Publication: What Can We (Machine) Learn about Welfare Dynamics from Cross-Sectional Data?
dc.contributor.author | Lucchetti, Leonardo | |
dc.date.accessioned | 2018-08-15T19:29:29Z | |
dc.date.available | 2018-08-15T19:29:29Z | |
dc.date.issued | 2018-08 | |
dc.description.abstract | This paper implements a machine learning approach to estimate intra-generational economic mobility using cross-sectional data. A Least Absolute Shrinkage and Selection Operator (Lasso) procedure is applied to explore poverty dynamics and household-level welfare growth in the absence of panel data sets that follow individuals over time. The method is validated by sampling repeated cross-sections of actual panel data from Peru. In general, the approach performs well at estimating intra-generational poverty transitions; most of the mobility estimates fall within the 95 percent confidence intervals of poverty mobility from the actual panel data. The validation also confirms that the Lasso regularization procedure performs well at estimating household-level welfare growth between two years. Overall, the results are sufficiently encouraging to estimate economic mobility in settings where panel data are not available or, if they are, to improve panel data when they suffer from serious non-random attrition problems. | en |
dc.identifier | http://documents.worldbank.org/curated/en/949841533741579213/What-can-we-machine-learn-about-welfare-dynamics-from-cross-sectional-data | |
dc.identifier.doi | 10.1596/1813-9450-8545 | |
dc.identifier.uri | https://hdl.handle.net/10986/30235 | |
dc.language | English | |
dc.publisher | World Bank, Washington, DC | |
dc.relation.ispartofseries | Policy Research Working Paper;No. 8545 | |
dc.rights | CC BY 3.0 IGO | |
dc.rights.holder | World Bank | |
dc.rights.uri | http://creativecommons.org/licenses/by/3.0/igo | |
dc.subject | POVERTY | |
dc.subject | POVERTY TRANSITIONS | |
dc.subject | LASSO | |
dc.subject | MACHINE LEARNING | |
dc.subject | WELFARE DYNAMICS | |
dc.subject | SYNTHETIC PANELS | |
dc.subject | CLASS MOBILITY | |
dc.title | What Can We (Machine) Learn about Welfare Dynamics from Cross-Sectional Data? | en |
dc.type | Working Paper | en |
dc.type | Document de travail | fr |
dc.type | Documento de trabajo | es |
dspace.entity.type | Publication | |
okr.crossref.title | What Can We (Machine) Learn about Welfare Dynamics from Cross-Sectional Data? | |
okr.date.disclosure | 2018-08-08 | |
okr.doctype | Publications & Research | |
okr.doctype | Publications & Research::Policy Research Working Paper | |
okr.docurl | http://documents.worldbank.org/curated/en/949841533741579213/What-can-we-machine-learn-about-welfare-dynamics-from-cross-sectional-data | |
okr.guid | 949841533741579213 | |
okr.identifier.doi | 10.1596/1813-9450-8545 | |
okr.identifier.externaldocumentum | 090224b0880e951c_2_0 | |
okr.identifier.internaldocumentum | 30335457 | |
okr.identifier.report | WPS8545 | |
okr.imported | true | en |
okr.language.supported | en | |
okr.pdfurl | http://documents.worldbank.org/curated/en/949841533741579213/pdf/WPS8545.pdf | en |
okr.region.administrative | Latin America & Caribbean | |
okr.region.country | Peru | |
okr.statistics.combined | 2023 | |
okr.statistics.dr | 949841533741579213 | |
okr.statistics.drstats | 1697 | |
okr.topic | Poverty Reduction::Development Patterns and Poverty | |
okr.topic | Poverty Reduction::Inequality | |
okr.topic | Poverty Reduction::Poverty Assessment | |
okr.topic | Poverty Reduction::Poverty Lines | |
okr.topic | Poverty Reduction::Poverty Monitoring & Analysis | |
okr.unit | Poverty and Equity Global Practice | |
relation.isSeriesOfPublication | 26e071dc-b0bf-409c-b982-df2970295c87 | |
relation.isSeriesOfPublication.latestForDiscovery | 26e071dc-b0bf-409c-b982-df2970295c87 |
Files
License bundle
1 - 1 of 1