Publication: A Data-Driven Approach for Early Detection of Food Insecurity in Yemen's Humanitarian Crisis
Loading...
Published
2024-05-09
ISSN
Date
2024-05-09
Editor(s)
Abstract
The Republic of Yemen is enduring the world's most severe protracted humanitarian crisis, compounded by conflict, economic collapse, and natural disasters. Current food insecurity assessments rely on expert evaluation of evidence with limited temporal frequency and foresight. This paper introduces a data-driven methodology for the early detection and diagnosis of food security emergencies. The approach optimizes for simplicity and transparency, and pairs quantitative indicators with data-driven optimal thresholds to generate early warnings of impending food security emergencies. Historical validation demonstrates that warnings can be reliably issued before sharp deterioration in food security occurs, using only a few critical indicators that capture inflation, conflict, and agricultural productivity shocks. These indicators signal deterioration most accurately at five months of lead time. The paper concludes that simple data-driven approaches show a strong capability to generate reliable food security warnings in Yemen, highlighting their potential to complement existing assessments and enhance lead time for effective intervention.
Link to Data Set
Citation
“Penson, Steve; Lomme, Mathijs; Carmichael, Zacharey; Manni, Alemu; Shrestha, Sudeep; Andree, Bo Pieter Johannes. 2024. A Data-Driven Approach for Early Detection of Food Insecurity in Yemen's Humanitarian Crisis. Policy Research Working Paper; 10768. © World Bank. http://hdl.handle.net/10986/41534 License: CC BY 3.0 IGO.”
Associated URLs
Associated content
Other publications in this report series
Publication The Economic Value of Weather Forecasts: A Quantitative Systematic Literature Review(Washington, DC: World Bank, 2025-09-10)This study systematically reviews the literature that quantifies the economic benefits of weather observations and forecasts in four weather-dependent economic sectors: agriculture, energy, transport, and disaster-risk management. The review covers 175 peer-reviewed journal articles and 15 policy reports. Findings show that the literature is concentrated in high-income countries and most studies use theoretical models, followed by observational and then experimental research designs. Forecast horizons studied, meteorological variables and services, and monetization techniques vary markedly by sector. Estimated benefits even within specific subsectors span several orders of magnitude and broad uncertainty ranges. An econometric meta-analysis suggests that theoretical studies and studies in richer countries tend to report significantly larger values. Barriers that hinder value realization are identified on both the provider and user sides, with inadequate relevance, weak dissemination, and limited ability to act recurring across sectors. Policy reports rely heavily on back-of-the-envelope or recursive benefit-transfer estimates, rather than on the methods and results of the peer-reviewed literature, revealing a science-to-policy gap. These findings suggest substantial socioeconomic potential of hydrometeorological services around the world, but also knowledge gaps that require more valuation studies focusing on low- and middle-income countries, addressing provider- and user-side barriers and employing rigorous empirical valuation methods to complement and validate theoretical models.Publication The State of Global Services Trade Policies: Evidence from Recent Data(Washington, DC: World Bank, 2025-10-28)The economic environment for services trade has changed dramatically over the past 15 years, driven by rapid technological progress that has expanded the possibilities for exchanging services. How has trade policy responded to these changes? How do policy stances in a wide range of service sectors compare across economies? With its unprecedented global coverage, the Services Trade Policy Database and the associated Services Trade Restrictions Index, developed jointly by the World Bank and the World Trade Organization, help address these questions. This paper makes three principal contributions. First, it offers an in-depth discussion of the current state of services trade policies and their differences across 134 economies and 34 services subsectors. Second, the paper reveals how recent (2016–22) changes in policy stances have seen progressive liberalization by lower-income economies but stabilization or even slight policy reversals in high-income economies. This dynamic differs fundamentally from the trend that unfolded after the Great Recession over 2008–16. Third, the paper shows the implications of policy changes over the past six years on services trade costs, and it showcases how the Services Trade Policy Database’s regulatory information can inform trade negotiations, regulatory analysis, and policy making. Alongside these contributions, the paper documents updates to the Services Trade Policy Database’s economy and sector coverage and explains the latest methodological improvements made to the World Bank–World Trade Organization Services Trade Restrictions Index.Publication It’s Not (Just) the Tariffs: Rethinking Non-Tariff Measures in a Fragmented Global Economy(Washington, DC: World Bank, 2025-10-22)As tariffs have declined, non-tariff measures (NTMs) have become central to trade policy, especially in high-income countries and regulated sectors like food and green technologies. Although NTMs may serve legitimate goals, they could also sort countries and firms into or out of markets based on compliance capacity and differences in product mix. Documenting recent advances in the estimation of ad valorem equivalents (AVEs), this paper uncovers new patterns of use and exposure of NTMs. High-income countries rely more heavily on NTMs relative to tariffs, while low- and middle-income countries face steeper AVEs on their exports. Firm-level evidence shows that NTMs disproportionately affect smaller firms, leading to market exit and concentration. Poorly designed NTMs can harm productivity and welfare, while coordinated, capacity-aware use can deliver inclusive outcomes. Policy design, transparency, and diagnostics must evolve to reflect the growing role—and risks—of NTMs in a fragmented global trade landscape.Publication The Marshall Plan: Then and Now(Washington, DC: World Bank, 2025-10-14)This paper is a product of the Development Policy Team, Development Economics. It is part of a larger effort by the World Bank to provide open access to its research and make a contribution to development policy discussions around the world. Policy Research Working Papers are also posted on the Web at http://www.worldbank.org/prwp.Publication The Macroeconomic Implications of Climate Change Impacts and Adaptation Options(Washington, DC: World Bank, 2025-05-29)Estimating the macroeconomic implications of climate change impacts and adaptation options is a topic of intense research. This paper presents a framework in the World Bank's macrostructural model to assess climate-related damages. This approach has been used in many Country Climate and Development Reports, a World Bank diagnostic that identifies priorities to ensure continued development in spite of climate change and climate policy objectives. The methodology captures a set of impact channels through which climate change affects the economy by (1) connecting a set of biophysical models to the macroeconomic model and (2) exploring a set of development and climate scenarios. The paper summarizes the results for five countries, highlighting the sources and magnitudes of their vulnerability --- with estimated gross domestic product losses in 2050 exceeding 10 percent of gross domestic product in some countries and scenarios, although only a small set of impact channels is included. The paper also presents estimates of the macroeconomic gains from sector-level adaptation interventions, considering their upfront costs and avoided climate impacts and finding significant net gross domestic product gains from adaptation opportunities identified in the Country Climate and Development Reports. Finally, the paper discusses the limits of current modeling approaches, and their complementarity with empirical approaches based on historical data series. The integrated modeling approach proposed in this paper can inform policymakers as they make proactive decisions on climate change adaptation and resilience.
Journal
Journal Volume
Journal Issue
Collections
Related items
Showing items related by metadata.
Publication Pollution and Expenditures in a Penalized Vector Spatial Autoregressive Time Series Model with Data-Driven Networks(World Bank, Washington, DC, 2019-02)This paper introduces a Spatial Vector Autoregressive Moving Average (SVARMA) model in which multiple cross-sectional time series are modeled as multivariate, possibly fat-tailed, spatial autoregressive ARMA processes. The estimation requires specifying the cross-sectional spillover channels through spatial weights matrices. the paper explores a kernel method to estimate the network topology based on similarities in the data. It discusses the model and estimation, focusing on a penalized Maximum Likelihood criterion. The empirical performance of the estimator is explored in a simulation study. The model is used to study a spatial time series of pollution and household expenditure data in Indonesia. The analysis finds that the new model improves in terms of implied density, and better neutralizes residual correlations than the VARMA, using fewer parameters. The results suggest that growth in household expenditures precedes pollution reduction, particularly after the expenditures of poorer households increase; that increasing pollution is followed by reduced growth in expenditures, particularly reducing the growth of poorer households; and that there are significant spillovers from bottom-up growth in expenditures. The paper does not find evidence for top-down growth spillovers. Feedback between the identified mechanisms may contribute to pollution-poverty traps and the results imply that pollution damages are economically significant.Publication Machine Learning Guided Outlook of Global Food Insecurity Consistent with Macroeconomic Forecasts(World Bank, Washington, DC, 2022-10)Motivated by the deterioration in global food security conditions, this paper develops a parsimonious machine learning model to derive a multi-year outlook of global severe food insecurity from macro-economic projections. The objective is to provide forecasts that are internally consistent with wider economic assessments, allowing both food security policies and economic development policies to be informed by a cohesive set of expectations. The model is validated on holdout data that explicitly test the ability to forecast new data from history and extrapolate beyond observed intervals. It is then applied to the World Economic Outlook database of April 2022 to project the severely food insecure population across all 144 World Bank lending countries. The analysis estimates that the global severely food insecure population may remain above 1 billion through 2027 unless large-scale interventions are made. The paper also explores counterfactual scenarios, first to investigate additional risks in a downside economic scenario, and second, to investigate whether restoring macroeconomic targets is sufficient to revert food insecurity back to pre-pandemic levels. The paper concludes that the proposed model provides a robust and low-cost approach to maintain reliable long-term projections and produce scenario analyses that can be revised systematically and interpreted within the context of available economic outlooks.Publication Comparative Analysis of AI-Predicted and Crowdsourced Food Prices in an Economically Volatile Region(Washington, DC: World Bank, 2024-04-23)High-frequency monitoring of food commodity prices is important for assessing and responding to shocks, especially in fragile contexts where timely and targeted interventions for food security are critical. However, national price surveys are typically limited in temporal and spatial granularity. It is cost prohibitive to implement traditional data collection at frequent timescales to unravel spatiotemporal price evolution across market segments and at subnational geographic levels. Recent advancements in data innovation offer promising solutions to address the paucity of commodity price data and guide market intelligence for diverse development stakeholders. The use of artificial intelligence to estimate missing price data and a parallel effort to crowdsource commodity price data are both unlocking cost-effective opportunities to generate actionable price data. Yet, little is known about how the data from these alternative methods relate to independent ground truth data. To evaluate if these data strategies can meet the long-standing demand for real-time intelligence on food affordability, this paper analyzes open-source daily crowdsourced data (104,931 datapoints) from a recently published data set in Nature Journal, relative to complementary ground truth sample. The paper subsequently compares these data to open-source monthly artificial intelligence–generated price data for identical commodities over a 36-month period in northern Nigeria, from 2019 to 2022. The results show that all the data sources share a high degree of comparability, with variation across commodity and market segments. Overall, the findings provide important support for leveraging these new and innovative data approaches to enable data-driven decision-making in near real time.Publication Stochastic Modeling of Food Insecurity(World Bank, Washington, DC, 2020-09)Recent advances in food insecurity classification have made analytical approaches to predict and inform response to food crises possible. This paper develops a predictive, statistical framework to identify drivers of food insecurity risk with simulation capabilities for scenario analyses, risk assessment and forecasting purposes. It utilizes a panel vector-autoregression to model food insecurity distributions of 15 Sub-Saharan African countries between October 2009 and February 2019. Statistical variable selection methods are employed to identify the most important agronomic, weather, conflict and economic variables. The paper finds that food insecurity dynamics are asymmetric and past-dependent, with low insecurity states more likely to transition to high insecurity states than vice versa. Conflict variables are more relevant for dynamics in highly critical stages, while agronomic and weather variables are more important for less critical states. Food prices are predictive for all cases. A Bayesian extension is introduced to incorporate expert opinions through the use of priors, which lead to significant improvements in model performance.Publication Altered Destinies: The Long-Term Effects of Rising Prices and Food Insecurity in the Middle East and North Africa(Washington, DC : World Bank, 2023-04-06)Growth is forecasted to slow down for the Middle East and North Africa region. The war in Ukraine in 2022 exacerbated inflationary pressures as the world recovered from the COVID 19 pandemic induced recession. The response by central banks to raise rates to curb inflation is slowing economic activity, while rising food prices are making it difficult for families to put meals on the table. Inflation, when it stems from food prices, hits the poor harder than the rich, thus compounding food insecurity in MENA that had been rising over decades. The immediate effects of food insecurity can be a devastating loss of life, but even temporary increases in food prices can cause long-term irreversible damages, especially to children. The rise in food prices due to the war in Ukraine may have altered the destinies of hundreds of thousands of children in the region, setting them on paths to limited prosperity. Food insecurity imposes challenges to a region where the state of child nutrition and health were inadequate before the shocks from the COVID-19 pandemic. The report discusses policy options and highlights the need for data to guide effective decision making.
Users also downloaded
Showing related downloaded files
Publication Europe and Central Asia Economic Update, Spring 2025: Accelerating Growth through Entrepreneurship, Technology Adoption, and Innovation(Washington, DC: World Bank, 2025-04-23)Business dynamism and economic growth in Europe and Central Asia have weakened since the late 2000s, with productivity growth driven largely by resource reallocation between firms and sectors rather than innovation. To move up the value chain, countries need to facilitate technology adoption, stronger domestic competition, and firm-level innovation to build a more dynamic private sector. Governments should move beyond broad support for small- and medium-sized enterprises and focus on enabling the most productive firms to expand and compete globally. Strengthening competition policies, reducing the presence of state-owned enterprises, and ensuring fair market access are crucial. Limited availability of long-term financing and risk capital hinders firm growth and innovation. Economic disruptions are a shock in the short term, but they provide an opportunity for implementing enterprise and structural reforms, all of which are essential for creating better-paying jobs and helping countries in the region to achieve high-income status.Publication Digital Africa(Washington, DC: World Bank, 2023-03-13)All African countries need better and more jobs for their growing populations. "Digital Africa: Technological Transformation for Jobs" shows that broader use of productivity-enhancing, digital technologies by enterprises and households is imperative to generate such jobs, including for lower-skilled people. At the same time, it can support not only countries’ short-term objective of postpandemic economic recovery but also their vision of economic transformation with more inclusive growth. These outcomes are not automatic, however. Mobile internet availability has increased throughout the continent in recent years, but Africa’s uptake gap is the highest in the world. Areas with at least 3G mobile internet service now cover 84 percent of Africa’s population, but only 22 percent uses such services. And the average African business lags in the use of smartphones and computers as well as more sophisticated digital technologies that catalyze further productivity gains. Two issues explain the usage gap: affordability of these new technologies and willingness to use them. For the 40 percent of Africans below the extreme poverty line, mobile data plans alone would cost one-third of their incomes—in addition to the price of access devices, apps, and electricity. Data plans for small- and medium-size businesses are also more expensive than in other regions. Moreover, shortcomings in the quality of internet services—and in the supply of attractive, skills-appropriate apps that promote entrepreneurship and raise earnings—dampen people’s willingness to use them. For those countries already using these technologies, the development payoffs are significant. New empirical studies for this report add to the rapidly growing evidence that mobile internet availability directly raises enterprise productivity, increases jobs, and reduces poverty throughout Africa. To realize these and other benefits more widely, Africa’s countries must implement complementary and mutually reinforcing policies to strengthen both consumers’ ability to pay and willingness to use digital technologies. These interventions must prioritize productive use to generate large numbers of inclusive jobs in a region poised to benefit from a massive, youthful workforce—one projected to become the world’s largest by the end of this century.Publication Argentina Country Climate and Development Report(World Bank, Washington, DC, 2022-11)The Argentina Country Climate and Development Report (CCDR) explores opportunities and identifies trade-offs for aligning Argentina’s growth and poverty reduction policies with its commitments on, and its ability to withstand, climate change. It assesses how the country can: reduce its vulnerability to climate shocks through targeted public and private investments and adequation of social protection. The report also shows how Argentina can seize the benefits of a global decarbonization path to sustain a more robust economic growth through further development of Argentina’s potential for renewable energy, energy efficiency actions, the lithium value chain, as well as climate-smart agriculture (and land use) options. Given Argentina’s context, this CCDR focuses on win-win policies and investments, which have large co-benefits or can contribute to raising the country’s growth while helping to adapt the economy, also considering how human capital actions can accompany a just transition.Publication Classroom Assessment to Support Foundational Literacy(Washington, DC: World Bank, 2025-03-21)This document focuses primarily on how classroom assessment activities can measure students’ literacy skills as they progress along a learning trajectory towards reading fluently and with comprehension by the end of primary school grades. The document addresses considerations regarding the design and implementation of early grade reading classroom assessment, provides examples of assessment activities from a variety of countries and contexts, and discusses the importance of incorporating classroom assessment practices into teacher training and professional development opportunities for teachers. The structure of the document is as follows. The first section presents definitions and addresses basic questions on classroom assessment. Section 2 covers the intersection between assessment and early grade reading by discussing how learning assessment can measure early grade reading skills following the reading learning trajectory. Section 3 compares some of the most common early grade literacy assessment tools with respect to the early grade reading skills and developmental phases. Section 4 of the document addresses teacher training considerations in developing, scoring, and using early grade reading assessment. Additional issues in assessing reading skills in the classroom and using assessment results to improve teaching and learning are reviewed in section 5. Throughout the document, country cases are presented to demonstrate how assessment activities can be implemented in the classroom in different contexts.Publication Morocco Economic Update, Winter 2025(Washington, DC: World Bank, 2025-04-03)Despite the drought causing a modest deceleration of overall GDP growth to 3.2 percent, the Moroccan economy has exhibited some encouraging trends in 2024. Non-agricultural growth has accelerated to an estimated 3.8 percent, driven by a revitalized industrial sector and a rebound in gross capital formation. Inflation has dropped below 1 percent, allowing Bank al-Maghrib to begin easing its monetary policy. While rural labor markets remain depressed, the economy has added close to 162,000 jobs in urban areas. Morocco’s external position remains strong overall, with a moderate current account deficit largely financed by growing foreign direct investment inflows, underpinned by solid investor confidence indicators. Despite significant spending pressures, the debt-to-GDP ratio is slowly declining.