Publication:
Nowcasting Global Poverty

dc.contributor.authorCastaneda Aguilar, R. Andres
dc.contributor.authorMahler, Daniel Gerszon
dc.contributor.authorNewhouse, David
dc.date.accessioned2021-12-02T21:21:08Z
dc.date.available2021-12-02T21:21:08Z
dc.date.issued2021-11
dc.description.abstractThis paper evaluates different methods for nowcasting country-level poverty rates, including methods that apply statistical learning to large-scale country-level data obtained from the World Development Indicators and Google Earth Engine. The methods are evaluated by withholding measured poverty rates and determining how accurately the methods predict the held-out data. A simple approach that scales the last observed welfare distribution by a fraction of real GDP per capita growth—a method that departs slightly from current World Bank practice—performs nearly as well as models using statistical learning on 1,000+ variables. This GDP-based approach outperforms all models that predict poverty rates directly, even when the last survey is up to five years old. The results indicate that in this context, the additional complexity introduced by applying statistical learning techniques to a large set of variables yields only marginal improvements in accuracy.en
dc.identifierhttp://documents.worldbank.org/curated/undefined/143231637760743360/Nowcasting-Global-Poverty
dc.identifier.doi10.1596/1813-9450-9860
dc.identifier.urihttps://hdl.handle.net/10986/36636
dc.languageEnglish
dc.publisherWorld Bank, Washington, DC
dc.relation.ispartofseriesPolicy Research Working Paper;No. 9860
dc.rightsCC BY 3.0 IGO
dc.rights.holderWorld Bank
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/igo
dc.subjectPOVERTY
dc.subjectNOWCASTING
dc.subjectMACHINE LEARNING
dc.subjectPOVERTY MEASUREMENT
dc.titleNowcasting Global Povertyen
dc.typeWorking Paperen
dc.typeDocument de travailfr
dc.typeDocumento de trabajoes
dspace.entity.typePublication
okr.crossref.titleNowcasting Global Poverty
okr.date.disclosure2021-11-24
okr.date.doiregistration2025-04-10T10:17:28.907538Z
okr.date.lastmodified2021-11-24T00:00:00Zen
okr.doctypePublications & Research
okr.doctypePublications & Research::Policy Research Working Paper
okr.docurlhttp://documents.worldbank.org/curated/undefined/143231637760743360/Nowcasting-Global-Poverty
okr.guid143231637760743360
okr.identifier.doi10.1596/1813-9450-9860
okr.identifier.externaldocumentum090224b088bb489b_1_0
okr.identifier.internaldocumentum33640301
okr.identifier.reportWPS9860
okr.importedtrueen
okr.language.supporteden
okr.pdfurlhttp://documents.worldbank.org/curated/en/143231637760743360/pdf/Nowcasting-Global-Poverty.pdfen
okr.topicPoverty Reduction::Inequality
okr.topicPoverty Reduction::Poverty Lines
okr.topicPoverty Reduction::Poverty Monitoring & Analysis
okr.unitDevelopment Data Group, Development Economics; and the Poverty and Equity Global Practice.
relation.isAuthorOfPublication3360909a-fdcc-580a-9567-25d105453578
relation.isAuthorOfPublication.latestForDiscovery3360909a-fdcc-580a-9567-25d105453578
relation.isSeriesOfPublication26e071dc-b0bf-409c-b982-df2970295c87
relation.isSeriesOfPublication.latestForDiscovery26e071dc-b0bf-409c-b982-df2970295c87
Files
Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
Nowcasting-Global-Poverty.pdf
Size:
8.42 MB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
Nowcasting-Global-Poverty.txt
Size:
90.47 KB
Format:
Plain Text
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Plain Text
Description: