Publication: Big Data in Transportation: An Economics Perspective
dc.contributor.author | Soumahoro, Souleymane | |
dc.contributor.author | Selod, Harris | |
dc.date.accessioned | 2020-07-06T15:10:07Z | |
dc.date.available | 2020-07-06T15:10:07Z | |
dc.date.issued | 2020-06 | |
dc.description.abstract | This paper reviews the emerging big data literature applied to urban transportation issues from the perspective of economic research. It provides a typology of big data sources relevant to transportation analyses and describes how these data can be used to measure mobility, associated externalities, and welfare impacts. As an application, it showcases the use of daily traffic conditions data in various developed and developing country cities to estimate the causal impact of stay-at-home orders during the Covid-19 pandemic on traffic congestion in Bogotá, New Dehli, New York, and Paris. In light of the advances in big data analytics, the paper concludes with a discussion on policy opportunities and challenges. | en |
dc.identifier | http://documents.worldbank.org/curated/en/144551593524811620/Big-Data-in-Transportation-An-Economics-Perspective | |
dc.identifier.doi | 10.1596/1813-9450-9308 | |
dc.identifier.uri | https://hdl.handle.net/10986/34023 | |
dc.language | English | |
dc.publisher | World Bank, Washington, DC | |
dc.relation.ispartofseries | Policy Research Working Paper;No. 9308 | |
dc.rights | CC BY 3.0 IGO | |
dc.rights.holder | World Bank | |
dc.rights.uri | http://creativecommons.org/licenses/by/3.0/igo | |
dc.subject | TRAFFIC CONGESTION | |
dc.subject | BAYESIAN STRUCTURAL TIME SERIES | |
dc.subject | COVID-19 | |
dc.subject | CORONAVIRUS | |
dc.subject | TRANSPORT ANALYSIS | |
dc.subject | MOBILITY | |
dc.subject | PANDEMIC IMPACT | |
dc.subject | BIG DATA | |
dc.title | Big Data in Transportation | en |
dc.title.subtitle | An Economics Perspective | en |
dc.type | Working Paper | en |
dc.type | Document de travail | fr |
dc.type | Documento de trabajo | es |
dspace.entity.type | Publication | |
okr.crossref.title | Big Data in Transportation: An Economics Perspective | |
okr.date.disclosure | 2020-06-30 | |
okr.doctype | Publications & Research | |
okr.doctype | Publications & Research::Policy Research Working Paper | |
okr.docurl | http://documents.worldbank.org/curated/en/144551593524811620/Big-Data-in-Transportation-An-Economics-Perspective | |
okr.guid | 144551593524811620 | |
okr.identifier.doi | 10.1596/1813-9450-9308 | |
okr.identifier.externaldocumentum | 090224b087b1fbe8_1_0 | |
okr.identifier.internaldocumentum | 32201081 | |
okr.identifier.report | WPS9308 | |
okr.imported | true | en |
okr.language.supported | en | |
okr.pdfurl | http://documents.worldbank.org/curated/en/144551593524811620/pdf/Big-Data-in-Transportation-An-Economics-Perspective.pdf | en |
okr.region.country | Colombia | |
okr.region.country | France | |
okr.region.country | India | |
okr.region.country | United States | |
okr.statistics.combined | 2881 | |
okr.statistics.dr | 144551593524811620 | |
okr.statistics.drstats | 1708 | |
okr.topic | Science and Technology Development::Statistical & Mathematical Sciences | |
okr.topic | Transport::Transport Economics Policy & Planning | |
okr.unit | Development Research Group, Development Economics | |
relation.isAuthorOfPublication | b820a7e2-dfb8-5b00-911b-d8822f6724cc | |
relation.isAuthorOfPublication.latestForDiscovery | b820a7e2-dfb8-5b00-911b-d8822f6724cc | |
relation.isSeriesOfPublication | 26e071dc-b0bf-409c-b982-df2970295c87 | |
relation.isSeriesOfPublication.latestForDiscovery | 26e071dc-b0bf-409c-b982-df2970295c87 |