Publication:
Detecting Urban Clues for Road Safety: Leveraging Big Data and Machine Learning

Loading...
Thumbnail Image
Files in English
English PDF (4.9 MB)
611 downloads
English Text (229.77 KB)
57 downloads
Published
2021-11-30
ISSN
Date
2022-02-24
Author(s)
Antos, Sarah Elizabeth
Triveno Chan Jan, Luis Miguel
Ghesquiere, Francis
Czapski, Radoslaw
Syed Shafat Ali, Bushra
Gosling-Goldsmith, Jessica
Wang, Charles
Editor(s)
Abstract
Transportation services and infrastructure connect people, businesses, and places. They allow citizens to access opportunities, such as jobs, education, health services, recreation, and enable the movement and distribution of goods. As a result, transport services and infrastructure are key to the economic development of cities and regions. The purpose of this guidance note is to provide concrete guidance on how big data and machine learning (ML) can be leveraged in road safety analysis. The document presents opportunities to use these new technologies to improve current methods for data collection and analysis for various road safety assessments. This guidance note provides a practical guide for using new data sources and analytical methods for road safety analysis in different types of projects that may impact road infrastructure or risk-related factors. This document consists of three parts. Part 1 provides an overview of existing approaches and tools for road safety assessment and identifies opportunities to improve these using new technologies such as big data and ML. Part 2 provides an overview of these new technologies and concrete guidance on how they can be integrated into transport projects for road safety analysis. Part 3 presents case studies on two regions of interest – Bogotá, Colombia and Padang, Indonesia to demonstrate how ML can be implemented to evaluate road safety. The document concludes with recommendations for using big data and ML in road safety assessments in the future.
Link to Data Set
Citation
Antos, Sarah Elizabeth; Triveno Chan Jan, Luis Miguel; Ghesquiere, Francis; Czapski, Radoslaw; Syed Shafat Ali, Bushra; Anapolsky, Sebastian; Gosling-Goldsmith, Jessica; Wang, Charles. 2021. Detecting Urban Clues for Road Safety: Leveraging Big Data and Machine Learning. © World Bank. http://hdl.handle.net/10986/37029 License: CC BY 3.0 IGO.
Associated URLs
Associated content
Report Series
Other publications in this report series
Journal
Journal Volume
Journal Issue

Related items

Showing items related by metadata.

  • Publication
    Detecting Urban Clues for Road Safety
    (Washington, DC: World Bank, 2021-11-30) World Bank
    Transportation services and infrastructure connect people, businesses, and places. They allow citizens to access opportunities, such as jobs, education, health services, recreation, and enable the movement and distribution of goods. As a result, transport services and infrastructure are key to the economic development of cities and regions. While the development of transportation systems and infrastructure is vital to economic growth, it is also important to evaluate and mitigate its potential negative externalities and costs to society. The purpose of this guidance note is to provide concrete guidance on how big data and machine learning (ML) can be leveraged in road safety analysis. The document presents opportunities to use these new technologies to improve current road safety assessment procedures across the project cycle, in accordance with the World Bank’s latest Environmental and Social Framework (ESF) guidelines. This guidance note is for World Bank task teams who are interested in using new data sources and analytical methods for road safety analysis across various types of projects. This document consists of three parts. Part 1 discusses the World Bank’s current guidelines for incorporating road safety analysis across the project cycle, examines existing data and approaches and identifies opportunities to improve current methods using big data and ML. Part 2 provides an overview of these new technologies and concrete guidance on how they can be integrated into World Bank projects. Part 3 presents case studies on two regions of interest – Bogotá, Colombia and Padang, Indonesia to demonstrate how ML can be implemented to evaluate road safety. The document concludes with recommendations for using big data and ML in road safety assessments in the future.
  • Publication
    Natural Disasters and the Urban Poor
    (World Bank, Washington, DC, 2003-10) Ghesquiere, Francis; Fay, Marianne; Solo, Tova
    Natural disasters made two and a half million people homeless in Latin America between 1990 and 1999. The region has been plagued with an average of 30 disasters causing 7,500 fatalities a year for 30 years. Worse, the frequency of natural disasters appears to be rising. It is generally agreed that rapid population growth leading to larger and denser human settlements, combined with environment degradation are key reasons. The emergence of megacities, population concentration in coastal areas (which are particularly vulnerable), and persistent widespread poverty compound the problem.
  • Publication
    Applying Machine Learning and Geolocation Techniques to Social Media Data (Twitter) to Develop a Resource for Urban Planning
    (World Bank, Washington, DC, 2020-12) Milusheva, Sveta; Marty, Robert; Bedoya, Guadalupe; Williams, Sarah; Resor, Elizabeth; Legovini, Arianna
    With all the recent attention focused on big data, it is easy to overlook that basic vital statistics remain difficult to obtain in most of the world. This project set out to test whether an openly available dataset (Twitter) could be transformed into a resource for urban planning and development. The hypothesis is tested by creating road traffic crash location data, which are scarce in most resource-poor environments but essential for addressing the number one cause of mortality for children over age five and young adults. The research project scraped 874,588 traffic-related tweets in Nairobi, Kenya, applied a machine learning model to capture the occurrence of a crash, and developed an improved geoparsing algorithm to identify its location. The project geolocated 32,991 crash reports in Twitter for 2012-20 and clustered them into 22,872 unique crashes to produce one of the first crash maps for Nairobi. A motorcycle delivery service was dispatched in real-time to verify a subset of crashes, showing 92 percent accuracy. Using a spatial clustering algorithm, portions of the road network (less than 1 percent) were identified where 50 percent of the geolocated crashes occurred. Even with limitations in the representativeness of the data, the results can provide urban planners useful information to target road safety improvements where resources are limited.
  • Publication
    Sovereign Natural Disaster Insurance for Developing Countries : A Paradigm Shift in Catastrophe Risk Financing
    (World Bank, Washington, DC, 2007-09) Ghesquiere, Francis; Mahul, Olivier
    Economic theory suggests that countries should ignore uncertainty for public investment and behave as if indifferent to risk because they can pool risks to a much greater extent than private investors can. This paper discusses the general economic theory in the case of developing countries. The analysis identifies several cases where the government's risk-neutral assumption does not hold, thus making rational the use of ex ante risk financing instruments, including sovereign insurance. The paper discusses the optimal level of sovereign insurance. It argues that, because sovereign insurance is usually more expensive than post-disaster financing, it should mainly cover immediate needs, while long-term expenditures should be financed through post-disaster financing (including ex post borrowing and tax increases). In other words, sovereign insurance should not aim at financing the long-term resource gap, but only the short-term liquidity need.
  • Publication
    Leveraging Digital Solutions to Fight COVID-19
    (World Bank, Washington, DC, 2021-02-03) Clavier, Fabien; Ghesquiere, Francis
    Digital solutions have been the signature of Southeast Asia’s response to COVID-19 (coronavirus). Technologies used during the crisis have helped address a wide spectrum of problems, supporting public health efforts, public communication, and economic and social policies. This policy brief explores how ASEAN countries have leveraged digital technologies to fight COVID-19 and investigates the roles of governments, local technology ecosystems, and citizens in deploying such solutions. The findings suggest that the development and use of digital solutions have accelerated collaboration between different spheres of governments, technology companies, research entities, and society at large. The COVID-19 crisis has also highlighted the digital divide across the region and the challenges in ensuring technological changes in the ASEAN region as a whole.

Users also downloaded

Showing related downloaded files

  • Publication
    Global Economic Prospects, January 2025
    (Washington, DC: World Bank, 2025-01-16) World Bank
    Global growth is expected to hold steady at 2.7 percent in 2025-26. However, the global economy appears to be settling at a low growth rate that will be insufficient to foster sustained economic development—with the possibility of further headwinds from heightened policy uncertainty and adverse trade policy shifts, geopolitical tensions, persistent inflation, and climate-related natural disasters. Against this backdrop, emerging market and developing economies are set to enter the second quarter of the twenty-first century with per capita incomes on a trajectory that implies substantially slower catch-up toward advanced-economy living standards than they previously experienced. Without course corrections, most low-income countries are unlikely to graduate to middle-income status by the middle of the century. Policy action at both global and national levels is needed to foster a more favorable external environment, enhance macroeconomic stability, reduce structural constraints, address the effects of climate change, and thus accelerate long-term growth and development.
  • Publication
    The Container Port Performance Index 2023
    (Washington, DC: World Bank, 2024-07-18) World Bank
    The Container Port Performance Index (CPPI) measures the time container ships spend in port, making it an important point of reference for stakeholders in the global economy. These stakeholders include port authorities and operators, national governments, supranational organizations, development agencies, and other public and private players in trade and logistics. The index highlights where vessel time in container ports could be improved. Streamlining these processes would benefit all parties involved, including shipping lines, national governments, and consumers. This fourth edition of the CPPI relies on data from 405 container ports with at least 24 container ship port calls in the calendar year 2023. As in earlier editions of the CPPI, the ranking employs two different methodological approaches: an administrative (technical) approach and a statistical approach (using matrix factorization). Combining these two approaches ensures that the overall ranking of container ports reflects actual port performance as closely as possible while also being statistically robust. The CPPI methodology assesses the sequential steps of a container ship port call. ‘Total port hours’ refers to the total time elapsed from the moment a ship arrives at the port until the vessel leaves the berth after completing its cargo operations. The CPPI uses time as an indicator because time is very important to shipping lines, ports, and the entire logistics chain. However, time, as captured by the CPPI, is not the only way to measure port efficiency, so it does not tell the entire story of a port’s performance. Factors that can influence the time vessels spend in ports can be location-specific and under the port’s control (endogenous) or external and beyond the control of the port (exogenous). The CPPI measures time spent in container ports, strictly based on quantitative data only, which do not reveal the underlying factors or root causes of extended port times. A detailed port-specific diagnostic would be required to assess the contribution of underlying factors to the time a vessel spends in port. A very low ranking or a significant change in ranking may warrant special attention, for which the World Bank generally recommends a detailed diagnostic.
  • Publication
    Digital Progress and Trends Report 2023
    (Washington, DC: World Bank, 2024-03-05) World Bank
    Digitalization is the transformational opportunity of our time. The digital sector has become a powerhouse of innovation, economic growth, and job creation. Value added in the IT services sector grew at 8 percent annually during 2000–22, nearly twice as fast as the global economy. Employment growth in IT services reached 7 percent annually, six times higher than total employment growth. The diffusion and adoption of digital technologies are just as critical as their invention. Digital uptake has accelerated since the COVID-19 pandemic, with 1.5 billion new internet users added from 2018 to 2022. The share of firms investing in digital solutions around the world has more than doubled from 2020 to 2022. Low-income countries, vulnerable populations, and small firms, however, have been falling behind, while transformative digital innovations such as artificial intelligence (AI) have been accelerating in higher-income countries. Although more than 90 percent of the population in high-income countries was online in 2022, only one in four people in low-income countries used the internet, and the speed of their connection was typically only a small fraction of that in wealthier countries. As businesses in technologically advanced countries integrate generative AI into their products and services, less than half of the businesses in many low- and middle-income countries have an internet connection. The growing digital divide is exacerbating the poverty and productivity gaps between richer and poorer economies. The Digital Progress and Trends Report series will track global digitalization progress and highlight policy trends, debates, and implications for low- and middle-income countries. The series adds to the global efforts to study the progress and trends of digitalization in two main ways: · By compiling, curating, and analyzing data from diverse sources to present a comprehensive picture of digitalization in low- and middle-income countries, including in-depth analyses on understudied topics. · By developing insights on policy opportunities, challenges, and debates and reflecting the perspectives of various stakeholders and the World Bank’s operational experiences. This report, the first in the series, aims to inform evidence-based policy making and motivate action among internal and external audiences and stakeholders. The report will bring global attention to high-performing countries that have valuable experience to share as well as to areas where efforts will need to be redoubled.
  • Publication
    Global Economic Prospects, June 2025
    (Washington, DC: World Bank, 2025-06-10) World Bank
    The global economy is facing another substantial headwind, emanating largely from an increase in trade tensions and heightened global policy uncertainty. For emerging market and developing economies (EMDEs), the ability to boost job creation and reduce extreme poverty has declined. Key downside risks include a further escalation of trade barriers and continued policy uncertainty. These challenges are exacerbated by subdued foreign direct investment into EMDEs. Global cooperation is needed to restore a more stable international trade environment and scale up support for vulnerable countries grappling with conflict, debt burdens, and climate change. Domestic policy action is also critical to contain inflation risks and strengthen fiscal resilience. To accelerate job creation and long-term growth, structural reforms must focus on raising institutional quality, attracting private investment, and strengthening human capital and labor markets. Countries in fragile and conflict situations face daunting development challenges that will require tailored domestic policy reforms and well-coordinated multilateral support.
  • Publication
    Business Ready 2024
    (Washington, DC: World Bank, 2024-10-03) World Bank
    Business Ready (B-READY) is a new World Bank Group corporate flagship report that evaluates the business and investment climate worldwide. It replaces and improves upon the Doing Business project. B-READY provides a comprehensive data set and description of the factors that strengthen the private sector, not only by advancing the interests of individual firms but also by elevating the interests of workers, consumers, potential new enterprises, and the natural environment. This 2024 report introduces a new analytical framework that benchmarks economies based on three pillars: Regulatory Framework, Public Services, and Operational Efficiency. The analysis centers on 10 topics essential for private sector development that correspond to various stages of the life cycle of a firm. The report also offers insights into three cross-cutting themes that are relevant for modern economies: digital adoption, environmental sustainability, and gender. B-READY draws on a robust data collection process that includes specially tailored expert questionnaires and firm-level surveys. The 2024 report, which covers 50 economies, serves as the first in a series that will expand in geographical coverage and refine its methodology over time, supporting reform advocacy, policy guidance, and further analysis and research.