Publication:
Pull Your Small Area Estimates Up by the Bootstraps

dc.contributor.authorMolina, Isabel
dc.contributor.authorCorral, Paul
dc.contributor.authorNguyen, Minh
dc.date.accessioned2022-01-14T19:55:47Z
dc.date.available2022-01-14T19:55:47Z
dc.date.issued2021-05-08
dc.description.abstractThis paper presents a methodological update to the World Bank's toolkit for small area estimation. The paper reviews the computational procedures of the current methods used by the institution: the traditional ELL approach and the Empirical Best (EB) addition introduced to imitate the original EB procedure of Molina and Rao [Small area estimation of poverty indicators. Canadian J Stat. 2010;38(3):369–385], including heteroskedasticity and survey weights, but using a different bootstrap approach, here referred to as clustered bootstrap. Simulation experiments provide empirical evidence of the shortcomings of the clustered bootstrap approach, which yields biased and noisier point estimates. The document presents an update to the World Bank’s EB implementation by considering the original EB procedures for point and noise estimation, extended for complex designs and heteroscedasticity. Simulation experiments illustrate that the revised methods yield considerably less biased and more efficient estimators than those obtained from the clustered bootstrap approach.en
dc.identifier.citationJournal of Statistical Computation and Simulation
dc.identifier.doi10.1596/36821
dc.identifier.issn0094-9655
dc.identifier.urihttps://hdl.handle.net/10986/36821
dc.publisherTaylor and Francis
dc.rightsCC BY-NC-ND 3.0 IGO
dc.rights.holderWorld Bank
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/igo
dc.subjectSMALL AREA ESTIMATION
dc.subjectPOVERTY MAPPING
dc.subjectPARAMETRIC BOOTSTRAP
dc.subjectEMPIRICAL BEST
dc.subjectELL APPROACH
dc.subjectSIMULATION
dc.titlePull Your Small Area Estimates Up by the Bootstrapsen
dc.typeJournal Articleen
dc.typeArticle de journalfr
dc.typeArtículo de revistaes
dspace.entity.typePublication
okr.associatedcontenthttps://www.tandfonline.com/doi/abs/10.1080/00949655.2021.1926460 Journal website (version of record)en
okr.associatedcontenthttps://openknowledge.worldbank.org/handle/10986/33819 Working paper version (pre-print)en
okr.date.disclosure2022-11-08
okr.date.doiregistration2025-05-06T11:36:02.246132Z
okr.doctypePublications & Research
okr.doctypePublications & Research::Journal Article
okr.externalcontentExternal Content
okr.identifier.doi10.1080/00949655.2021.1926460
okr.identifier.report168176
okr.journal.nbpages3304-57
okr.language.supporteden
okr.peerreviewAcademic Peer Review
okr.topicPoverty Reduction::Small Area Estimation Poverty Mapping
okr.unitHuman Development Group Chief Economist's Office
okr.volume19(16)
relation.isAuthorOfPublication562ed170-5271-5853-9c3c-a3ad9e16e176
relation.isAuthorOfPublication.latestForDiscovery562ed170-5271-5853-9c3c-a3ad9e16e176
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
10.1080-00949655.2021.1926460.pdf
Size:
4.25 MB
Format:
Adobe Portable Document Format
Description:
Authors' accepted manuscript
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: