Publication: Estimating Small Area Population Density Using Survey Data and Satellite Imagery: An Application to Sri Lanka
dc.contributor.author | Engstrom, Ryan | |
dc.contributor.author | Newhouse, David | |
dc.contributor.author | Soundararajan, Vidhya | |
dc.date.accessioned | 2019-03-14T20:49:21Z | |
dc.date.available | 2019-03-14T20:49:21Z | |
dc.date.issued | 2019-03 | |
dc.description.abstract | Country-level census data are typically collected once every 10 years. However, conflict, migration, urbanization, and natural disasters can cause rapid shifts in local population patterns. This study uses Sri Lankan data to demonstrate the feasibility of a bottom-up method that combines household survey data with contemporaneous satellite imagery to track frequent changes in local population density. A Poisson regression model based on indicators derived from satellite data, selected using the least absolute shrinkage and selection operator, accurately predicts village-level population density. The model is estimated in villages sampled in the 2012/13 Household Income and Expenditure Survey to obtain out-of-sample density predictions in the nonsurveyed villages. The predictions approximate the 2012 census density well and are more accurate than other bottom-up studies based on lower-resolution satellite data. The predictions are also more accurate than most publicly available population products, which rely on areal interpolation of census data to redistribute population at the local level. The accuracies are similar when estimated using a random forest model, and when density estimates are expressed in terms of population counts. The collective evidence suggests that combining surveys with satellite data is a cost-effective method to track local population changes at more frequent intervals. | en |
dc.identifier | http://documents.worldbank.org/curated/en/920771552394454183/Estimating-Small-Area-Population-Density-Using-Survey-Data-and-Satellite-Imagery-An-Application-to-Sri-Lanka | |
dc.identifier.doi | 10.1596/1813-9450-8776 | |
dc.identifier.uri | https://hdl.handle.net/10986/31402 | |
dc.language | English | |
dc.publisher | World Bank, Washington, DC | |
dc.relation.ispartofseries | Policy Research Working Paper;No. 8776 | |
dc.rights | CC BY 3.0 IGO | |
dc.rights.holder | World Bank | |
dc.rights.uri | http://creativecommons.org/licenses/by/3.0/igo | |
dc.subject | POPULATION DENSITY | |
dc.subject | SATELLITE IMAGERY | |
dc.subject | MACHINE LEARNING | |
dc.subject | SMALL AREA ESTIMATION | |
dc.subject | CENSUS DATA | |
dc.subject | HOUSEHOLD SURVEYS | |
dc.subject | MIGRATION | |
dc.title | Estimating Small Area Population Density Using Survey Data and Satellite Imagery | en |
dc.title.subtitle | An Application to Sri Lanka | en |
dc.type | Working Paper | en |
dc.type | Document de travail | fr |
dc.type | Documento de trabajo | es |
dspace.entity.type | Publication | |
okr.crossref.title | Estimating Small Area Population Density Using Survey Data and Satellite Imagery: An Application to Sri Lanka | |
okr.date.disclosure | 2019-03-12 | |
okr.doctype | Publications & Research | |
okr.doctype | Publications & Research::Policy Research Working Paper | |
okr.docurl | http://documents.worldbank.org/curated/en/920771552394454183/Estimating-Small-Area-Population-Density-Using-Survey-Data-and-Satellite-Imagery-An-Application-to-Sri-Lanka | |
okr.guid | 920771552394454183 | |
okr.identifier.doi | 10.1596/1813-9450-8776 | |
okr.identifier.externaldocumentum | 090224b086a5c785_1_0 | |
okr.identifier.internaldocumentum | 30895987 | |
okr.identifier.report | WPS8776 | |
okr.imported | true | en |
okr.language.supported | en | |
okr.pdfurl | http://documents.worldbank.org/curated/en/920771552394454183/pdf/WPS8776.pdf | en |
okr.region.administrative | South Asia | |
okr.region.country | Sri Lanka | |
okr.statistics.combined | 1621 | |
okr.statistics.dr | 920771552394454183 | |
okr.statistics.drstats | 1061 | |
okr.topic | Health, Nutrition and Population::Demographics | |
okr.topic | Poverty Reduction::Migration and Development | |
okr.topic | Poverty Reduction::Small Area Estimation Poverty Mapping | |
okr.topic | Science and Technology Development::Earth Sciences & GIS | |
okr.unit | Poverty and Equity Global Practice | |
relation.isSeriesOfPublication | 26e071dc-b0bf-409c-b982-df2970295c87 | |
relation.isSeriesOfPublication.latestForDiscovery | 26e071dc-b0bf-409c-b982-df2970295c87 |
Files
License bundle
1 - 1 of 1