Publication:
Poverty Mapping in the Age of Machine Learning

dc.contributor.authorCorral, Paul
dc.contributor.authorSegovia, Sandra
dc.date.accessioned2023-05-04T13:53:48Z
dc.date.available2023-05-04T13:53:48Z
dc.date.issued2023-05-04
dc.description.abstractRecent years have witnessed considerable methodological advances in poverty mapping, much of which has focused on the application of modern machine-learning approaches to remotely sensed data. Poverty maps produced with these methods generally share a common validation procedure, which assesses model performance by comparing subnational machine-learning-based poverty estimates with survey-based, direct estimates. Although unbiased, survey-based estimates at a granular level can be imprecise measures of true poverty rates, meaning that it is unclear whether the validation procedures used in machine-learning approaches are informative of actual model performance. This paper examines the credibility of existing approaches to model validation by constructing a pseudo-census from the Mexican Intercensal Survey of 2015, which is used to conduct several design-based simulation experiments. The findings show that the validation procedure often used for machine-learning approaches can be misleading in terms of model assessment since it yields incorrect information for choosing what may be the best set of estimates across different methods and scenarios. Using alternative validation methods, the paper shows that machine-learning-based estimates can rival traditional, more data intensive poverty mapping approaches. Further, the closest approximation to existing machine-learning approaches, using publicly available geo-referenced data, performs poorly when evaluated against “true” poverty rates and fails to outperform traditional poverty mapping methods in targeting simulations.en
dc.identifierhttp://documents.worldbank.org/curated/en/099759405012313710/IDU0c1878458051a40470808a960c8b70982671b
dc.identifier.doi10.1596/1813-9450-10429
dc.identifier.urihttps://openknowledge.worldbank.org/handle/10986/39783
dc.languageEnglish
dc.language.isoen
dc.publisherWorld Bank, Washington, DC
dc.relation.ispartofseriesPolicy Research Working Papers; 10429
dc.rightsCC BY 3.0 IGO
dc.rights.holderWorld Bank
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/igo/
dc.subjectSMALL AREA ESTIMATION
dc.subjectPOVERTY MAPPING
dc.subjectMACHINE LEARNING
dc.subjectSATELLITE IMAGERY
dc.subjectPOVERTY RATE ESTIMATE
dc.subjectPOVERTY DATA ANALYSIS
dc.titlePoverty Mapping in the Age of Machine Learningen
dc.typeWorking Paper
dspace.entity.typePublication
okr.crossref.titlePoverty Mapping in the Age of Machine Learning
okr.date.disclosure2023-05-01
okr.date.lastmodified2023-05-01T00:00:00Zen
okr.doctypePolicy Research Working Paper
okr.doctypePublications & Research
okr.docurlhttp://documents.worldbank.org/curated/en/099759405012313710/IDU0c1878458051a40470808a960c8b70982671b
okr.guid099759405012313710
okr.identifier.docmidIDU-c1878458-51a4-4708-8a96-c8b70982671b
okr.identifier.doi10.1596/1813-9450-10429
okr.identifier.doihttp://dx.doi.org/10.1596/1813-9450-10429
okr.identifier.externaldocumentum34053461
okr.identifier.internaldocumentum34053461
okr.identifier.reportWPS10429
okr.import.id597
okr.importedtrueen
okr.language.supporteden
okr.pdfurlhttp://documents.worldbank.org/curated/en/099759405012313710/pdf/IDU0c1878458051a40470808a960c8b70982671b.pdfen
okr.region.countryMexico
okr.topicInternational Economics and Trade::Economic Geography
okr.topicMacroeconomics and Economic Growth::Economic Theory & Research
okr.topicScience and Technology Development::Research and Development
okr.unitEFI-AFR2-POV-Poverty and Equity (EAWPV)
relation.isAuthorOfPublication562ed170-5271-5853-9c3c-a3ad9e16e176
relation.isAuthorOfPublication.latestForDiscovery562ed170-5271-5853-9c3c-a3ad9e16e176
Files
Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
IDU0c1878458051a40470808a960c8b70982671b.pdf
Size:
1.63 MB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
IDU0c1878458051a40470808a960c8b70982671b.txt
Size:
101.83 KB
Format:
Plain Text
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Plain Text
Description: