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1 Introduction

Poverty measures are widely used for monitoring progress and guiding policies. How-
ever, most poverty measures do not account for the impact that mortality has on
longevity.1 The orders of magnitudes involved are staggering. As illustrated in Fig-
ure 1, in 2019, a new born expects to lose 7 years of life due to premature death2

and to spend 7 years of life in poverty according to our Expected Deprivation index
(which we define below). This represents, overall, 1.5 billion years of life either spent
in extreme poverty or lost to premature death in that year.

Figure 1: Expected number of years spent in extreme poverty and prematurely lost
for a newborn worldwide according to ED1,70, 1990-2019.
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Reading: in 1990, a newborn expected to spend 28 years in poverty and to lose 13
years due to premature death.

Mortality should be integrated into poverty measurement for several reasons.
First, mortality reduces the lifespan of the deceased. As lifespan is a key resource,
it should be attributed a positive intrinsic value. Second, mortality has a perverse
instrumental impact on poverty measures. As observed by Kanbur and Mukherjee
(2007), poverty measures face a “mortality paradox”, since the death of poor individ-
uals is measured as an improvement. Finally, an integrated indicator may be useful
to guide policy decisions that require trading-off poverty and mortality. How to allo-
cate a fixed budget between poverty alleviation and premature mortality reduction?
How much should be spent on AIDS prevention programs? An integrated indicator
that meaningfully reflects the relative impacts that poverty and mortality have on

1This remark also applies to measures of multidimensional poverty, which always ignore the
impact of mortality on the deceased. While we refer to income poverty throughout the paper, our
argument can be applied to these measures as well.

2We define a death as premature if it occured before 70 years old, the average life expectancy in
2019 in our data.
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well-being may prove useful in guiding such choices.

However, integrating mortality in a meaningful way is not straightforward. In-
deed, mortality reduces the quantity of life while all other forms of deprivation reduce
the quality of life. The difficulty is that poverty – which reduces the quality of life
– is typically measured in a given year while properly accounting for mortality –
which reduces the quantity of life – requires taking a life-cycle perspective. As a re-
sult, an indicator that aggregates the poverty and the mortality outcomes for a given
year should also reflect a life-cycle perspective. An added difficulty comes from the
fact that mortality shocks generate long-lasting dynamic mechanical adjustments to
population pyramids, which may blur normative comparisons. A related reason why
integrating mortality into poverty measures requires a specific aggregation is that
mortality necessarily excludes other forms of deprivation: individuals, once dead,
cannot suffer from other forms of deprivation.

There are two views on the intrinsic value that poverty measures should attribute
to lifespan and thus to mortality. The “minimalist” view holds that individuals whose
death is too premature should be considered lifespan deprived. Hence, mortality mat-
ters in so far as it occurred below a given age threshold, which defines a minimally
acceptable lifespan. The “maximalist” view holds that being alive is the most funda-
mental component of well-being. Therefore, death, no matter at which age, should
always have a negative impact.3

In this paper, we propose a new index, the poverty-adjusted life expectancy
(PALEθ), that meaningfully integrates the poverty and mortality observed in a
given year under a “maximalist” view. We derive the conditions under which this
index does not suffer from the mortality paradox. We then show that this index can
be generalized to define a new poverty index consistent with the “minimalist” view,
thereby encompassing the two different views on the integration of mortality into
poverty measurement. We also study the conditions under which comparisons based
on our indices are robust to all plausible values of their parameters. Our empirical
application shows that our indicators substantially change poverty comparisons and
quantifies the cases for which reversed comparisons are robust.

Our main indicator, PALEθ, is normatively grounded on the expected lifecycle
utility, the measure of social welfare proposed by Harsanyi (1953).4 PALEθ normal-
izes the expected lifecycle utility of a newborn who assumes she will be confronted
throughout her lifetime to the poverty and mortality prevailing in the current pe-
riod.5 This index simply counts the number of years that such newborn expects to
live but weighs down the periods that she expects to live in poverty. Mathematically,
our index is obtained by multiplying life expectancy at birth by a factor one minus
the fraction of poor, with a lower weight being given to the latter. This (normative)

3Note how these two views, while conceptually different, may in practice differ only parametri-
cally: a “minimalist” approach using a very large age threshold is in practice “maximalist”.

4Following Harsanyi, social welfare in a given period can be understood as the lifecycle utility
expected by a newborn when drawing at random a life that reflects the outcomes observed in that
particular period.

5As we make clear later, our index is closely related to the concept of life expectancy, and its
interpretation is based on similar assumptions. In particular, our index is not a forecast or a record
of the actual average lifecycle utility of the cohort born in a particular period.
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weight θ > 0, which captures the trade-off between poverty and mortality, corre-
sponds to the fraction of the period utility lost when poor. When being poor has
no utility cost, θ takes the value zero and PALE0 corresponds to life expectancy at
birth. When being poor (for one year) is as bad as losing one year of life, θ = 1

and our index PALE1 then corresponds to the poverty-free life expectancy at birth
(Riumallo-Herl et al., 2018), i.e. the number of years of life a newborn expects to
live out of poverty. PALEθ does not suffer from the mortality paradox as long as
θ ≤ 1. Besides its theoretical properties, PALEθ enjoys two practical advantages.
First, its data-requirement are minimal as only the life-expectancy at birth and the
poverty head-count ratio are necessary. Second, PALEθ has a simple interpretation,
as it measures the equivalent number of years of life spent out of poverty.

In a second step, we show how to generalize PALEθ to account for the distri-
bution of lifespans. More precisely, PALEθ lends itself to the definition of a new
indicator, which is consistent with the minimalist view. This requires the introduc-
tion of a normative age threshold â, which corresponds to our definition of premature
mortality. This new index, which we call the expected deprivation index (EDθâ), is
the weighted sum of the number of years that a newborn expects to lose prematurely
or to spend in poverty, using the same weight as in PALEθ.6 We call the index
expected deprivation, given its proximity to the concept of life expectancy in its con-
struction, interpretation and assumptions.

To measure the real world relevance of our indexes, we combine data sets provided
by the World Bank data on income poverty (Poverty and Inequality Platform (World
Bank, 2023)) and an internationally comparable data set on mortality data (Global
Burden of Disease Collaborative Network, 2020) from 1990 to 2019. We show that
mortality is growing in relative importance and substantially affects global poverty
comparisons: during the 2005-2019 period, at least 34% of PALE’s growth was due to
the growth of life expectancy, as opposed to 17% from 1991 to 2004. For all possible
values of θ, PALEθ is able to solve in 2019 about half of the between country and
40% of the within country comparisons when focusing on these comparisons for which
life expectancy and headcount are conflicting.

Literature review Baland et al. (2021) proposed a way of integrating mortality
into poverty measurement that is consistent with the minimalist view. They observe
that an integrated indicator should at least meaningfully compare stationary soci-
eties, for which natality, mortality and poverty are constant over time. (In stationary
societies, the outcomes observed in a given year completely reflect the life-cycle ef-
fects of their mortality.) They show that such indicators satisfy a set of basic axioms
when based on a weighted sum of a number of years of life prematurely lost and a
number of years of life spent in poverty.

We improve on GDθâ, the main indicator proposed by Baland et al. (2021), along
the following dimensions. First, given an age threshold â, the death of a poor individ-
ual above the age of â is considered by GDθâ as an improvement. The “minimalist”
view taken by this measure therefore implies a form a mortality paradox. Second,
GDθâ is not straightforward to interpret, preventing its widespread diffusion in pub-

6Again, this implies that a newborn is expected to be exposed throughout her lifespan to the
poverty and mortality observed in the current period.
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lic debates. Third, the indicators they consider respond to mortality shocks with
considerable inertia, reflecting long run adjustments in the population pyramid.7

Inertia is not, in general, a desirable feature for poverty measures. Analyzing the
relations between EDθâ, PALEθ and GDθâ, we show that EDθâ is more reactive to
shocks than GDθâ and lends itself to straightforward intepretations.

Our indicators differ from those proposed in the mortality paradox literature
(Kanbur and Mukherjee (2007); Lefebvre et al. (2013)), which aimed at neutralizing
the instrumental impact mortality has on poverty measurement (Decerf, 2023). By
doing so, however, they do not attribute an intrinsic value to lifespan. As a result, an
general increase in the life-cycle utility of a population is not necessarily considered
as an improvement.

The poverty-adjusted life expectancy is reminiscent of several indicators proposed
in health economics, like the quality-adjusted life expectancy (QALE) or the quality-
adjusted life year (QALY).8 Following Sullivan (1971), these two indicators account
for the quality and quantity of life, by weighting down the quantity of life for periods
with low quality. We show that they directly follow from the expected life-cycle
utility approach in stationary societies, and correspond to well defined properties.
Our index, however, accounts for a major dimension of well-being other than health,
which is poverty.

The remainder of the paper is organized as follows. In Section 2, we shortly
present a way to integrate poverty and mortality. In Section 3, we present the theory
supporting our indicators. In Section 4, we present our global empirical application.
Section 5 concludes by discussing a key limitation of our indicators, namely that
neither PALEθ nor EDθâ account for the unequal distribution of lifecycle utilities
when the same individuals cumulate poverty and premature mortality.

2 Aggregating poverty and mortality as time units:
a minimalist approach

Integrating mortality into poverty measurement is challenging. One reason is that
poverty is measured in a given year while accounting for the direct impact of mortality
requires a lifecycle perspective. Another difficulty is that, to be policy relevant, the
combined index should account for the mortality that takes place in the same year
as the year in which poverty is measured. In particular, the evaluation of current
policies should not be affected by past mortality shocks. A solution, pioneered by
Baland et al. (2021) is to express poverty and mortality outcomes in terms of years
of human life, using time units to account for the life-cycle effects of mortality and
poverty.9

7In particular, following a permanent mortality shock, they show that GDθâ may follow a non-
monotonic trend.

8See for instance Whitehead and Ali (2010) for an economic interpretation of QALYs, or Heijink
et al. (2011); Jia et al. (2011) for applications of the QALE index to comparisons of health outcomes
across populations.

9Under the minimalist view, an alternative solution could be to weight the fraction of individuals
who are poor in year t with the fraction of individuals who will die prematurely given the mortality
observed in year t. For instance, the Human Poverty Index is defined in this way (Watkins, 2006).
Unfortunately, this seemingly natural solution suffers from the mortality paradox and yields counter-
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Consider two stationary societies A and B, in which two individuals are born
every year, one in the poor dynasty and one in the rich dynasty. Individuals born in
the poor (resp. rich) dynasty remain poor (resp. non-poor) throughout their lives.
The lifespan of a rich individual is four years. The only difference between societies
A and B is the lifespan of a poor individual, which is one year in society A and
three years in society B. These societies are stationary in the sense that natality is
constant and the lifecycle outcomes of two individuals born in the same dynasty are
the same.10

The relevant outcomes in society A and B are summarized in Table 1. Consider
society A. In any arbitrary year t, one individual is poor (P) and four individuals
are non-poor (NP). The head-count ratio, which we denote by H, is thus 1/5. The
minimalist view defines premature mortality using an age threshold (â), which we
assume is three years. A dead individual is considered prematurely dead (PD) if she
is born less than 3 years before t (and considered dead (D) if born at least 3 years
before t).

Table 1: Comparison of stationary societies A and B under a lifecycle perspective.

Age in year t 0 1 2 3
Birth year t t− 1 t− 2 t− 3

Poor dynasty A P PD PD D
Non-poor dynasty A NP NP NP NP

Poor dynasty B P P P D
Non-poor dynasty B NP NP NP NP

When mortality is ignored, the poverty comparison of societies A and B reveals
a mortality paradox, since the head count ratio is larger in society B than in society
A: H(A) = 1/5 and H(B) = 3/7. The longer lifespan of the poor dynasty in society
B is thus recorded by H as a worsening. The problem is that, in society A, H does
not take into account the two poor individuals born in t − 1 and t − 2 who died
prematurely and miss year t.

Properly accounting for missing (dead) individuals allows for a more sensible com-
parison. Following the minimalist view, Baland et al. (2021) propose the inherited
deprivation index (IDθâ):

IDθâ =
#PD

#P +#NP +#PD︸ ︷︷ ︸
mortality term

+ θ
#P

#P +#NP +#PD︸ ︷︷ ︸
poverty term

, (1)

where #P , #NP and #PD respectively denote the number of poor, non-poor and
prematurely dead individuals in year t and parameter θ > 0 captures the normative
trade-off between one poor individual and one prematurely dead individual. For
θ = 1, one poor individual contributes the same to IDθâ as one prematurely dead
individual. Note that the reference population in the denominator accounts for the
prematurely dead individuals, which prevents from making inconsistent trade-offs
between a poor and a prematurely dead individual.

However, IDθâ is not policy relevant because this index depends on past mortality:
it indeed measures the extent of deprivation inherited from the past. In our example

intuitive comparisons (e.g., concluding that society A is better off than society C, see below).
10Stationary societies are more formally defined in Appendix A.
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above, the two prematurely dead individuals respectively died in years t−1 and t−2.
One may prefer, given the need of policy relevance, indicators that only depend on
current mortality – mortality in year t. One example is the generated deprivation
index (GDθâ) (Baland et al., 2021), which collects all the future years of life lost to
premature deaths in year t and attributes them to year t:

GDθâ =
Y LL

#P +#NP + Y LL︸ ︷︷ ︸
mortality term

+ θ
#P

#P +#NP + Y LL︸ ︷︷ ︸
poverty term

, (2)

where Y LL denotes the total number of years of life prematurely lost due to mortality
in year t

Y LL =

â−2∑
a=0

Na ∗ µa ∗ (â− (a+ 1)),

where Na is the number of alive individuals who have age a and µa is the mortality
rate observed for individuals who have age a. For example, in society A, the only
premature death that takes place in year t is that of the newborn in the poor dynasty.
Her premature death implies that this newborn will prematurely lose two years of
life, respectively in t + 1 and t + 2, and thus Y LL = 2. Note that in society A, we
have Y LL = #PD. That is, GDθâ = IDθâ in stationary societies. This equality
reflects the fact that each cell in Table 1 represents an individual as well as a unit
of time.11 The key difference is that #PD captures mortality before t while Y LL

captures mortality in t. By relying on units of time (Y LL), GDθâ only depends on
current mortality and compares the stationary societies A and B in a meaningful
way.

As it is based on the minimalist view, GDθâ is still affected by the mortality
paradox: any death of a poor occurring above the age threshold â is recorded as an
improvement. To see this, consider the stationary society C whose only difference
with society B is that the individuals born in the poor dynasty live for four periods.
Hence, poor individuals live one year longer in C than in B. We have GDθ3(C) = 4θ/8

and GDθ3(B) = 3θ/7, which shows that GDθâ can improve with the death of a poor
individual. In comparison, our approach also builds on an aggregation based on time
units, considers only mortality in year t but takes a “maximalist” view.12

3 Theory

In this section, we first define the poverty-adjusted life expectancy (PALEθ) index
and relate it to the social welfare approach proposed by Harsanyi. We then introduce
the expected deprivation (EDθâ) index and characterize the conditions under which
EDθâ avoids the mortality paradox. We then explore the connections between EDθâ,
PALEθ, IDθâ and GDθâ (Baland et al., 2021). Finally, we study the conditions

11Summing Y LL with #P and #NP in the denominator may seem strange until one realizes
that all three terms capture years of human life, respectively prematurely lost, spent in poverty and
spent out of poverty. Indeed, #P captures the number of individuals who spent one year – year
t – in poverty and thus #P is a number of poverty years. Each unit of time can be categorized
as non-poor, poor, prematurely dead or dead, allowing for a proper account of the life-cycle effects
of mortality. Under this approach, it is natural to compute the share of units of time spent in
deprivation among the total amount of units one ought to live out of deprivation.

12Our measure will be compared to IDθâ and GDθâ in Subsection 3.2.
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under which comparisons by PALEθ and EDθâ are robust to all admissible values
for their parameters.

3.1 The Poverty-Adjusted Life Expectancy index

Definition of PALEθ

The poverty-adjusted life expectancy index is defined as

PALEθ = LE(1− θH). (3)

where θ > 0 captures the normative trade-off between one year spent in poverty and
one year of life lost, H denotes the poverty head-count ratio and LE denotes life
expectancy at birth, i.e., LE =

∑a∗−1
a=0

∏a−1
k=0(1− µt

k) where a∗ denotes the maximal
lifespan than can be reached and thus µa∗−1 = 1.

PALEθ is the weighted sum of a number of years spent in poverty and a number
of years spent out of poverty. Indeed, its mathematical expression can be written
as LE(1 −H) + (1 − θ)LE H. For a newborn who expects to face throughout her
life the poverty and mortality observed in year t, the term LE(1−H) captures the
number of years she expects to live out of poverty and the term LE H captures the
number of years she expects to live in poverty.13 Years out of poverty receive weight
1 and years in poverty receive weight (1− θ).

PALEθ encapsulates the maximalist view according to which all death matters.
Indeed, PALEθ is based on life expectancy at birth, which depends on mortality rates
at all ages. Its data requirements are therefore limited, as it is based simply on life
expectancy at birth and the poverty head-count ratio. Two special cases are worth
noting: PALE0 corresponds to life expectancy at birth and PALE1 corresponds to
the Poverty Free Life Expectancy (PFLE), an indicator proposed by Riumallo-Herl
et al. (2018).

Relationship with social welfare a la Harsanyi

We show that, under two assumptions, PALEθ corresponds to social welfare a la
Harsanyi. According to Harsanyi (1953), social welfare in a given year t corresponds
to the lifecycle utility expected by a newborn given the outcomes observed in year t.
Behind the veil of ignorance, the newborn faces a lottery whereby she ignores whether
and when she will be poor and for how long she will live. When evaluating her life-
cycle utility,14 she considers the life of a randomly drawn individual in that society.
Following the formulation of Jones and Klenow (2016), her expected life-cycle utility
is given by

EU = E
a∗−1∑
a=0

βau(ca)V (a), (4)

13As we explain below, PALEθ is not a forecast on the life of a newborn. Rather, its purpose is
to jointly assess the mortality and poverty taking place in a given year.

14The rationality requirements of decision theory provide a structure on admissible life-cycle
preferences. Rational preferences over streams of consumption have been axiomatized by Koopmans
(1960) and later generalized by Bleichrodt et al. (2008). Such preferences must be represented by a
discounted utility function, which aggregates these streams as a discounted sum of period utilities
U =

∑d
a=0 β

au(ca) where d ∈ N is the age at death, β ∈ [0, 1] is the discount factor, ca is
consumption at age a and u is the period utility function.
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where β ∈ [0, 1] is the discount factor, ca ≥ 0 is consumption at age a, u is the period
utility function, V (a) is the (unconditional) probability that the newborn survives
to age a, a∗ is the maximal lifespan one can reach and the expectation operator E

applies to the uncertainty with respect to ca. The period utility when being dead
is normalized to zero, i.e., u(D) = 0. As a result, mortality is valued through its
opportunity cost: death reduces the number of periods during which a newborn can
enjoy consumption.

Under two assumptions, Eq. (4) simplifies into PALEθ. Assumption A1 is to
ignore discounting, i.e. β = 1. Such assumption is necessary in order to assign
equal weights to all individuals, regardless of their age.15 Assumption A2 is to
transform consumption into a binary variable, i.e., ca can be either being non-poor
(NP ) or being poor (P ). This strong assumption implies that the impact on period
utility of consumption differences within these two categories is ignored.16 We denote
the period utilities associated to being poor and being non-poor respectively by
uP = u(P ) and uNP = u(NP ).

Proposition 1 shows that, under A1 and A2, in any stationary society, PALEθ

corresponds to expected life-cycle utility as expressed in Eq. (4).

Proposition 1 (Correspondence between Harsanyi and PALEθ).
For any stationary society, assumptions A1 and A2 imply that

EU

uNP
= LE

(
1− uNP − uP

uNP − uD︸ ︷︷ ︸
θ

H

)

and thus PALEθ is ordinally equivalent to EU .

Proof. The proof is provided in Appendix B.

Proposition 1 calls for several remarks. First, this result provides a mathematical
expression for parameter θ. Parameter θ captures the fraction of her period utility
that a non-poor individual looses when she becomes poor. This mathematical ex-
pression allows calibrating a value for parameter θ when selecting a period utility
function and computing its value for the typical consumption of the poor and the
non-poor, as we show in Appendix C.

Second, Proposition 1 holds even when mortality is selective, that is when mortal-
ity rates affect differently poor and non-poor individuals, as in the case of society A
and B. The reason why PALEθ is a simple normalization of EU even when mortality
is selective is that EU is a risk-neutral social welfare function. Being risk-neutral,
EU is unaffected by the distribution across individuals of periods spent in poverty or
lost to mortality. A social planner who cares for unequal lifespans will not evaluate
welfare on the basis of Eq. (4), and may prefer EDθâ, which we define below and
accounts for unequal lifespans. In the conclusion, we discuss the more general case
of a social planner who cares for unequal lifecycle utilities, when some individuals

15Indeed, Eq. (4) equates a society’s welfare in a given period to the expected life-cycle utility of
individuals born in that period. Clearly, the expected life-cycle utility of newborns is related to the
society’s welfare in a given period only when one assumes that their expected lives reflect at each
age the outcomes observed for individuals of that age during the period considered. Discounting
with a factor less than one would give less weight to the outcomes of older individuals.

16Assumption A2 allows us to use the head-count ratio, the simplicity of which largely explains
its popularity. The headcount ratio remains however a crude indicator of poverty with well-known
limitations (Sen, 1976).
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combine poverty and premature mortality. Information on such individuals is often
not available. As a result, a social planner who cares for unequal utilities may not
do better than integrating mortality into poverty measurement through indicators
like PALEθ or EDθâ.

Third, populations are in practice not stationary and we cannot in general in-
terpret PALEθ as the expected life-cycle utility of a newborn. Indeed, the poverty
and mortality observed at birth are not necessarily good predictors of the future.
Therefore, PALEθ should not in general be interpreted as a projection or a forecast
for EU . However, the validity of PALEθ to evaluate a society in period t does not
rely on its capacity to correctly forecast the future. Indeed, our objective was to ag-
gregate the mortality and poverty observed in period t in a consistent manner, using
a lifecycle perspective. This aggregation should not depend on the future evolutions
of poverty and mortality.17 Rather, one way to do so is to take the perspective of a
newborn who assumes that she is born in a stationary society, i.e. that the poverty
and mortality observed at the time of her birth remain unchanged during her whole
life. It is worth noting that the same point can be made about life expectancy at
birth (LE). In practice, this measure is derived from the mortality observed in a
given period. As a result, this index does not correspond to the average lifespan of a
cohort born in that period if the society is not stationary. However, life expectancy
is widely accepted as a meaningful measure of period mortality.

3.2 The Expected Deprivation index

Definition of EDθâ

We define a new indicator – the expected deprivation index (EDθâ) – which gen-
eralizes PALEθ under a minimalist view. Under this view, one should only give a
(negative) intrinsic value to the years of life lost before reaching a minimal age thresh-
old â. EDθâ accounts for mortality through the lifespan gap expectancy (LGEâ),
which measures the number of years that a newborn expects to lose prematurely.18

LGEâ =

â−1∑
a=0

(â− (a+ 1)) ∗ µt
a ∗

a−1∏
k=0

(1− µt
k),

We illustrate in Figure 2 the close connection between LGEâ and LE. The figure
depicts for each age the fraction of newborns that are expected to still be alive at age
a, assuming again that age-specific mortality rates are fixed. These fractions define a
normalized counterfactual population pyramid. Indeed, the population pyramid of a
stationary society confronted to these fixed mortality rates is obtained by multiplying
these fractions by the fixed number of newborns.19 In the left panel of Figure 2, LE
is proportional to the area below the normalized population pyramid. By contrast,

17For instance, a transitory mortality or poverty shock – due to war or to another disaster –
does reduce current welfare, even if the country fully recovers in the next period. In contrast, the
transitory nature of the shock implies that its consequences affect essentially the current generations.
Its impact on the realized life-cycle utility of newborns can therefore be negligible, or nil if the shock
did not affect the mortality rates of the newborns.

18LGEâ is a particular version of the Years of Potential Life Lost, an indicator used in medical
research in order to quantify and compare the burden on society due to different causes of death
(Gardner and Sanborn, 1990).

19In a stationary society, the current population pyramid can be obtained by successively applying
the current age-specific mortality rates to each age group.
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LGEâ is equal to the area between this normalized population pyramid and the
age threshold. The right panel illustrates the property that, for large enough age
thresholds, LGEâ is the complement of LE. Formally, when â ≥ a∗, where a∗ is the
maximal lifespan, we have LGEâ = â− LE.

Figure 2: Life Expectancy and Lifespan Gap Expectancy
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â

5

alive

Fraction
newborns
alive

Note: In the Left panel, the light green area below the normalized “stationary”
population pyramid is equal to LE and the dark pink area is equal to LGEâ.

The expected deprivation index (EDθâ) aggregates the poverty and mortality ob-
served in year t by taking the perspective of a newborn who expects to be confronted,
throughout her life-cycle, to the poverty and mortality prevailing at the time of her
birth.

EDθâ =
LGEâ

LE + LGEâ︸ ︷︷ ︸
mortality term

+ θ
LE ∗H

LE + LGEâ︸ ︷︷ ︸
poverty term

, (5)

with the same parameters θ > 0 and â ≥ 2. The two normative parameters θ and
â jointly define the respective importance attributed to poverty and mortality. Pa-
rameter θ determines the relative weights of being dead or being poor for one period.
In contrast, parameter â determines the number of periods for which “being prema-
turely dead” is accounted for. Hence, â affects the relative size of the deprivation
coming from mortality versus the deprivation coming from poverty.

Both terms have the same denominator, which measures a normative lifespan
corresponding to the sum of LE and LGEâ. This normative lifespan can be in-
terpreted as the (counterfactual) life expectancy at birth that would prevail if all
premature deaths were postponed to the age threshold. It is at least as large as LE,
and corresponds to LE if the age threshold is equal to 1. The numerator of each
term measures the expected number of years characterized by one of the two dimen-
sions of deprivation, again assuming that the society is stationary. The numerator
of the mortality term measures the number of years that a newborn expects to lose
prematurely (when observing mortality in the period) given the age threshold, â.
The numerator of the poverty term measures the number of years that a newborn
expects to spend in poverty.

Relationship between EDθâ IDθâ and GDθâ

Like GDθâ, EDθâ only depends on current mortality and is thus policy relevant.
Proposition 2 shows that EDθâ also compares stationary societies in the same way
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as IDθâ and GDθâ.

Proposition 2 (EDθâ, GDθâ and IDθâ are identical in stationary societies).
For any stationary society, we have EDθâ = GDθâ = IDθâ.

Proof. See Appendix D.

We now discuss more systematically the differences between EDθâ and GDθâ.
EDθâ and GDθâ rank non-stationary societies differently. The main difference be-
tween EDθâ and GDθâ comes from the way the two indices account for the number
of years prematurely lost. GDθâ records the number of years prematurely lost over
all premature deaths actually taking place in year t. EDθâ also counts the number
of years prematurely lost but, instead of being computed on the actual population
pyramid, EDθâ uses a counterfactual population pyramid, which is the one that
would prevail in a stationary society characterized by the age-specific mortality rates
observed in the period.

A major implication of this difference is that EDθâ is more reactive to policy
changes than GDθâ. Consider a permanent mortality shock. The population dy-
namics is such that a transition phase sets in during which the population pyramid
slowly adjusts to the new mortality rates. This transition stops when a new station-
ary population pyramid is reached, typically after a∗ periods. GDθâ records each
step of this transition and therefore exhibits inertia in its response to a permanent
mortality shock.20 By contrast, EDθâ immediately refers to the new stationary pop-
ulation pyramid and disregards the inertia caused by these transitory demographic
adjustments. We provide an illustration of this property in Appendix E.

Finally, Baland et al. (2021) show that GDθâ is essentially the only index de-
composable into subgroups to compare stationary societies in a way that satisfies
some basic properties. As a result, EDθâ cannot be decomposable into subgroups.21

This is no surprise given that EDθâ is based on life expectancy, which cannot be
decomposed into subgroups. In Appendix F, we also show that EDθâ is the only in-
dex that is independent on the actual population pyramid (no inertia) and compares
stationary populations in a way that respects basic properties.

Relationship between EDθâ and PALEθ

We show that PALEθ is a version of EDθâ that encapsulates the maximalist view.
Indeed, as stated in Proposition 3, EDθâ ranks societies exactly in the same way as
PALEθ as long as its age threshold â is at least as large as the maximal lifespan a∗.
For such values, the age threshold is not binding, and all deaths become relevant in
terms of deprivation.

20For instance, assume that society A (see Table 1) undergoes a permanent mortality shock such
that society A is subjected to her mortality vector in all years before t, namely (µA

0 , µA
1 , µA

2 , µA
3 ) =

(1/2, 0, 0, 1), but from year t onwards society A is subjected to the mortality vector of society
B, namely (µB

0 , µB
1 , µB

2 , µB
3 ) = (0, 0, 1/2, 1). There is a mechanical adjustment to the population

pyramid, such that only two poor individuals live in year t + 1. Only in year t + 2 does the
population pyramid reach the new equilibrium, with three poor individuals. The inertia of GDθâ

may be deemed undesirable because it may complicate the analysis. Baland et al. show that the
mechanical adjustments following a permanent mortality shock may lead to a non-monotonic trend
in GDθâ.

21In other words, if decomposability into subgroups is seen as a key property, one should use GDθâ.
Indeed, this index yields the same ranking as EDθâ in stationary populations. In those populations,
GDθâ thus yields the same ranking as PALEθ when all deaths are normatively relevant (â ≥ a∗).
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Proposition 3 (EDθâ generalizes PALEθ).
For all â ≥ a∗ we have PALEθ = â(1 − EDθâ), which implies that, for any two

societies A and B,

PALEθ(A) ≥ PALEθ(B) ⇔ EDθâ(A) ≤ EDθâ(B).

Proof. See Appendix G.

When the age threshold is binding (smaller than the maximal age a∗), the rank-
ings obtained under EDθâ may not correspond to the rankings obtained under
PALEθ. In Appendix H, we contrast the impact of mortality shocks on PALEθ

and EDθâ.

Escaping the mortality paradox with PALEθ

As observed in Section 2, GDθâ is not immune to the mortality paradox. A paradox-
free index should record an improvement when a stationary society is obtained from
another stationary society by an increment to the lifespan of a poor person.22 For
instance, in Table 1, stationary society B is obtained from stationary society A by
two successive increments to the lifespan of individuals in the poor dynasty.

Definition 1 (Paradox-free).
Mθâ ∈ {EDθâ, GDθâ, IDθâ} is paradox-free if for any two stationary societies A and

B such that B is obtained from A by an increment to the lifespan of a poor person
we have Mθâ(A) ≥ Mθâ(B).

Proposition 4 identifies the values for the two parameters θ and â under which
EDθâ is Paradox-free. First, all deaths should matter, which implies that the age
threshold â should be at least as large as the maximal lifespan a∗. Second, one year
of life prematurely lost should be at least as bad as one year of life spent in poverty,
which implies that θ ≤ 1 and thus uNP − uP ≤ uNP − uD.

Proposition 4 (EDθâ and the mortality paradox).
Mθâ ∈ {EDθâ, GDθâ, IDθâ} is Paradox-free if and only if θ ≤ 1 and â ≥ a∗.

Proof. See Appendix I.

An immediate corollary for Propositions 3 and 4 follows: the only way for EDθâ

to be Paradox-free is to be ordinally equivalent to PALEθ with θ ≤ 1.

Corollary 1 (PALEθ and the mortality paradox).
EDθâ is Paradox-free if and only if EDθâ is ordinally equivalent to PALEθ with
θ ≤ 1.

These results show that indicators that embody the minimalist view cannot avoid
the mortality paradox. The mortality paradox can only be avoided when the deaths
taking place at older age are also attributed negative intrinsic value. Corollary 1
thus shows that the mortality paradox provides a justification for PALEθ.

22We define more formally the notion of an increment to the lifespan of a poor person in this
footnote. Following our formal framework presented in Appendix A, the life of an individual i is a
list of poverty statuses li = (li0, . . . , lidi ) that she experiences between age 0 and the age at which
she dies di ∈ {0, . . . , a∗ − 1}, where lia ∈ {NP,P}. We say that stationary society B is obtained
from stationary society A by an increment to the lifespan of a poor person when both societies have
the same natality, lAi = lBi for all individuals i except for some individual j such that dBj = dAj +1,
lAja = P for all a ≤ dAj and lBja = P for all a ≤ dBj .
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3.3 Robust comparisons

We study the conditions under which comparisons by PALEθ are robust to the
plausible values for parameter θ.

By Corollary 1, PALEθ is Paradox-free when θ ∈ (0, 1]. Yet, the comparison of
two societies with PALEθ may depend on the particular value assigned to θ ∈ (0, 1].
We show that a nontrivial part of these comparisons does not depend on the value for
θ even for some pairs not related by domination. In other words, there exist pairs of
societies such that one is poorer but the other has higher mortality that are robustly
ranked by PALEθ, that is, in the same way for all values of θ ∈ (0, 1].

We illustrate this property in Figure 3. Without aggregation, domination alone
allows comparing society A with the northwest quadrant (where societies have more
poverty and more mortality) and the southeast quadrant (where societies have less
poverty and less mortality). For any value of θ, we can draw the iso-PALEθ curves
passing through A. The iso-PALE0 curve (associated to θ = 0) is a vertical line since
poverty has no welfare costs and life expectancy is the sole determinant of welfare.
However, the iso-PALE1 curve (associated to θ = 1) is not a horizontal line. This
defines two additional areas for which welfare can be robustly compared with that
of society A. The iso-PALEθ curves associated to intermediate values of θ ∈ (0, 1]

are indeed all located in the area between the iso-PALE0 curve and the iso-PALE1

curve. The area in the NE quadrant below the iso-PALE1 curve yields an robustly
higher social welfare than A, even though these societies have a higher poverty than
A. The area in the SW quadrant above the iso-PALE1 yields an robustly lower social
welfare than A, even though these societies have a lower poverty than A. The size of
these new areas depends on the marginal rate of substitution of PALE1 at A. For
society A and PALE1, this marginal rate of substitution is given by LE(A)(1−H(A))

(LE(A))2 .
If LE(A) = 70 and H(A) = 20, this marginal rate of substitution is equal to 0.011,
meaning that one additional year of life is exactly compensated by an increase in the
head-count ratio H of 1.1% percentage points.These additional robust comparisons
follow from (i) the fact that expected life-cycle utility sums period utilities and (ii)
the assumption that a year of life spent in poverty is considered not worse than a
year of life lost (i.e., 1 ≥ θ, which is uP ≥ uD).

As an illustration, Table 2 below reports the situation of Pakistan and Bangladesh
in 2019. Note that Life Expectancy can trivially be decomposed into Poverty Ex-
pectancy (LE*H) and Poverty Fee Life Expectancy (LE*(1-H)). Pakistan has a lower
headcount ratio than Bangladesh, but life expectancy is also lower in Pakistan.
Therefore, it is a priori difficult to rank those two societies. Assuming that poverty
and mortality remain unchanged, an individual born in Bangladesh can expect to
spend 4.9 years of his life in poverty and 68.8 years out of poverty. In Pakistan, he
can expect 2.8 years in poverty and 62.1 years out of poverty. Hence, a newborn in
Bangladesh can not only expect to spend more years in poverty, but also more years
out of poverty since the longer life expectancy there more than compensates for the
higher poverty rate. As a result, PALEθ ranks Bangladesh above Pakistan for all
θ ∈ (0, 1].

In the absence of domination (NE and SW quadrants in Figure 3), ignoring
mortality, i.e., comparing two societies based on H, may lead to robustly erroneous
comparisons. This happens when the ranking provided by PALEθ is robust but
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Figure 3: A and B are robustly ranked even though H(A) < H(B) and LE(A) <
LE(B).

Table 2: An example of robust comparison: Pakistan and Bangladesh in 2019.

Headcount Life Poverty Poverty Free
ratio Expectancy Expectancy Life Expectancy

(LE ∗H) LE ∗ (1−H) = PALE1

Pakistan 4.3% 64.8 2.8 62.1
Bangladesh 6.7% 73.6 4.9 68.8

differs from the ranking provided by H. Proposition 5 describes the conditions under
which PALEθ comparisons are robust.

Proposition 5. (Robust comparisons with PALEθ)
(i) For any two societies A and B, PALEθ(A) ≤ PALEθ(B) for all θ ≤ 1 if and

only if

PALE0(A) ≤ PALE0(B) and PALE1(A) ≤ PALE1(B) (Condition C1)

(ii) There exist societies A and B for which PALEθ(A) ≤ PALEθ(B) for all θ ≤
1 even though H(A) < H(B). These societies are such that H(A) < H(B) and
LE(A) < LE(B).

Proof. See Appendix J.

In Appendix K, we study the conditions under which comparisons by EDθâ are
robust to the plausible values for its parameters.

4 Real world implications

We now turn to data on poverty and life expectancy spanning the period 1990-2019.
The data come respectively from the World Bank’s Poverty and Inequality Platform
(World Bank, 2023) and the Global Burden of Disease Project (Global Burden of
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Disease Collaborative Network, 2020).23 Appendix N presents a practictioner guide
to the construction of our index.

4.1 A case study of South Africa

We first illustrate the relevance of our indices with the case of South Africa. Fig-
ure 4 reports the evolution of life expectancy, poverty rate and PALE1 for South
Africa from 1990 to 2019. From the perspective of poverty, the progress of South
Africa is impressive, with poverty rates decreasing from 31% to 21% over the period.
However, life expectancy shows a different pattern. Following the AIDS epidemic,
life expectancy decreased from the mid 90s onwards, to revert back to the pre-AIDS
levels after 2013. Thus, in 2007, poverty rates are low, at 19%, but life expectancy is
also low, at only 53 years. How then do we compare South Africa in 2007 to South
Africa in 1990 ? PALE1 indicates that deprivation is higher in 2007 than in was in
1990. Indeed, PALE1 is equal to 44 years in 1990 as opposed to 42 years in 2007.
We discuss in Section 4.3 the sensitivity of the comparisons made under PALEθ to
the choice of θ.

Figure 4: South Africa Evolution of PALE1 and Life Expectancy, 1990-2019
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Reading: in 1990, life expectancy was 63 years, 31% of the population was living
below the poverty line and poverty adjusted life expectancy was 44 years.

4.2 Life expectancy and poverty in the World, 1990-2019

At the world level, Figure 5 presents the evolution of life expectancy, the headcount
ratio and PALEθ between 1990 and 2019. Throughout this period, life expectancy

23See Appendix M for the list of countries in the database as well as their descriptive statistics
for the year 2019.
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Figure 5: Evolution of PALE and Life Expectancy, 1990-2019
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(b) PALE0.5

Reading: in 1990, Poverty-Adjusted Life Expectancy was about 30 years according
to PALE1 and 48 years according to PALE0.5.

increased from 62 to 71 but the decrease in poverty expectancy is even more spec-
tacular, from 30 years in 1990 to only 7 years in 2019. This decrease in poverty
combined with an increase in life expectancy resulted in a large increase in PALE1,
from 32 in 1990 to 64 years in 2019. For θ < 1, the corresponding PALEθ curves all
lie between life expectancy and the PALE1 curve. We show PALE0.5 in the right
hand panel of Figure 5. By construction, PALE0.5 is higher in absolute value (47
years in 1990). However, its evolution is much slower than that of PALE1: from 1990
to 2019, PALE0.5 increased by 44% as opposed to 101% for PALE1. Indeed θ = 1

implies that one year spent in poverty is equivalent to one year spent dead. When
instead one assumes that a year spent in poverty is equivalent to half a year lost to
death, life expectancy has more weight in PALE. As the progress on life expectancy
have been much slower than those against poverty, PALE0.5 growth is slower.

Note that PALE can not be directly decomposed into each of its components.
However, it is possible to decompose its growth into the contribution of that of each
of its component. Indeed, the growth rate of PALEθ can be decomposed as follows:

∂PALE

∂t
= ϵLE ∗ ∂LE

∂t
+ ϵH ∗ ∂H

∂t

where ϵLE = 1 and ϵH = −θH
(1−θH) represent the elasticities of PALEθ to life ex-

pectancy and poverty, respectively. Figure 6 shows the share of the growth of PALEθ

explained by changes in life expectancy, from 1991 to 2019. First, note that the choice
of θ = 1 is conservative: the contribution of life expectancy to PALE is on average
16 percentage point smaller when θ = 1 than when θ = 0.5. Second, irrespective of
the precise value given to θ, the contribution of life expectancy is growing over time.
Life expectancy contributes on average to 17 (resp. 32) percent of PALE’s growth
from 1991 to 2004, as opposed to 34% (resp. 51%) from 2005 onwards. Even though
mortality has not decreased as much as poverty, the changes in mortality still play a
substantial role in the trend of PALEθ.
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Figure 6: Share of the growth of LE in the growth of PALE1 and PALE0.5, 1990-
2019
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Reading: in 1991, the growth of life expectancy contributed to 10% of the growth of
PALE1 and to 25% to that of PALE0.5.

Turning now to deprivation as captured by the EDθâ index, Figure 7 reports the
evolution of ED1,70 in the world during the same period.24 The evolution of ED1,70

illustrates the vast progress made against deprivation at the world level. While a
newborn expected to have 58% of its normative lifespan either lost to mortality or
spent in poverty in 1990, this expected loss falls to 18% in 2019. Unlike PALE, ED
can be directly decomposed into each of its components, as indicated in the graph. In
particular, the share of the lifespan deprivation component increased over time: from
30% in 1990 to 51% in 2019. As a result, the neglect of mortality in most poverty
measures amounts to missing an increasing and significant share of total deprivation.

4.3 Improving on comparisons based on the headcount only

Our indices also allow for comparing countries in which life expectancy and poverty
evolve in opposite direction, as in the Pakistan-Bangladesh comparison presented
in Table 2 or in the comparison between the years 1990 and 2007 in South Africa
(Figure 4). However, the choice of θ may not be innocuous in these comparisons. We
now focus on these cases. For these cases, we discuss the extent to which PALEθ

offers comparisons that are robust, that is, for which the ranking is not affected by
the choice of θ. Note that if the ranking proposed by PALEθ is robust to the choice
of θ, this implies that PALE0 and PALE1 yield the same ranking. Since PALE0

corresponds to life expectancy, a measure solely based on the headcount provides a
24We take 70 as the lifespan deprivation threshold since world life expectancy is 71 years in 2019.

This threshold is therefore a reasonable choice given our maximalist perspective: dying before this
age means dying below the average expected age of death at the world level.

18



Figure 7: Evolution of EDθâ and H, 1990-2019 (where θ = 1 and â = 70).
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Reading: in 1990, a newborn expected to be deprived of 58% of its life: 17 percentage
points lost because of lifespan deprivation and 41 because of income deprivation.
Lifespan deprivation accounted for 30% of expected deprivation in 1990.

wrong ranking whenever life expectancy and headcount diverge (which is the case
we focus on). The main interest of robust comparisons is to measure the extent to
which PALE allows to improve on a ranking based on the headcount only: in all these
situations, irrespective of the value given to θ, the ranking under PALE contradicts
the poverty ranking.

Inter country comparisons

To what extent does PALEθ help in robustly ranking countries, as compared to a
simple headcount? Figure 8 reports the proportion of all country-pairs comparisons
whose ranking based on life expectancy and headcount ratio differs. There are 23%
of them.25 The share of these ambiguous cases for which PALEθ provides a robust
answer is equal to 37 percent, independently of the value given to θ. In other words,
37% of these “ambiguous” cases are wrongly classified by the headcount ratio. Note
also that the share of ambiguous comparisons that our index unambiguously solves
strongly increases over time, owing to the falling incidence of absolute poverty in
many countries.26

25These are the only situations in which PALE can offer a different ranking than the headcount.
26The falling incidence of absolute poverty implies that differences in H across countries in a given

year become, on average, smaller over time. This explains why the share of ambiguous comparisons
that our index unambiguously solves increases over time. This is easy to see when assuming that
the differences in LE across countries in a given year remain constant over time. Indeed, a smaller
difference in H can be “over-compensated” by a smaller difference in LE.
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Figure 8: Evolution of the resolution of ambiguous inter-country comparisons, 1990-
2019
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Reading: in 1990, countries had on average 23% of ambiguous comparisons, out of
which at least 26% were solved by the use of PALE.

Countries’ trajectories

We now turn to individual trajectories of all countries, such as the South African
case discussed earlier. For each country in our data, we computed the growth rate of
H and LE over each 5-years period. Figure 9 presents the evolution of the share of
ambiguous intra-country comparisons as well as the share that is robustly resolved
by PALEθ. Over the period, the share of ambiguous trajectories oscillates between
20 and 40% of all cases. The share of these cases that PALEθ ranks unambiguously
varies between between 20 and 40% for the period 1995-2005 up to 40 to 60% in the
2005-2015 period. As above, PALEθ corrects an increasing share of the rankings
proposed by the headcount. In Appendix O, we present each country’s evolution
for the period 1990-2019 and its resolution in a graphical format reminiscent of the
theoretical Figure 3.

5 Concluding remarks

An important limitation of the two indices proposed in this paper, PALEθ and EDθâ,
is that they account for the distribution of outcomes “dimension-by-dimension”. More
precisely, they account for the distribution of quality of life and for the distribution of
quantity of life, but not for the distribution of life-cycle utilities. Indeed, our indices
are insensitive to the allocation of years of life prematurely lost between the poor and
the non-poor. This allocation may however have implications for the distribution of
life-cycle utilities. When poor individuals die early, they cumulate low achievements

20



Figure 9: Evolution of the resolution of ambiguous countries’ trajectories, 1990-2019
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Reading: in the 1995, 35% of countries’ trajectories was ambiguous. Among these,
29% can be assessed with PALE.

in the two dimensions and the difference between their life-cycle utility and that of
non-poor individuals increases.

Accounting for the distribution of lifecycle utilities requires data that are typically
not available. The necessary data include not only information on the correlation
between poverty and premature mortality, but also information on mobility in and
out of poverty. When such data is not available, PALEθ and EDθâ can be used
as a second-best solution, as they improve over the widespread practice of entirely
ignoring the impact of mortality on longevity. This is particularly relevant for so-
cieties in which premature mortality is highly selective, affecting disproportionately
poorer individuals. In particular, the premature mortality term of EDθâ essentially
captures these negative outcomes.

If one cares about the distribution of life-cycle utilities and the necessary data
is available, our indicators would need to be adjusted. Let us define as “life-cycle
poor” the individuals whose life-cycle utility is smaller than that of a reference life,
e.g., a life characterized by a lifespan of 40 years with no period of poverty. One
index combining mortality and poverty that would account for the distribution of
life-cycle utilities is the expected fraction of newborns who will be “life-cycle poor”,
again assuming constant poverty and mortality.27

Our paper calls for future research on the value that the normative parameter
θ should take. Its mathematical expression based on social welfare a la Harsanyi
allows calibrating its value, as we show in Appendix C. However, the calibrated

27Note that the indicators proposed in the literature on the mortality paradox are typically not
appropriate to capture the distribution of life-cycle utilities, as they do not attribute an intrinsic
value to the quantity of life. The may therefore miss improvements when the lifecycle utility of all
individuals increase, for instance if the lifespan of all individuals is multiplied by a common factor.
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values are highly sensitive to the parametric values selected for the period utility
function. Survey-based estimates for θ may provide a firmer base for narrowing the
plausible range of values for this central parameter.
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Appendices
A Notation and definition of stationary society

We present here the formal notation used for the proofs.
There is a discrete set of periods {. . . , t − 1, t, t + 1, . . . }. In each period, some

individuals are born (at the beginning of the period) and some individuals die (at
the end of the period). All alive individuals are assigned a consumption status
for the period (P or NP ) . We define the life of an individual i as the list of
consumption statuses li = (li0, . . . , lidi) she enjoys between age 0 and age di ∈
{0, . . . , a∗ − 1} at which she dies, where lia ∈ {NP,P}. The set of lives is thus
L = ∪d∈{0,...,a∗−1}{NP,P}d+1.

The number of newborns in period t is denoted by nt. The profile of lives for
the cohort born in t is denoted by Ct = (li)i∈{1,...,nt}, where {1, . . . , nt} is the set of
newborns in t.

Let nt(a) denote the number of individuals born in period t who are still alive
when reaching age a. In particular, we have nt(0) = nt. Let pt(a) denote the
number of individuals born in period t who are poor at age a, with pt(a) ≤ nt(a).
By definition, the probability that an individual born in t survives to age a is given
by Vt(a) =

nt(a)
nt

, and the conditional probability that an individual born in t will be
poor when reaching age a is πt(a) =

pt(a)
nt(a)

. We denote the distribution on the set of
lives that Ct implicitly defines by Γt : L → [0, 1], with

∑
l∈L Γt(l) = 1.

In period t, we cannot observe the profile of lives for the cohort born in t. The
only elements of Ct that we observe in period t are nt(0), pt(0) and nt(1). However,
we also have information about the profile of lives of the cohorts born before t.
Formally, let a society St be the list of profiles of lives for all cohorts born during
the a∗ periods in {t − (a∗ − 1), . . . , t}, i.e. St = (Ct−a∗+1, . . . , Ct). In period t, we
observe (i) the number Nt of individuals who are alive in t:

Nt =

a∗−1∑
a=0

nt−a(a),

(ii) the fraction Ht of alive individuals who are poor in t:

Ht =

∑a∗−1
a=0 pt−a(a)∑a∗−1
a=0 nt−a(a)

,

and (iii) the age-specific mortality vector µt = (µt
0, . . . , µ

t
a∗−1) in period t where for

each a ∈ {0, . . . , a∗ − 1} we have

µt
a =

nt−a(a)− nt−a(a+ 1)

nt−a(a)
,

with µt
a∗−1 = 1 (by definition of a∗).

The particularity of stationary societies is to have their natality, mortality and
poverty constant over time, so that average outcomes in a given period are replicated
over the next period. More formally, a society is stationary if both the distribution
of lives and the size of generations are constant over the last a∗ periods.
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Definition 2 (Stationary Society).
A society St is stationary if, at any period t′ ∈ {t− a∗ + 1, . . . , t}, we have

• Γt′ = Γt (constant distribution of lives),

• nt′ = nt (constant size of cohorts).

It follows from this definition that nt(a) = nt−a(a) and pt(a) = pt−a(a) for all
a ∈ {1, . . . , a∗ − 1}.28

B Proof of Proposition 1

The proof is based on Lemma 1, which shows that, in a stationarity society, the
poverty and mortality observed in a given period completely reflects the life profile
of newborns.

Lemma 1. If society St is stationary, then

Vt(a) = Πa−1
k=0(1− µt

k) for all a ∈ {0, . . . , a∗ − 1}, (6)

Nt = nt ∗ LEt, (7)

Nt ∗Ht = nt ∗
a∗−1∑
a=0

V (a)π(a). (8)

Proof. We first prove Eq (6). As St is stationary, we have nt(k) = nt−k(k) for all
k ∈ {1, . . . , a∗−1} and nt(k+1) = nt−k(k+1) for all k ∈ {0, . . . , a∗−2}. Therefore,
we have for all a ∈ {1, . . . , a∗ − 1} that

Vt(a) =
nt(a)

nt
,

= Πa−1
k=0

nt(k + 1)

nt(k)
,

= Πa−1
k=0

nt−k(k + 1)

nt−k(k)
,

= Πa−1
k=0(1− µt

k).

We then prove Eq (7). As St is stationary, we have nt(a) = nt−a(a) for all a ∈
{1, . . . , a∗ − 1}. Recalling Eq (6) and Vt(a) =

nt(a)
nt

, we can successively write

LEt =

a∗−1∑
a=0

Πa−1
k=0(1− µt

k),

=

a∗−1∑
a=0

Vt(a),

=

∑a∗−1
a=0 nt(a)

nt
,

=

∑a∗−1
a=0 nt−a(a)

nt
,

= Nt/nt.

28Clearly, a constant distribution of lives is not sufficient for these equalities, one also needs a
constant size of cohorts.
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Finally, we prove Eq. (8). As St is stationary, we have pt(a) = pt−a(a) for all
a ∈ {1, . . . , a∗ − 1}. Given that πt(a) =

pt(a)
nt(a)

and Vt(a) =
nt(a)
nt

, we can successively
write

Ht =

∑a∗−1
a=0 pt−a(a)∑a∗−1
a=0 nt−a(a)

,

=

∑a∗−1
a=0 pt(a)

Nt
,

=

∑a∗−1
a=0 πt(a)Vt(a)nt

Nt
.

We use Lemma 1 to prove Proposition 1.
The assumption that individuals only enjoy binary consumption statuses implies

that Eu(ca) = π(a)uP + (1 − π(a))uNP where uNP = u(NP ) and uP = u(P ). By
Eq. (6), life expectancy at birth can be written as LE =

∑a∗−1
a=0 V (a). We can thus

rewrite Eq. (4) as

EU = uNPLE − (uNP − uP )

a∗−1∑
a=0

V (a)π(a). (9)

The result follows directly when substituting Eq. (7) and (8) into Eq. (9).

C Calibrating values for θ

Proposition 1 shows that θ = uNP−uP

uNP
, where uP and uNP respectively denote the

Bernouilli utility of being poor and being non-poor (and the utility of being dead
is normalized to zero). Consider the constant elasticity of substitution Bernouilli
utility function defined as

u(c) =
c1−ϵ − ĉ1−ϵ

1− ϵ
, (10)

where ĉ denotes the subsistence consumption, for which u(ĉ) = 0, and ϵ is the
coefficient of relative risk aversion that captures the curvature of utility function
u. A parametric value for θ requires defining representative consumption for the
(consumption) poor and non-poor statuses such that uP = u(cpoor) and uNP =

u(cnon−poor). Typically, cpoor and cnon−poor could respectively be defined as mean
or median consumption among the poor and non-poor.

Parametric values for θ are sensitive to the values selected for the parameters ĉ

and ϵ. We illustrate this by providing values for 1/θ for India in 2019 for different
values of these parameters. We define poverty using the the International Poverty
Line, whose value is $ 2.15 per person per day (2017 PPPs). We assume that cpoor

and cnon−poor are defined as mean consumption among the poor and non-poor, which
we extract from the Poverty and Inequality Platform from the World Bank.

D Proof of Proposition 2

The proof builds on the framework presented in Appendix A.
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Table 3: Parametric values for 1/θ for India in 2019 using the International Poverty
Line.

ĉ ĉ ĉ ĉ
0.5 0.75 1.0 1.25

($ a day) ($ a day) ($ a day) ($ a day)
ϵ 2.5 7.8 4.1 2.6 1.8
ϵ 2.0 4.7 3.0 2.1 1.6
ϵ 1.5 3.0 2.2 1.7 1.4
ϵ 1.0 2.1 1.7 1.5 1.3

Note: According to the Poverty and Inequality Platform, mean consumption in India in 2019 was
$ 5.13 per person per day. For the International Poverty Line, mean consumption among the poor
is $ 1.75 and mean consumption among the non-poor is $ 5.51. The utility function considered is
CES. 1/θ can be interpreted as the number of years spent in poverty yielding the same well-being
loss as one year of life lost.

By Proposition 2 in Baland et al. (2021) we have for any stationary society St that
GDθâ(St) = IDθâ(St). Hence, we only need to prove that GDθâ(St) = EDθâ(St) for
any stationary society St. By definition, we have that Nt = #P+#NP , NtHt = #P

and nt−a(a) = Na, i.e.,

GDθâ =
Y LLt

Nt + Y LLt
+ θ

NtHt

Nt + Y LLt
,

where

Y LLt =

â−2∑
a=0

nt−a(a) ∗ µt
a ∗ (â− (a+ 1)).

As society St is stationary, Lemma 1 applies and Nt = ntLEt (Eq. (7)). Substi-
tuting this expression for Nt into the definition of GDθâ proves our result, provided
Y LLt = ntLGEâ, which remains to be shown. As society St is stationary, Lemma 1
applies and we have nt−a(a)

nt
=
∏a−1

k=0(1− µt
k) (Eq. (6)). Substituting this expression

for nt−a(a) into the definition of Y LLt gives:

Y LLt = nt

â−2∑
a=0

(â− (a+ 1)) ∗ µt
a ∗

a−1∏
k=0

(1− µt
k),

which shows that Y Lt = ntLGEâ (recall that â− (a+ 1) = 0 when a = â− 1), the
desired result.

E EDθâ and GDθâ under a transitory shock

We illustrate the difference between EDθâ and GDθâ in their reaction to a transitory
mortality shock with the help of a simple example. Consider a population with a
fixed natality nt(0) = 2 for all periods t. At each period, all alive individuals are
non-poor, implying that Ht = 0. For all t < 0, we assume a constant mortality vector
µt = µ∗ = (0, 1, 1, 1), so that each individual lives exactly two periods. Let us assume
â = 4, so that an individual dies prematurely if she dies before her fourth period of
life. Before period t = 0, the population pyramid is stationary, and the two indices
are equal to 1/2 because there is no poor and individuals live for two periods instead
of four. Consider now a permanent shock starting from period 0 onwards, such

27



that half of the newborns die after their first period of life: µ0 = (1/2, 1, 1, 1). The
population pyramid returns to its stationary state in period 1, after a (mechanical)
transition in period 0. This example is illustrated in Figure 10.

t /∈ {0, 1, 2} t = 0 t = 1
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Figure 10: Response of GDθâ and EDθâ to a permanent mortality shock in t = 0.
The years prematurely lost are shaded.

Consider first GDθâ. In period 0, the actual population pyramid is not stationary
because of the mortality shock. The premature death of one newborn leads to the
loss of three years of life. Also, two one-year old individuals die in period 0, each
losing two years of life. There are thus 7 years of life prematurely lost in period 0,
and GDθâ takes value 7/11. In period 1, the population pyramid is stationary, and
GDθâ is equal to 5/8 from then on.

We now turn to EDθâ. Even if the actual population pyramid is not stationary in
period 0, EDθâ is immediately equal to 5/8 since it records premature mortality as if
the population pyramid had already reached its new stationary level. EDθâ focuses
on the newborn and the one-year old who die prematurely, ignoring that there are
two one-year old dying in the actual population pyramid in period 0 (which is a
legacy of the past).

F Characterization of the EDθâ index

We first introduce the set-up provided by Baland et al. (2021), which we will use to
charcterize EDθâ.

Each individual i is associated to a birth year bi ∈ Z. In period t, each individual
i with bi ≤ t is characterized by a bundle xi = (ai, si), where ai = t− bi is the age
that individual i would have in period t given her birth year bi, and si is a categorical
variable capturing individual status in period t, which can be either alive and non-
poor (NP ), alive and poor (AP ) or dead (D), i.e. si ∈ S = {NP,AP,D}. In the
following, we often refer to individuals whose status is AP as “poor”. We consider
here that births occur at the beginning while deaths occur at the end of a period.
As a result, an individual whose status in period t is D died before period t.29

29All newborns have age 0 during period t and some among these newborns may die at the end
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An individual “dies prematurely” if she dies before reaching the minimal lifespan
â ∈ N. Formally, period t is “prematurely lost” by any individual i with si = D and
ai < â. A distribution x = (x1, . . . , xn(x)) specifies the age and the status in period
t of all n(x) individuals. Excluding trivial distributions for which no individual is
alive or prematurely dead, the set of distributions in period t is given by:

X = {x ∈ ∪n∈N(Z × S)n | there is i for whom either si ̸= D or si = D and â > t− bi}.

Baland et al. (2021) show that the most natural consistent index to rank distri-
butions in X is the inherited deprivation index (IDθâ). Let d(x) denote the number
of prematurely dead individuals in distribution x, which is the number of individuals
i for whom si = D and â > t− bi, p(x) the number of individuals who are poor and
f(x) the number of alive and non-poor individuals. The IDθâ index is defined as:

IDθâ(x) =
d(x)

f(x) + p(x) + d(x)︸ ︷︷ ︸
quantity deprivation

+θ
p(x)

f(x) + p(x) + d(x)︸ ︷︷ ︸
quality deprivation

, (11)

where θ ∈ [0, 1] is a parameter weighing the relative importance of alive deprivation
and lifespan deprivation. An individual losing prematurely period t matters 1/θ

times as much as an individual spending period t in alive deprivation.
We introduce additional notation for the mortality taking place in period t. Con-

sider the population pyramid in period t, and let na(x) be the number of alive
individuals of age a in distribution x, i.e. the number of individuals i for whom
ai = a and si ̸= D. (The definition of na(x) corresponds to nt−a(a) in the nota-
tion used in the main text of the paper. In this section, we adopt the notation of
Baland et al. (2021), which does not require to mention period t.) The age-specific
mortality rate µa ∈ [0, 1] denotes the fraction of alive individuals of age a dying at
the end of period t: the number of a-year-old individuals dying at the end of pe-
riod t is na(x) ∗ µa. Letting a∗ ∈ N stand for the maximal lifespan (which implies
µa∗−1 = 1), the vector of age-specific mortality rates in period t is given by
µ = (µ0, . . . , µa∗−1). Vector µ summarizes mortality in period t, while distribution
x summarizes alive deprivation in period t as well as mortality before period t. The
set of mortality vectors is defined as:

M =
{
µ ∈ [0, 1]a

∗
∣∣∣µa∗−1 = 1

}
.

We consider pairs (x, µ) for which the distribution x is a priori unrelated to
vector µ. We assume that the age-specific mortality rates µa must be feasible given
the number of alive individuals na(x). Given that distributions have finite numbers
of individuals, mortality rates cannot take irrational values, i.e. µa ∈ [0, 1]∩Q, where
Q is the set of rational numbers. The set of pairs considered is given by:

O =

{
(x, µ) ∈ X ×M

∣∣∣for all a ∈ {0, . . . , a∗} we have µa =
ca

na(x)
for some ca ∈ N

}
.

Letting da(x) be the number of dead individuals born a years before t in dis-
tribution x, the total number of individuals born a years before t is then equal to

of period t. This implies that bi = t ⇒ si ̸= D.
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na(x) + da(x). Formally, the pair (x, µ) is stationary if, for some n∗ ∈ N and all
a ∈ {0, . . . , a∗}, we have:

• na(x) + da(x) = n∗ ∈ N (constant natality),

• na+1(x) = na(x) ∗ (1− µa) (identical population pyramid in t+ 1).

In a stationary pair, the population pyramid is such that the size of each cohort can
be obtained by applying to the preceding cohort the current mortality rate. The
pair associated to a stationary society (as defined in the main text) is stationary. An
index is a function P : O × N → R+. We simplify the notation P (x, µ, â) to P (x, µ)

as a fixed value for â is assumed.
We now introduce the properties characterizing EDθâ. IDθâ Equivalence requires

that, as the current mortality (in period t) is the same as the mortality prevailing in
the previous periods in stationary societies, any index defined on current mortality
rates is equivalent to IDθâ in the case of a stationary pair:30

Deprivation axiom 1 (IDθâ Equivalence). There exists some θ ∈ (0, 1] and â ≥ â

such that for all (x, µ) ∈ O that are stationary we have P (x, µ) = IDθâ(x).

Independence of Dead requires that past mortality does not affect the index.
More precisely, the presence of an additional dead individual in distribution x does
not affect the index:

Deprivation axiom 2 (Independence of Dead). For all (x, µ) ∈ O and i ≤ n(x),
if si = D, then P ((xi, x−i), µ) = P (x−i, µ).

Independence of Birth Year requires that the index does not depend on the birth
year of individuals, i.e. only their status matters. As Independence of Dead requires
to disregard dead individuals, the only relevant information in x is whether an alive
individual is poor or not.

Deprivation axiom 3 (Independence of Birth Year). For all (x, µ) ∈ O and
i ≤ n(x), if si = s′i, then P ((xi, x−i), µ) = P ((x′

i, x−i), µ).

Replication Invariance requires that, if a distribution is obtained by replicating
another distribution several times, they both have the same deprivation when asso-
ciated to the same mortality vector. By definition, a k-replication of distribution x

is a distribution xk = (x, . . . , x) for which x is repeated k times.

Deprivation axiom 4 (Replication Invariance). For all (x, µ) ∈ O and k ∈ N,
P (xk, µ) = P (x, µ).

Proposition 6 shows that these properties jointly characterize the EDθâ index.

Proposition 6 (Characterization of EDθâ).
P = EDθâ if and only if P satisfies Independence of Dead, IDθâ Equivalence,

Replication Invariance and Independence of Birth Year.
30Recall that past mortality is recorded in distribution x while current mortality is recorded in

vector µ. As vector µ is redundant in stationary pairs, in the sense that µ can be inferred from the
population pyramid, the index can be computed on distribution x only. See Baland et al. (2021)
for a complete motivation for this axiom.
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Proof. We first prove sufficiency. Proving that the EDθâ index satisfies Independence
of Dead, Replication Invariance and Independence of Birth Year is straightforward
and left to the reader. Finally, EDθâ index satisfies IDθâ Equivalence because EDθâ

is equal to GDθâ in stationary populations (Proposition 2) and GDθâ satisfies IDθâ

Equivalence (Proposition 2 in Baland et al. (2021)). (The pairs associated to sta-
tionary societies are stationary).

We now prove necessity. Take any pair (x, µ) ∈ O. We construct another pair
(x′′′, µ) that is stationary and such that P (x′′′, µ) = P (x, µ) and EDθâ(x

′′′, µ) =

EDθâ(x, µ). Given that (x′′′, µ) is stationary, we have by IDθâ Equivalence that
P (x′′′, µ) = IDθâ(x

′′′, µ) for some θ ∈ (0, 1]. As IDθâ = GDθâ = EDθâ for stationary
pairs, we have P (x′′′, µ) = EDθâ(x

′′′, µ) for some θ ∈ (0, 1]. If we can construct such
pair (x′′′, µ), then P (x, µ) = EDθâ(x, µ) for some θ ∈ (0, 1], the desired result.

We turn to the construction of the stationary pair (x′′′, µ), using two intermediary
pairs (x′, µ) and (x′′, µ). One difficulty is to ensure that the mortality rates µa can be
achieved in the stationary population given the number of alive individuals na(x

′′′),
that is µa = c

na(x′′′) for some c ∈ N.
We first construct a n′−replication of x that has sufficiently many alive individuals

to meet this constraint. For any a ∈ {0, . . . , a∗ − 1}, take any naturals ca and ea

such that µa = ca
ea

. Let e =
∏a∗−1

j=0 ej , n′
a = e

∏a−1
j=0 (1 − cj

ej
) and n′ =

∑a∗−1
j=0 n′

j .31

Let x′ be a n′−replication of x. Letting nx =
∑a∗−1

j=0 nj(x) be the number of alive
individuals in distribution x, we have that x′ has n′ ∗ nx alive individuals. We have
P (x′, µ) = P (x, µ) by Replication Invariance.

We define x′′ from x′ by changing the birth years of alive individuals in such a
way that (x′′, µ) has a population pyramid that is stationary. Formally, we construct
x′′ with n(x′′) = n(x′) such that

• dead individuals in x′ are also dead in x′′,

• alive individuals in x′ are also alive in x′′ and have the same status,

• the birth year of alive individuals are changed such that, for each a ∈ {0, . . . , a∗−

1}, the number of a-years old individuals is n′ ∗ nx ∗
∏a−1

j=0 (1−
cj
ej

)∑a∗−1
k=0

∏k−1
j=0 (1−

cj
ej

)
.32

One can check that (x′′, µ) has a population pyramid corresponding to a station-
ary population and that each age group has a number of alive individuals in N. We
have P (x′′, µ) = P (x′, µ) by Independence of Birth Year.

Define x′′′ from x′′ by changing the number and birth years of dead individuals in
such a way that (x′′′, µ) is stationary. To do so, place exactly n0(x

′′)− na(x
′′) dead

individuals in each age group a. We have P (x′′′, µ) = P (x′′, µ) by Independence of
Dead.

Together, we have that P (x′′′, µ) = P (x, µ). Finally, by construction we have
H(x′′′) = H(x), which implies that EDθâ(x

′′′, µ) = EDθâ(x, µ).
31These numbers imply that a constant natality of e newborns leads to a stationary population

of n′ alive individuals.
32Observe that

∑a∗−1
k=0

∏k−1
j=0 (1− cj

ej
) = LE, implying that e = n′∗nx∑a∗−1

k=0

∏k−1
j=0 (1−

cj
ej

)
.
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G Proof of Proposition 3

The proof builds on the framework presented in Appendix A.
We first show that LE + LGEâ = â when â ≥ a∗. By definition, LE and

LGEâ only depend on the age-specific mortality vector µt. Thus, the values for LE

and LGEâ do not depend on whether the society is stationary or not. Consider
any stationary society St whose constant mortality vector is µt. We show for this
stationary society St that LE + LGEâ = â when â ≥ a∗.

As society St is stationary, Lemma 1 applies and we have Nt = nt ∗ LEt (Eq.
(7)). As by definition Nt =

∑a∗−1
a=0 nt(a), we get

LE =

a∗−1∑
a=0

nt(a)

nt
. (12)

As society St is stationary, Lemma 1 applies and we have Vt(a) = Πa−1
k=0(1−µt

k) (Eq.
(6)). Using the definition of age-specific mortality rate, namely µt

a = nt−a(a)−nt−a(a+1)
nt−a(a)

,
we can rewrite LGEâ as

LGEâ(St) =

â−1∑
a=0

(â− (a+ 1)) ∗ nt−a(a)− nt−a(a+ 1)

nt−a(a)
∗ Vt(a).

As society St is stationary, we have that nt(a) = nt−a(a) and nt(a+1) = nt−a(a+1)

for all a ∈ {0, . . . , a∗ − 1}. We can thus successively write

LGEâ =

â−1∑
a=0

(â− (a+ 1)) ∗ nt(a)− nt(a+ 1)

nt(a)
∗ nt(a)

nt
,

=

â−1∑
a=0

â ∗ nt(a)− nt(a+ 1)

nt
−

â−1∑
a=0

(a+ 1) ∗ nt(a)− nt(a+ 1)

nt
,

=
1

nt

(
â ∗ (nt(0)− nt(â))−

â−1∑
a=0

nt(a) + â ∗ nt(â)

)
,

= â−
â−1∑
a=0

nt(a)

nt
.

By definition of a∗, we have nt(a) = 0 for all a ≥ a∗. When â ≥ a∗, this implies that∑â−1
a=0

nt(a)
nt

=
∑a∗−1

a=0
nt(a)
nt

. We have shown that LGEâ = â −
∑a∗−1

a=0
nt(a)
nt

, which
together with Eq. (12) proves that LE + LGEâ = â when â ≥ a∗.

The fact that LE + LGEâ = â implies that PALEθ = â(1− EDθâ) because

â(1− EDθâ) = (LE + LGEâ)(1− EDθâ)

= LE(1− θH),

= PALEθ.

Thus, when â ≥ a∗, PALEθ is a linear function of EDθâ that depends negatively
on EDθâ. Therefore, these two indicators yields opposite ranking of any two societies
A and B, i.e. PALEθ(A) ≥ PALEθ(B) ⇔ EDθâ(A) ≤ EDθâ(B).
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H Mortality shocks and the evolution of EDθâ and
PALEθ

We briefly contrast the impact of mortality shocks on PALEθ and EDθâ, assum-
ing that these mortality shocks are independent of the poverty status. Consider a
mortality shock that equalizes individual lifespans across the age threshold â while
keeping life expectancy LE constant. This lower dispersion in mortality does not
affect PALEθ, which only accounts for mortality through LE. By contrast, this
shock reduces EDθâ, since LGEâ is thereby reduced. It is indeed easy to check that
∂EDθâ

∂LGEâ
> 0 (for θH < 1).

Consider instead a mortality shock that reduces mortality above the age thresh-
old â. Such shock increases LE but does not affect LGEâ. As a result, PALEθ

mechanically increases. It is also easy to show that deprivation, as measured by
EDθâ, decreases: ∂EDθâ

∂LE < 0, for θH < 1. Moreover, PALEθ is more sensitive to
this kind of shock than EDθâ, as the elasticity of PALEθ to LE is equal to 1 while
the elasticity of EDθâ to LE lies in (−1, 0). If the mortality shock is such that it
reduces mortality below the age threshold â, this shock simultaneously increases LE

and reduces LGEâ. Again, PALEθ improves and EDθâ decreases since both LE

increases and LGE decreases.

I Proof of Proposition 4

The proof builds on the framework presented in Appendix A.
By Proposition 2, Mθâ is Paradox-free if and only if IDθâ is Paradox-free.
First, we prove that IDθâ is Paradox-free only if θ ≤ 1 and â ≥ a∗. The proof is

by contradiction.
Assume first that θ > 1 and â ≥ 2. Consider two alternative stationary societies

A and B that both feature only one newborn i every year. The life of i is respectively
lAi = (P,D) and lBi = (P, P,D). Society B is obtained from A by a lifespan increment
to the poor person i. However, we have IDθâ(A) = (â−1)+θ

â and IDθâ(B) = (â−2)+2θ
â ,

which yields IDθâ(A) < IDθâ(B), which shows that IDθâ is not Paradox-free.
Assume then that θ > 0 and â < a∗. Consider two alternative stationary societies

A’ and B’ that both feature two newborns i and j every year. Their lives are
respectively lA

′

i = (P, . . . , P,D) and lB
′

i = (P, . . . , P, P,D), where i’s lifespan is â

years in society A’ and â+1 years in society B’, while lA
′

j = lB
′

j = (NP, . . . , NP,D),
where j’s lifespan is â years in both societies. Society B’ is obtained from A’ by
a lifespan increment to the poor person i. However, we have IDθâ(A

′) = θ(â)
â+â and

IDθâ(B
′) = θ(â+1)

â+â+1 , which yields IDθâ(A
′) < IDθâ(B

′), which shows that IDθâ is
not Paradox-free.

We have thus proven that IDθâ is Paradox-free only if θ ≤ 1 and â ≥ a∗.
Second, we prove that IDθâ is Paradox-free if θ ≤ 1 and â ≥ a∗. Take any

two stationary societies A” and B” such that B” is obtained from A” by a lifespan
increment to the poor person i. Poor person i dies prematurely in society A” because
â ≥ a∗. The difference between societies A” and B” is thus that i spends an additional
year in poverty in society B”, instead of prematurely loosing that year in society
A”. Thus, the following two equalities hold #P (A′′) + #NP (A′′) + #PD(A′′) =
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#P (B′′)+#NP (B′′)+#PD(B′′) and #PD(A′′)−#PD(B′′) = #P (B′′)−P (A′′) =

1. The former equality implies that IDθâ(A
′′) ≥ IDθâ(B

′′) if and only if #PD(A′′)+

θ#P (A′′) ≥ #PD(B′′) + θ#P (B′′). This inequality is equivalent to #PD(A′′) −
#PD(B′′) ≥ θ(#P (B′′) − #P (A′′)), which further simplifies to 1 ≥ θ given the
latter equality, which proves that IDθâ is Paradox-free.

J Proof of Proposition 5

Proof of (i). We start by the “only if” part. Assume to the contrary that
PALE0(A) > PALE0(B) or PALE1(A) > PALE1(B). This directly implies
that PALEθ(A) > PALEθ(B) for some θ ∈ (0, 1] and therefore we cannot have
PALEθ(A) ≤ PALEθ(B) for all θ ∈ (0, 1].

We now turn to the “if” part. By definition of the PALEθ index, we have to show
that

LE(B)− LE(A) ≥ θ ∗ (LE(B)H(B)− LE(A)H(A)), (13)

for all θ ∈ (0, 1]. As PALE0(A) ≤ PALE0(B), we directly have that LE(B) −
LE(A) ≥ 0 because PALE0 = LE. As PALE1(A) ≤ PALE1(B), we have LE(B)−
LE(A) ≥ LE(B)H(B)−LE(A)H(A). It immediately follows that inequality (13) is
verified for all θ ∈ (0, 1].

Proof of (ii). From (i), proving (ii) only requires providing societies A and B with
H(A) < H(B) such that PALE0(A) ≤ PALE0(B) and PALE1(A) ≤ PALE1(B).
If H(A) = 0.2, H(B) = 0.4, LE(A) = 50 and LE(B) = 75 we have PALE1(A) = 40

and PALE1(A) = 45, the desired result because PALE0 = LE.

K Robust EDθâ comparisons

EDθâ is Paradox-free when θ ∈ (0, 1] and â ≥ a∗. However, EDθâ no longer encap-
sulates the minimal view when â ≥ a∗. To ease the impossibility between paradox-
freeness and the minimal view, we define a weaker notion of paradox-freeness. A
deprivation index is minimally paradox free when the index does not record a wors-
ening for increments to the lifespan of a poor person who dies prematurely, i.e.,
whose lifespan is smaller than â. In that case, EDθâ is minimally paradox free when
θ ∈ (0, 1].

We assume that the age threshold â ∈ N0 must respect a lower-bound â ∈ N0,
such that â ≥ â ≥ 0. Clearly, the value for the lower bound â influences the set
of comparisons that are robust to the values selected for θ and â. Proposition 7
provides the conditions under which the ranking by EDθâ is robust for all θ ∈ (0, 1]

and all â ≥ â.

Proposition 7 (Robust comparisons with EDθâ).
(i) For any two societies A and B we have EDθâ(A) ≥ EDθâ(B) for all θ ≤ 1 and
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all â ≥ â if and only if

ED0â(A) ≥ ED0â(B) for all â ≥ â, and

ED1â(A) ≥ ED1â(B) for all â ≥ â (generalized Condition C1)

(ii) For any â ≥ 2, there exist societies A and B for which EDθâ(A) ≥ EDθâ(B) for
all θ ≤ 1 and all â ≥ â even though H(A) < H(B). These societies are such that
LE(A) < LE(B).

Proof. See Appendix L for the straightforward proof.

We illustrate Proposition 7 in Figure 11.33 The vertical axis represents the share
of pairs of societies for which H and LE provide identical (at the top) or opposite
rankings (at the bottom). By definition, rankings by H and LE are insensitive to the
age threshold â considered. The horizontal axis represents all possible values of â,
the lower bound on the age threshold.

The left panel describes the share of pairs for which EDθâ provides robust rank-
ings as a function of â. Lower values of â imply a fall in the share of cases that EDθâ

can rank robustly. Indeed, a larger age interval of values of â over which EDθâ has to
be computed implies a larger number of comparisons for ED. As a result, the num-
ber of pairs for which it can provide the same ranking for all age thresholds falls.34

Second, if H and LE provide the same ranking, EDθâ provides the same ranking as
H when â = a∗. Finally, as discussed above, when H and LE disagree, a larger value
of â implies that the share of cases for which H provides an robustly wrong ranking
gets larger.

The right panel reports, for all values of â, the share of pairs of societies for which
PALEθ and EDθâ provide robust rankings. Since PALEθ does not depend on the
age threshold, it is able to rank a larger set of comparisons. As shown in Proposition
3, when â = a∗, the two indices are equivalent.

L Proof of Proposition 7

We first prove the following: for any â ≥ â and any two societies A and B, we have
EDθâ(A) ≥ EDθâ(B) for all θ ∈ (0, 1] if and only if

ED0â(A) ≥ ED0â(B) and ED1â(A) ≥ ED1â(B).

We start with the “only if” part. Assume on the contrary that ED0â(A) <

ED0â(B) or ED1â(A) < ED1â(B). This implies that EDθâ(A) < EDθâ(B) for
some θ ∈ (0, 1] and therefore we cannot have EDθâ(A) ≥ EDθâ(B) for all θ ∈ (0, 1].

33All graphs that follow are constructed using a lower bound on â equal to 1. Indeed, for θ = 0
and â = 0, EDθâ is equal to zero for all societies and cannot therefore deliver robust comparisons.

34It is not a sufficient condition that the rankings by H and LE are identical for the ranking
by EDθâ to be robust. The reason is that, when â < a∗, LE no longer contains all the relevant
information on mortality: for instance, two societies can share the same life expectancy at birth
but one with several deaths occurring below â while the other has all deaths occurring above â.
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Figure 11: Share of robust EDθâ comparisons as a function of â.
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â

opposite rankings
with H & LE

0
1

Reading: Left: The smaller the lower-bound â, the lower the share of societies pairs
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We turn to the “if” part. By definition of the EDθâ index, we have to show that

LGEâ(A)

LE(A) + LGEâ(A)
− LGEâ(B)

LE(B) + LGEâ(B)
≥

θ

(
LE(B) ∗H(B)

LE(B) + LGEâ(B)
− LE(A) ∗H(A)

LE(A) + LGEâ(A)

)
for all θ ∈ (0, 1].

(14)

As ED0â(A) ≥ ED0â(B), the left hand side of Eq. (14) is non-negative. As
ED1â(A) ≥ ED1â(B), Eq. (14) holds for θ = 1. As a result, inequality (14) holds
for all θ ∈ (0, 1].

Proof of (i). This is an immediate implication of the statement proven above.

Proof of (ii). Consider two societies A and B with H(A) < H(B) for which the
generalized condition C1 holds.

Society A is such that H(A) = 0.4 and all its individuals die in their first year of
life, which implies that LE(A) = 1 and LGEâ(A) = â − 1. Therefore, society A is
such that

• ED0â(A) = â−1
â and ED1â(A) = 1− 0.6

â for all â ≥ â.

Society B is such that H(B) = 0.5 and all its individuals die at the maximal age
a∗ − 1, which implies that LE(B) = a∗ and

• LGEâ(B) = 0 if â ∈ {2, . . . , a∗},

• LGEâ(B) = â− a∗ if â > a∗.

Therefore, society B is such that

• ED0â(B) = 0 and ED1â(B) = 0.5 for all â ∈ {2, . . . , a∗},
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• ED0â(B) = â−a∗

â and ED1â(B) = 1− 0.5a∗

â for all â > a∗.

By statement (i), we get EDθâ(A) ≥ EDθâ(B) for all θ ∈ (0, 1] and all â ≥ â if
we have ED0â(A) ≥ ED0â(B) and ED1â(A) ≥ ED1â(B) for all â ≥ â. Recalling
that â ≥ 2, one can then easily check that we have ED0â(A) ≥ ED0â(B) and
ED1â(A) ≥ ED1â(B) both for all â ∈ {2, . . . , a∗} and for all â > a∗.

M Descriptive statistics

Table 4 lists all the countries present in our data set as well as the 2019 values of the
main variables of interest.

Table 4: Countries used in the dataset and descriptive statistcs

Country H LE LGE70 LE*H PALE1 ED1,70

% Years Years Years Years %

Albania 0 77 3 0 77 4
Algeria 0 75 4 0 75 6
Angola 32 64 11 21 43 42
Armenia 1 75 4 1 74 6
Azerbaijan 0 70 6 0 70 8
Bangladesh 11 74 6 8 65 18
Belarus 0 73 5 0 73 6
Belize 18 73 6 13 60 24
Benin 19 63 12 12 51 32
Bhutan 0 72 6 0 72 8
Bolivia 2 71 6 1 70 10
BosniaandHerzegovina 0 76 3 0 76 4
Botswana 13 61 13 8 53 28
Brazil 5 75 5 4 71 12
Bulgaria 1 72 5 1 72 7
BurkinaFaso 31 61 14 19 42 44
Burundi 72 63 12 45 18 76
CaboVerde 3 73 5 2 71 9
Cameroon 23 62 13 14 48 36
CentralAfricanRepublic 65 51 21 33 18 75
Chad 31 59 15 18 41 45
China 0 77 3 0 77 4
Colombia 5 79 4 4 75 10
Comoros 18 68 9 12 56 27
CostaRica 1 79 3 1 78 5
CotedIvoire 11 63 12 7 56 25
Djibouti 18 66 10 12 54 29
DominicanRepublic 1 72 7 1 72 9
Ecuador 4 75 5 3 73 9
ElSalvador 1 75 6 1 74 8
Eswatini 34 57 16 19 38 48
Ethiopia 18 68 9 12 56 27
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...continued from previous page

Country H LE LGE70 LE*H PALE1 ED1,70

% Years Years Years Years %

Fiji 1 68 8 1 67 11
Gabon 2 67 9 2 65 14
GambiaThe 15 66 10 10 56 26
Georgia 5 72 5 4 69 11
Ghana 22 65 10 14 51 33
Guatemala 7 72 7 5 67 15
Guinea 13 60 14 8 52 30
GuineaBissau 21 60 14 13 47 36
Guyana 6 66 9 4 62 18
Haiti 25 63 12 16 47 37
Honduras 13 71 6 9 62 19
India 12 70 7 8 62 20
Indonesia 4 71 6 3 67 12
Iraq 0 72 5 0 72 7
Jamaica 1 75 5 1 74 7
Jordan 0 77 3 0 77 4
Kazakhstan 0 71 6 0 71 8
Kenya 32 66 10 21 45 41
Kiribati 2 60 13 1 59 19
KyrgyzRepublic 1 73 5 0 72 8
Lebanon 0 76 4 0 76 5
Lesotho 34 51 21 18 33 54
Liberia 31 65 11 20 45 40
Madagascar 79 65 11 51 14 82
Malawi 69 64 12 44 20 74
Malaysia 0 74 4 0 74 5
Maldives 0 78 3 0 78 4
Mali 15 61 15 9 52 31
MarshallIslands 1 65 10 1 64 14
Mauritania 5 70 8 4 66 14
Mauritius 0 74 5 0 74 6
Mexico 3 75 5 2 73 9
Moldova 0 73 5 0 73 7
Mongolia 1 67 8 0 67 11
Montenegro 3 75 3 2 73 7
Morocco 1 72 5 1 72 8
Mozambique 71 57 16 41 17 78
Myanmar 1 68 8 1 68 12
Namibia 17 64 11 11 53 29
Nepal 3 70 7 2 68 11
Nicaragua 4 74 4 3 71 9
Niger 50 61 14 31 31 59
Nigeria 31 63 13 20 44 43
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...continued from previous page

Country H LE LGE70 LE*H PALE1 ED1,70

% Years Years Years Years %

NorthMacedonia 3 74 4 2 72 7
Pakistan 5 65 11 3 62 19
PapuaNewGuinea 31 64 11 19 44 41
Paraguay 1 75 5 1 75 7
Peru 3 79 4 2 77 7
Philippines 5 71 7 3 68 13
Romania 2 75 4 2 73 7
RussianFederation 0 72 6 0 72 8
Rwanda 44 68 9 30 38 50
Samoa 1 70 7 1 69 10
SaoTomeandPrincipe 15 70 6 10 60 22
Senegal 9 67 9 6 61 20
Serbia 0 75 3 0 75 4
SierraLeone 25 61 14 15 46 39
SolomonIslands 25 58 14 14 44 39
SouthAfrica 21 64 12 13 51 33
SriLanka 1 76 4 1 76 6
StLucia 5 74 5 4 71 11
Sudan 23 69 8 16 53 31
SyrianArabRepublic 69 73 5 50 23 71
TaiwanChina 0 79 3 0 79 4
Tajikistan 4 69 7 3 66 12
Tanzania 43 66 10 29 38 51
Thailand 0 77 4 0 77 6
Togo 28 64 11 18 46 39
Tonga 1 72 6 1 71 9
Tunisia 0 77 3 0 77 4
Turkmenistan 1 70 7 1 69 10
Tuvalu 0 67 8 0 67 11
Uganda 42 65 11 27 38 50
Ukraine 0 69 7 0 69 10
UnitedArabEmirates 0 73 5 0 73 6
Uzbekistan 28 68 7 19 49 35
Vanuatu 9 65 10 6 59 21
Vietnam 1 74 5 1 73 7
Zambia 61 62 12 38 24 67
Zimbabwe 40 60 14 24 36 51

N Building PALE and ED in practice

How should a practitionner build our different indices with available data ? Table
5 presents the different step required to build our PALE and ED indices, the data
source as well as their 2019 value.
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Table 5: PALE and Expected Deprivation in the developing world in 1990 and
2019, with â = 70.

Unit 1990
Value

2019
Value

Computation

Life Expectancy (LE) Years 62.2 71.0 Source: GBD
(2019)

Poverty Headcount (H) % 48.8 9.8 Source: Poverty
and Inequality
Platform

LE*H Years 30.4 7.0 LE* H
PALE1 Years 31.9 64.0 LE-θH*LE
Life Gap Expectancy70 Years 13.0 7.2 See Section 3.2
Expected
Deprivation1,70

% 57.6 18.1 LGEâ

LE+LGEâ
+ θ LE∗H

LE+LGEâ

O Ambiguous countries’ trajectories

In Figure 12, we provide PALEθ comparisons within countries between present and
past situations. More precisely, for each year, we compare the situation in period t
to the situation prevailing in the same country five years earlier. Given that each
country’s situation changed over time, we need to adapt our graphical presentation
to represent the set of situations for which PALEθ stays constant over time. We
conservatively assume θ equal to one.

By definition, PALE1 = LE(1 − H), and thus PALE1 increases if and only if
dLE/LE > d(1−H)/(1−H). This simple expression allows us to contruct a figure
in the (dLE/LE, d(1 − H)/(1 − H)) plan, in which the rate of growth of LE is
measured on the horizontal axis, and the rate of growth of (1−H), which we refer to
as the “Non-poverty Headcount”, on the vertical axis. We define the “zero-growth
PALE1” curve, which represents all the combinations of the two growth rates such
that PALE1 remains unchanged: dLE/LE = d(1−H)/(1−H) . Above this curve,
PALE1 increases and below this curve PALE1 decreases.

The situations of interest are located in the northwest and in southeast quadrants
in which the two indicators move in opposite directions. In these quadrants, there
are two regions, one in the triangle below the curve in the northwest quadrant, and
one in the triangle above the curve in the southeast quadrant for which PALEθ is
able to provide a clear welfare comparison. In these two areas, the shaded triangles
represent situations in which, in a particular country, the situation either strictly
improved (in the southeast quadrant) or deteriorated (in the northwest quadrant)
compared to the situation prevailing in the same country five years earlier.35

35Again, if being dead is strictly worse than being poor, so that θ is always strictly lower than
one, more situations can be strictly signed. They are located in the triangle above the “zero-growth
PALE1” in the NW quadrant, and in the triangle below the “zero-growth PALE1” in the SE
quadrant.
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Figure 12: Resolution of ambiguous countries’ trajectories, 1990-2019
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Reading: Each dot represents a country-year. Countries located in the southwest
(northeast) quadrant are worse (better) off than they were 5 years earlier. Countries’
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dashboard approach. Countries’ trajectories located between the zero growth-PALE
curve and the zero non poverty headcount growth line can be unambiguously assessed
with PALE.
Note: for readibility, the graph only shows the points situated between a growth rate
of +/- 30% in non poverty headcount and of +/-8% in life expectancy. These are
85% of all observations.
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