publication
    Global Economic Prospects, January 2025
    (Washington, DC: World Bank, 2025-01-16) World Bank
    Global growth is expected to hold steady at 2.7 percent in 2025-26. However, the global economy appears to be settling at a low growth rate that will be insufficient to foster sustained economic development—with the possibility of further headwinds from heightened policy uncertainty and adverse trade policy shifts, geopolitical tensions, persistent inflation, and climate-related natural disasters. Against this backdrop, emerging market and developing economies are set to enter the second quarter of the twenty-first century with per capita incomes on a trajectory that implies substantially slower catch-up toward advanced-economy living standards than they previously experienced. Without course corrections, most low-income countries are unlikely to graduate to middle-income status by the middle of the century. Policy action at both global and national levels is needed to foster a more favorable external environment, enhance macroeconomic stability, reduce structural constraints, address the effects of climate change, and thus accelerate long-term growth and development.