Publication: A Data-Driven Approach for Early Detection of Food Insecurity in Yemen's Humanitarian Crisis
Loading...
Published
2024-05-09
ISSN
Date
2024-05-09
Editor(s)
Abstract
The Republic of Yemen is enduring the world's most severe protracted humanitarian crisis, compounded by conflict, economic collapse, and natural disasters. Current food insecurity assessments rely on expert evaluation of evidence with limited temporal frequency and foresight. This paper introduces a data-driven methodology for the early detection and diagnosis of food security emergencies. The approach optimizes for simplicity and transparency, and pairs quantitative indicators with data-driven optimal thresholds to generate early warnings of impending food security emergencies. Historical validation demonstrates that warnings can be reliably issued before sharp deterioration in food security occurs, using only a few critical indicators that capture inflation, conflict, and agricultural productivity shocks. These indicators signal deterioration most accurately at five months of lead time. The paper concludes that simple data-driven approaches show a strong capability to generate reliable food security warnings in Yemen, highlighting their potential to complement existing assessments and enhance lead time for effective intervention.
Link to Data Set
Citation
“Penson, Steve; Lomme, Mathijs; Carmichael, Zacharey; Manni, Alemu; Shrestha, Sudeep; Andree, Bo Pieter Johannes. 2024. A Data-Driven Approach for Early Detection of Food Insecurity in Yemen's Humanitarian Crisis. Policy Research Working Paper; 10768. © World Bank. http://hdl.handle.net/10986/41534 License: CC BY 3.0 IGO.”
Digital Object Identifier
Associated URLs
Associated content
Other publications in this report series
Publication The Economic Value of Weather Forecasts: A Quantitative Systematic Literature Review(Washington, DC: World Bank, 2025-09-10)This study systematically reviews the literature that quantifies the economic benefits of weather observations and forecasts in four weather-dependent economic sectors: agriculture, energy, transport, and disaster-risk management. The review covers 175 peer-reviewed journal articles and 15 policy reports. Findings show that the literature is concentrated in high-income countries and most studies use theoretical models, followed by observational and then experimental research designs. Forecast horizons studied, meteorological variables and services, and monetization techniques vary markedly by sector. Estimated benefits even within specific subsectors span several orders of magnitude and broad uncertainty ranges. An econometric meta-analysis suggests that theoretical studies and studies in richer countries tend to report significantly larger values. Barriers that hinder value realization are identified on both the provider and user sides, with inadequate relevance, weak dissemination, and limited ability to act recurring across sectors. Policy reports rely heavily on back-of-the-envelope or recursive benefit-transfer estimates, rather than on the methods and results of the peer-reviewed literature, revealing a science-to-policy gap. These findings suggest substantial socioeconomic potential of hydrometeorological services around the world, but also knowledge gaps that require more valuation studies focusing on low- and middle-income countries, addressing provider- and user-side barriers and employing rigorous empirical valuation methods to complement and validate theoretical models.Publication Direct and Indirect Impacts of Transport Mobility on Access to Jobs: Evidence from South Africa(Washington, DC: World Bank, 2025-11-12)Access to jobs is essential for economic growth. In Africa, unemployment rates are notably high. This paper reexamines the relationship between transport mobility and labor market outcomes, with a particular focus on the direct and indirect effects of transport connectivity. As predicted by theory, wages are influenced by the level of commuting deterrence. Generally, higher earnings are associated with longer commute times and/or higher commuting costs. Local accessibility is also important, especially for individuals with time constraints. Both direct and indirect impacts are found to be significant in South Africa, where job accessibility has been challenging since the end of apartheid. For the direct impact, the wage elasticity associated with commuting costs is significant. Returns on commute are particularly high for women. Local accessibility to socioeconomic facilities, such as shops and health services, is also found to have a significant impact, consistent with the concept of mobility of care. To enhance employment, therefore, it is crucial to connect people not only to job locations but also to various socioeconomic points of interest, such as markets and hospitals, in an integrated manner. This integration will enable individuals to spend more time working and commuting longer distances.Publication The Macroeconomic Implications of Climate Change Impacts and Adaptation Options(Washington, DC: World Bank, 2025-05-29)Estimating the macroeconomic implications of climate change impacts and adaptation options is a topic of intense research. This paper presents a framework in the World Bank's macrostructural model to assess climate-related damages. This approach has been used in many Country Climate and Development Reports, a World Bank diagnostic that identifies priorities to ensure continued development in spite of climate change and climate policy objectives. The methodology captures a set of impact channels through which climate change affects the economy by (1) connecting a set of biophysical models to the macroeconomic model and (2) exploring a set of development and climate scenarios. The paper summarizes the results for five countries, highlighting the sources and magnitudes of their vulnerability --- with estimated gross domestic product losses in 2050 exceeding 10 percent of gross domestic product in some countries and scenarios, although only a small set of impact channels is included. The paper also presents estimates of the macroeconomic gains from sector-level adaptation interventions, considering their upfront costs and avoided climate impacts and finding significant net gross domestic product gains from adaptation opportunities identified in the Country Climate and Development Reports. Finally, the paper discusses the limits of current modeling approaches, and their complementarity with empirical approaches based on historical data series. The integrated modeling approach proposed in this paper can inform policymakers as they make proactive decisions on climate change adaptation and resilience.Publication From Policy to Practice: Lessons from the Implementation of the Refugee Work Rights Policy in Ethiopia(Washington, DC: World Bank, 2025-11-10)This paper examines the early implementation of Ethiopia’s refugee work rights policy, with a focus on the issuance of permits that enable refugees to engage in economic activities. Building on significant legal and institutional advances under the 2019 Refugee Proclamation and subsequent directives, the analysis explores how these reforms are being operationalized in practice. Using a mixed-methods approach, combining document review, administrative data analysis, and semi-structured interviews, the paper identifies both progress and remaining challenges. Permit issuance has increased since the adoption of detailed operational guidance in 2024, reflecting the Government of Ethiopia’s commitment to operationalizing its progressive legal framework and ensuring that refugees can exercise their right to work. However, take-up remains modest, with about 5.2 percent of the working-age population holding a permit. Preliminary evidence suggests that coordination gaps, limited subnational capacity, low awareness among refugees and employers, and disincentives to formalize in a largely informal labor market are contributing to the low take-up. The paper offers policy suggestions, grounded in the Ethiopian context and emerging evidence, to help translate legal commitments into improved labor market outcomes for refugees.Publication Monitoring Global Aid Flows: A Novel Approach Using Large Language Models(Washington, DC: World Bank, 2025-11-04)Effective monitoring of development aid is the foundation for assessing the alignment of flows with their intended development objectives. Existing reporting systems, such as the Organisation for Economic Co-operation and Development’s Creditor Reporting System, provide standardized classification of aid activities but have limitations when it comes to capturing new areas like climate change, digitalization, and other cross-cutting themes. This paper proposes a bottom-up, unsupervised machine learning framework that leverages textual descriptions of aid projects to generate highly granular activity clusters. Using the 2021 Creditor Reporting System data set of nearly 400,000 records, the model produces 841 clusters, which are then grouped into 80 subsectors. These clusters reveal 36 emerging aid areas not tracked in the current Creditor Reporting System taxonomy, allow unpacking of “multi-sectoral” and “sector not specified” classifications, and enable estimation of flows to new themes, including World Bank Global Challenge Programs, International Development Association–20 Special Themes, and Cross-Cutting Issues. Validation against both Creditor Reporting System benchmarks and International Development Association commitment data demonstrates robustness. This approach illustrates how machine learning and the new advances in large language models can enhance the monitoring of global aid flows and inform future improvements in aid classification and reporting. It offers a useful tool that can support more responsive and evidence-based decision-making, helping to better align resources with evolving development priorities.
Journal
Journal Volume
Journal Issue
Collections
Related items
Showing items related by metadata.
Publication Pollution and Expenditures in a Penalized Vector Spatial Autoregressive Time Series Model with Data-Driven Networks(World Bank, Washington, DC, 2019-02)This paper introduces a Spatial Vector Autoregressive Moving Average (SVARMA) model in which multiple cross-sectional time series are modeled as multivariate, possibly fat-tailed, spatial autoregressive ARMA processes. The estimation requires specifying the cross-sectional spillover channels through spatial weights matrices. the paper explores a kernel method to estimate the network topology based on similarities in the data. It discusses the model and estimation, focusing on a penalized Maximum Likelihood criterion. The empirical performance of the estimator is explored in a simulation study. The model is used to study a spatial time series of pollution and household expenditure data in Indonesia. The analysis finds that the new model improves in terms of implied density, and better neutralizes residual correlations than the VARMA, using fewer parameters. The results suggest that growth in household expenditures precedes pollution reduction, particularly after the expenditures of poorer households increase; that increasing pollution is followed by reduced growth in expenditures, particularly reducing the growth of poorer households; and that there are significant spillovers from bottom-up growth in expenditures. The paper does not find evidence for top-down growth spillovers. Feedback between the identified mechanisms may contribute to pollution-poverty traps and the results imply that pollution damages are economically significant.Publication Machine Learning Guided Outlook of Global Food Insecurity Consistent with Macroeconomic Forecasts(World Bank, Washington, DC, 2022-10)Motivated by the deterioration in global food security conditions, this paper develops a parsimonious machine learning model to derive a multi-year outlook of global severe food insecurity from macro-economic projections. The objective is to provide forecasts that are internally consistent with wider economic assessments, allowing both food security policies and economic development policies to be informed by a cohesive set of expectations. The model is validated on holdout data that explicitly test the ability to forecast new data from history and extrapolate beyond observed intervals. It is then applied to the World Economic Outlook database of April 2022 to project the severely food insecure population across all 144 World Bank lending countries. The analysis estimates that the global severely food insecure population may remain above 1 billion through 2027 unless large-scale interventions are made. The paper also explores counterfactual scenarios, first to investigate additional risks in a downside economic scenario, and second, to investigate whether restoring macroeconomic targets is sufficient to revert food insecurity back to pre-pandemic levels. The paper concludes that the proposed model provides a robust and low-cost approach to maintain reliable long-term projections and produce scenario analyses that can be revised systematically and interpreted within the context of available economic outlooks.Publication Comparative Analysis of AI-Predicted and Crowdsourced Food Prices in an Economically Volatile Region(Washington, DC: World Bank, 2024-04-23)High-frequency monitoring of food commodity prices is important for assessing and responding to shocks, especially in fragile contexts where timely and targeted interventions for food security are critical. However, national price surveys are typically limited in temporal and spatial granularity. It is cost prohibitive to implement traditional data collection at frequent timescales to unravel spatiotemporal price evolution across market segments and at subnational geographic levels. Recent advancements in data innovation offer promising solutions to address the paucity of commodity price data and guide market intelligence for diverse development stakeholders. The use of artificial intelligence to estimate missing price data and a parallel effort to crowdsource commodity price data are both unlocking cost-effective opportunities to generate actionable price data. Yet, little is known about how the data from these alternative methods relate to independent ground truth data. To evaluate if these data strategies can meet the long-standing demand for real-time intelligence on food affordability, this paper analyzes open-source daily crowdsourced data (104,931 datapoints) from a recently published data set in Nature Journal, relative to complementary ground truth sample. The paper subsequently compares these data to open-source monthly artificial intelligence–generated price data for identical commodities over a 36-month period in northern Nigeria, from 2019 to 2022. The results show that all the data sources share a high degree of comparability, with variation across commodity and market segments. Overall, the findings provide important support for leveraging these new and innovative data approaches to enable data-driven decision-making in near real time.Publication Stochastic Modeling of Food Insecurity(World Bank, Washington, DC, 2020-09)Recent advances in food insecurity classification have made analytical approaches to predict and inform response to food crises possible. This paper develops a predictive, statistical framework to identify drivers of food insecurity risk with simulation capabilities for scenario analyses, risk assessment and forecasting purposes. It utilizes a panel vector-autoregression to model food insecurity distributions of 15 Sub-Saharan African countries between October 2009 and February 2019. Statistical variable selection methods are employed to identify the most important agronomic, weather, conflict and economic variables. The paper finds that food insecurity dynamics are asymmetric and past-dependent, with low insecurity states more likely to transition to high insecurity states than vice versa. Conflict variables are more relevant for dynamics in highly critical stages, while agronomic and weather variables are more important for less critical states. Food prices are predictive for all cases. A Bayesian extension is introduced to incorporate expert opinions through the use of priors, which lead to significant improvements in model performance.Publication Altered Destinies: The Long-Term Effects of Rising Prices and Food Insecurity in the Middle East and North Africa(Washington, DC : World Bank, 2023-04-06)Growth is forecasted to slow down for the Middle East and North Africa region. The war in Ukraine in 2022 exacerbated inflationary pressures as the world recovered from the COVID 19 pandemic induced recession. The response by central banks to raise rates to curb inflation is slowing economic activity, while rising food prices are making it difficult for families to put meals on the table. Inflation, when it stems from food prices, hits the poor harder than the rich, thus compounding food insecurity in MENA that had been rising over decades. The immediate effects of food insecurity can be a devastating loss of life, but even temporary increases in food prices can cause long-term irreversible damages, especially to children. The rise in food prices due to the war in Ukraine may have altered the destinies of hundreds of thousands of children in the region, setting them on paths to limited prosperity. Food insecurity imposes challenges to a region where the state of child nutrition and health were inadequate before the shocks from the COVID-19 pandemic. The report discusses policy options and highlights the need for data to guide effective decision making.
Users also downloaded
Showing related downloaded files
Publication World Development Report 2006(Washington, DC, 2005)This year’s Word Development Report (WDR), the twenty-eighth, looks at the role of equity in the development process. It defines equity in terms of two basic principles. The first is equal opportunities: that a person’s chances in life should be determined by his or her talents and efforts, rather than by pre-determined circumstances such as race, gender, social or family background. The second principle is the avoidance of extreme deprivation in outcomes, particularly in health, education and consumption levels. This principle thus includes the objective of poverty reduction. The report’s main message is that, in the long run, the pursuit of equity and the pursuit of economic prosperity are complementary. In addition to detailed chapters exploring these and related issues, the Report contains selected data from the World Development Indicators 2005‹an appendix of economic and social data for over 200 countries. This Report offers practical insights for policymakers, executives, scholars, and all those with an interest in economic development.Publication Lebanon Economic Monitor, Fall 2022(Washington, DC, 2022-11)The economy continues to contract, albeit at a somewhat slower pace. Public finances improved in 2021, but only because spending collapsed faster than revenue generation. Testament to the continued atrophy of Lebanon’s economy, the Lebanese Pound continues to depreciate sharply. The sharp deterioration in the currency continues to drive surging inflation, in triple digits since July 2020, impacting the poor and vulnerable the most. An unprecedented institutional vacuum will likely further delay any agreement on crisis resolution and much needed reforms; this includes prior actions as part of the April 2022 International Monetary Fund (IMF) staff-level agreement (SLA). Divergent views among key stakeholders on how to distribute the financial losses remains the main bottleneck for reaching an agreement on a comprehensive reform agenda. Lebanon needs to urgently adopt a domestic, equitable, and comprehensive solution that is predicated on: (i) addressing upfront the balance sheet impairments, (ii) restoring liquidity, and (iii) adhering to sound global practices of bail-in solutions based on a hierarchy of creditors (starting with banks’ shareholders) that protects small depositors.Publication Digital Africa(Washington, DC: World Bank, 2023-03-13)All African countries need better and more jobs for their growing populations. "Digital Africa: Technological Transformation for Jobs" shows that broader use of productivity-enhancing, digital technologies by enterprises and households is imperative to generate such jobs, including for lower-skilled people. At the same time, it can support not only countries’ short-term objective of postpandemic economic recovery but also their vision of economic transformation with more inclusive growth. These outcomes are not automatic, however. Mobile internet availability has increased throughout the continent in recent years, but Africa’s uptake gap is the highest in the world. Areas with at least 3G mobile internet service now cover 84 percent of Africa’s population, but only 22 percent uses such services. And the average African business lags in the use of smartphones and computers as well as more sophisticated digital technologies that catalyze further productivity gains. Two issues explain the usage gap: affordability of these new technologies and willingness to use them. For the 40 percent of Africans below the extreme poverty line, mobile data plans alone would cost one-third of their incomes—in addition to the price of access devices, apps, and electricity. Data plans for small- and medium-size businesses are also more expensive than in other regions. Moreover, shortcomings in the quality of internet services—and in the supply of attractive, skills-appropriate apps that promote entrepreneurship and raise earnings—dampen people’s willingness to use them. For those countries already using these technologies, the development payoffs are significant. New empirical studies for this report add to the rapidly growing evidence that mobile internet availability directly raises enterprise productivity, increases jobs, and reduces poverty throughout Africa. To realize these and other benefits more widely, Africa’s countries must implement complementary and mutually reinforcing policies to strengthen both consumers’ ability to pay and willingness to use digital technologies. These interventions must prioritize productive use to generate large numbers of inclusive jobs in a region poised to benefit from a massive, youthful workforce—one projected to become the world’s largest by the end of this century.Publication Classroom Assessment to Support Foundational Literacy(Washington, DC: World Bank, 2025-03-21)This document focuses primarily on how classroom assessment activities can measure students’ literacy skills as they progress along a learning trajectory towards reading fluently and with comprehension by the end of primary school grades. The document addresses considerations regarding the design and implementation of early grade reading classroom assessment, provides examples of assessment activities from a variety of countries and contexts, and discusses the importance of incorporating classroom assessment practices into teacher training and professional development opportunities for teachers. The structure of the document is as follows. The first section presents definitions and addresses basic questions on classroom assessment. Section 2 covers the intersection between assessment and early grade reading by discussing how learning assessment can measure early grade reading skills following the reading learning trajectory. Section 3 compares some of the most common early grade literacy assessment tools with respect to the early grade reading skills and developmental phases. Section 4 of the document addresses teacher training considerations in developing, scoring, and using early grade reading assessment. Additional issues in assessing reading skills in the classroom and using assessment results to improve teaching and learning are reviewed in section 5. Throughout the document, country cases are presented to demonstrate how assessment activities can be implemented in the classroom in different contexts.Publication Argentina Country Climate and Development Report(World Bank, Washington, DC, 2022-11)The Argentina Country Climate and Development Report (CCDR) explores opportunities and identifies trade-offs for aligning Argentina’s growth and poverty reduction policies with its commitments on, and its ability to withstand, climate change. It assesses how the country can: reduce its vulnerability to climate shocks through targeted public and private investments and adequation of social protection. The report also shows how Argentina can seize the benefits of a global decarbonization path to sustain a more robust economic growth through further development of Argentina’s potential for renewable energy, energy efficiency actions, the lithium value chain, as well as climate-smart agriculture (and land use) options. Given Argentina’s context, this CCDR focuses on win-win policies and investments, which have large co-benefits or can contribute to raising the country’s growth while helping to adapt the economy, also considering how human capital actions can accompany a just transition.