Publication: Environment and Development: Penalized Non-Parametric Inference of Global Trends in Deforestation, Pollution and Carbon
Loading...
Published
2019-02
ISSN
Date
2019-02-26
Author(s)
Editor(s)
Abstract
This paper revisits the issue of environment and development raised in the 1992 World Development Report, with new analysis tools and data. The paper discusses inference and interpretation in a machine learning framework. The results suggest that production gradually favors conserving the earth's resources as gross domestic product increases, but increased efficiency alone is not sufficient to offset the effects of growth in scale. Instead, structural change in the economy shapes environmental outcomes across GDP. The analysis finds that average development is associated with an inverted $U$-shape in deforestation, pollution, and carbon intensities. Per capita emissions follow a $J$-curve. Specifically, poverty reduction occurs alongside degrading local environments and higher income growth poses a global burden through carbon. Local economic structure further determines the shape, amplitude, and location of tipping points of the Environmental Kuznets Curve. The models are used to extrapolate environmental output to 2030. The daunting implications of continued development are a reminder that immediate and sustained global efforts are required to mitigate forest loss, improve air quality, and shift the global economy to a 2°pathway.
Link to Data Set
Citation
“Andree, Bo Pieter Johannes; Chamorro, Andres; Spencer, Phoebe; Dogo, Harun; Andree, Bo, Pieter Johannes. 2019. Environment and Development: Penalized Non-Parametric Inference of Global Trends in Deforestation, Pollution and Carbon. Policy Research Working Paper;No. 8756. © World Bank. http://hdl.handle.net/10986/31330 License: CC BY 3.0 IGO.”
Digital Object Identifier
Associated URLs
Associated content
Other publications in this report series
Publication The Economic Value of Weather Forecasts: A Quantitative Systematic Literature Review(Washington, DC: World Bank, 2025-09-10)This study systematically reviews the literature that quantifies the economic benefits of weather observations and forecasts in four weather-dependent economic sectors: agriculture, energy, transport, and disaster-risk management. The review covers 175 peer-reviewed journal articles and 15 policy reports. Findings show that the literature is concentrated in high-income countries and most studies use theoretical models, followed by observational and then experimental research designs. Forecast horizons studied, meteorological variables and services, and monetization techniques vary markedly by sector. Estimated benefits even within specific subsectors span several orders of magnitude and broad uncertainty ranges. An econometric meta-analysis suggests that theoretical studies and studies in richer countries tend to report significantly larger values. Barriers that hinder value realization are identified on both the provider and user sides, with inadequate relevance, weak dissemination, and limited ability to act recurring across sectors. Policy reports rely heavily on back-of-the-envelope or recursive benefit-transfer estimates, rather than on the methods and results of the peer-reviewed literature, revealing a science-to-policy gap. These findings suggest substantial socioeconomic potential of hydrometeorological services around the world, but also knowledge gaps that require more valuation studies focusing on low- and middle-income countries, addressing provider- and user-side barriers and employing rigorous empirical valuation methods to complement and validate theoretical models.Publication It’s Not (Just) the Tariffs: Rethinking Non-Tariff Measures in a Fragmented Global Economy(Washington, DC: World Bank, 2025-10-22)As tariffs have declined, non-tariff measures (NTMs) have become central to trade policy, especially in high-income countries and regulated sectors like food and green technologies. Although NTMs may serve legitimate goals, they could also sort countries and firms into or out of markets based on compliance capacity and differences in product mix. Documenting recent advances in the estimation of ad valorem equivalents (AVEs), this paper uncovers new patterns of use and exposure of NTMs. High-income countries rely more heavily on NTMs relative to tariffs, while low- and middle-income countries face steeper AVEs on their exports. Firm-level evidence shows that NTMs disproportionately affect smaller firms, leading to market exit and concentration. Poorly designed NTMs can harm productivity and welfare, while coordinated, capacity-aware use can deliver inclusive outcomes. Policy design, transparency, and diagnostics must evolve to reflect the growing role—and risks—of NTMs in a fragmented global trade landscape.Publication Monitoring Global Aid Flows: A Novel Approach Using Large Language Models(Washington, DC: World Bank, 2025-11-04)Effective monitoring of development aid is the foundation for assessing the alignment of flows with their intended development objectives. Existing reporting systems, such as the Organisation for Economic Co-operation and Development’s Creditor Reporting System, provide standardized classification of aid activities but have limitations when it comes to capturing new areas like climate change, digitalization, and other cross-cutting themes. This paper proposes a bottom-up, unsupervised machine learning framework that leverages textual descriptions of aid projects to generate highly granular activity clusters. Using the 2021 Creditor Reporting System data set of nearly 400,000 records, the model produces 841 clusters, which are then grouped into 80 subsectors. These clusters reveal 36 emerging aid areas not tracked in the current Creditor Reporting System taxonomy, allow unpacking of “multi-sectoral” and “sector not specified” classifications, and enable estimation of flows to new themes, including World Bank Global Challenge Programs, International Development Association–20 Special Themes, and Cross-Cutting Issues. Validation against both Creditor Reporting System benchmarks and International Development Association commitment data demonstrates robustness. This approach illustrates how machine learning and the new advances in large language models can enhance the monitoring of global aid flows and inform future improvements in aid classification and reporting. It offers a useful tool that can support more responsive and evidence-based decision-making, helping to better align resources with evolving development priorities.Publication The Macroeconomic Implications of Climate Change Impacts and Adaptation Options(Washington, DC: World Bank, 2025-05-29)Estimating the macroeconomic implications of climate change impacts and adaptation options is a topic of intense research. This paper presents a framework in the World Bank's macrostructural model to assess climate-related damages. This approach has been used in many Country Climate and Development Reports, a World Bank diagnostic that identifies priorities to ensure continued development in spite of climate change and climate policy objectives. The methodology captures a set of impact channels through which climate change affects the economy by (1) connecting a set of biophysical models to the macroeconomic model and (2) exploring a set of development and climate scenarios. The paper summarizes the results for five countries, highlighting the sources and magnitudes of their vulnerability --- with estimated gross domestic product losses in 2050 exceeding 10 percent of gross domestic product in some countries and scenarios, although only a small set of impact channels is included. The paper also presents estimates of the macroeconomic gains from sector-level adaptation interventions, considering their upfront costs and avoided climate impacts and finding significant net gross domestic product gains from adaptation opportunities identified in the Country Climate and Development Reports. Finally, the paper discusses the limits of current modeling approaches, and their complementarity with empirical approaches based on historical data series. The integrated modeling approach proposed in this paper can inform policymakers as they make proactive decisions on climate change adaptation and resilience.Publication The State of Global Services Trade Policies: Evidence from Recent Data(Washington, DC: World Bank, 2025-10-28)The economic environment for services trade has changed dramatically over the past 15 years, driven by rapid technological progress that has expanded the possibilities for exchanging services. How has trade policy responded to these changes? How do policy stances in a wide range of service sectors compare across economies? With its unprecedented global coverage, the Services Trade Policy Database and the associated Services Trade Restrictions Index, developed jointly by the World Bank and the World Trade Organization, help address these questions. This paper makes three principal contributions. First, it offers an in-depth discussion of the current state of services trade policies and their differences across 134 economies and 34 services subsectors. Second, the paper reveals how recent (2016–22) changes in policy stances have seen progressive liberalization by lower-income economies but stabilization or even slight policy reversals in high-income economies. This dynamic differs fundamentally from the trend that unfolded after the Great Recession over 2008–16. Third, the paper shows the implications of policy changes over the past six years on services trade costs, and it showcases how the Services Trade Policy Database’s regulatory information can inform trade negotiations, regulatory analysis, and policy making. Alongside these contributions, the paper documents updates to the Services Trade Policy Database’s economy and sector coverage and explains the latest methodological improvements made to the World Bank–World Trade Organization Services Trade Restrictions Index.
Journal
Journal Volume
Journal Issue
Collections
Related items
Showing items related by metadata.
Publication Pollution and Expenditures in a Penalized Vector Spatial Autoregressive Time Series Model with Data-Driven Networks(World Bank, Washington, DC, 2019-02)This paper introduces a Spatial Vector Autoregressive Moving Average (SVARMA) model in which multiple cross-sectional time series are modeled as multivariate, possibly fat-tailed, spatial autoregressive ARMA processes. The estimation requires specifying the cross-sectional spillover channels through spatial weights matrices. the paper explores a kernel method to estimate the network topology based on similarities in the data. It discusses the model and estimation, focusing on a penalized Maximum Likelihood criterion. The empirical performance of the estimator is explored in a simulation study. The model is used to study a spatial time series of pollution and household expenditure data in Indonesia. The analysis finds that the new model improves in terms of implied density, and better neutralizes residual correlations than the VARMA, using fewer parameters. The results suggest that growth in household expenditures precedes pollution reduction, particularly after the expenditures of poorer households increase; that increasing pollution is followed by reduced growth in expenditures, particularly reducing the growth of poorer households; and that there are significant spillovers from bottom-up growth in expenditures. The paper does not find evidence for top-down growth spillovers. Feedback between the identified mechanisms may contribute to pollution-poverty traps and the results imply that pollution damages are economically significant.Publication Stochastic Modeling of Food Insecurity(World Bank, Washington, DC, 2020-09)Recent advances in food insecurity classification have made analytical approaches to predict and inform response to food crises possible. This paper develops a predictive, statistical framework to identify drivers of food insecurity risk with simulation capabilities for scenario analyses, risk assessment and forecasting purposes. It utilizes a panel vector-autoregression to model food insecurity distributions of 15 Sub-Saharan African countries between October 2009 and February 2019. Statistical variable selection methods are employed to identify the most important agronomic, weather, conflict and economic variables. The paper finds that food insecurity dynamics are asymmetric and past-dependent, with low insecurity states more likely to transition to high insecurity states than vice versa. Conflict variables are more relevant for dynamics in highly critical stages, while agronomic and weather variables are more important for less critical states. Food prices are predictive for all cases. A Bayesian extension is introduced to incorporate expert opinions through the use of priors, which lead to significant improvements in model performance.Publication Predicting Food Crises(World Bank, Washington, DC, 2020-09)Globally, more than 130 million people are estimated to be in food crisis. These humanitarian disasters are associated with severe impacts on livelihoods that can reverse years of development gains. The existing outlooks of crisis-affected populations rely on expert assessment of evidence and are limited in their temporal frequency and ability to look beyond several months. This paper presents a statistical forecasting approach to predict the outbreak of food crises with sufficient lead time for preventive action. Different use cases are explored related to possible alternative targeting policies and the levels at which finance is typically unlocked. The results indicate that, particularly at longer forecasting horizons, the statistical predictions compare favorably to expert-based outlooks. The paper concludes that statistical models demonstrate good ability to detect future outbreaks of food crises and that using statistical forecasting approaches may help increase lead time for action.Publication Confronting the Food-Energy-Environment Trilemma : Global Land Use in the Long Run(World Bank, Washington, DC, 2014-06)Economic, agronomic, and biophysical drivers affect global land use, so all three influences need to be considered in evaluating economically optimal allocations of the world's land resources. A dynamic, forward-looking optimization framework applied over the course of the coming century shows that although some deforestation is optimal in the near term, in the absence of climate change regulation, the desirability of further deforestation is eliminated by mid-century. Although adverse productivity shocks from climate change have a modest effect on global land use, such shocks combined with rapid growth in energy prices lead to significant deforestation and higher greenhouse gas emissions than in the baseline. Imposition of a global greenhouse gas emissions constraint further heightens the competition for land, as fertilizer use declines and land-based mitigation strategies expand. However, anticipation of the constraint largely dilutes its environmental effectiveness, as deforestation accelerates prior to imposition of the target.Publication DR-CAFTA and the Environment(2011-10-01)The Dominican Republic-Central American Free Trade Agreement with the United States aims to create a free trade zone for economic development. The Agreement is expected to intensify commerce and investment among the participating countries. This paper analyzes the changes in the production and trading patterns in 2-digit manufacturing sectors with the goal of understanding the short-term environmental implications of the Dominican Republic-Central American Free Trade Agreement. More specifically, the paper addresses the questions: Did pollution increase in the period after the Agreement negotiations? Did trade and production shift toward pollution intensive factors? The results suggest an increase in pollution emissions in the post-negotiations period. The increase in emissions is mainly attributable to scale effects. Composition effects are small and in some cases (including Nicaragua and Honduras) favoring cleaner industries and partially compensating the pollution gains from output and export growth.
Users also downloaded
Showing related downloaded files
Publication Digital Africa(Washington, DC: World Bank, 2023-03-13)All African countries need better and more jobs for their growing populations. "Digital Africa: Technological Transformation for Jobs" shows that broader use of productivity-enhancing, digital technologies by enterprises and households is imperative to generate such jobs, including for lower-skilled people. At the same time, it can support not only countries’ short-term objective of postpandemic economic recovery but also their vision of economic transformation with more inclusive growth. These outcomes are not automatic, however. Mobile internet availability has increased throughout the continent in recent years, but Africa’s uptake gap is the highest in the world. Areas with at least 3G mobile internet service now cover 84 percent of Africa’s population, but only 22 percent uses such services. And the average African business lags in the use of smartphones and computers as well as more sophisticated digital technologies that catalyze further productivity gains. Two issues explain the usage gap: affordability of these new technologies and willingness to use them. For the 40 percent of Africans below the extreme poverty line, mobile data plans alone would cost one-third of their incomes—in addition to the price of access devices, apps, and electricity. Data plans for small- and medium-size businesses are also more expensive than in other regions. Moreover, shortcomings in the quality of internet services—and in the supply of attractive, skills-appropriate apps that promote entrepreneurship and raise earnings—dampen people’s willingness to use them. For those countries already using these technologies, the development payoffs are significant. New empirical studies for this report add to the rapidly growing evidence that mobile internet availability directly raises enterprise productivity, increases jobs, and reduces poverty throughout Africa. To realize these and other benefits more widely, Africa’s countries must implement complementary and mutually reinforcing policies to strengthen both consumers’ ability to pay and willingness to use digital technologies. These interventions must prioritize productive use to generate large numbers of inclusive jobs in a region poised to benefit from a massive, youthful workforce—one projected to become the world’s largest by the end of this century.Publication Classroom Assessment to Support Foundational Literacy(Washington, DC: World Bank, 2025-03-21)This document focuses primarily on how classroom assessment activities can measure students’ literacy skills as they progress along a learning trajectory towards reading fluently and with comprehension by the end of primary school grades. The document addresses considerations regarding the design and implementation of early grade reading classroom assessment, provides examples of assessment activities from a variety of countries and contexts, and discusses the importance of incorporating classroom assessment practices into teacher training and professional development opportunities for teachers. The structure of the document is as follows. The first section presents definitions and addresses basic questions on classroom assessment. Section 2 covers the intersection between assessment and early grade reading by discussing how learning assessment can measure early grade reading skills following the reading learning trajectory. Section 3 compares some of the most common early grade literacy assessment tools with respect to the early grade reading skills and developmental phases. Section 4 of the document addresses teacher training considerations in developing, scoring, and using early grade reading assessment. Additional issues in assessing reading skills in the classroom and using assessment results to improve teaching and learning are reviewed in section 5. Throughout the document, country cases are presented to demonstrate how assessment activities can be implemented in the classroom in different contexts.Publication World Bank Annual Report 2024(Washington, DC: World Bank, 2024-10-25)This annual report, which covers the period from July 1, 2023, to June 30, 2024, has been prepared by the Executive Directors of both the International Bank for Reconstruction and Development (IBRD) and the International Development Association (IDA)—collectively known as the World Bank—in accordance with the respective bylaws of the two institutions. Ajay Banga, President of the World Bank Group and Chairman of the Board of Executive Directors, has submitted this report, together with the accompanying administrative budgets and audited financial statements, to the Board of Governors.Publication World Development Report 2006(Washington, DC, 2005)This year’s Word Development Report (WDR), the twenty-eighth, looks at the role of equity in the development process. It defines equity in terms of two basic principles. The first is equal opportunities: that a person’s chances in life should be determined by his or her talents and efforts, rather than by pre-determined circumstances such as race, gender, social or family background. The second principle is the avoidance of extreme deprivation in outcomes, particularly in health, education and consumption levels. This principle thus includes the objective of poverty reduction. The report’s main message is that, in the long run, the pursuit of equity and the pursuit of economic prosperity are complementary. In addition to detailed chapters exploring these and related issues, the Report contains selected data from the World Development Indicators 2005‹an appendix of economic and social data for over 200 countries. This Report offers practical insights for policymakers, executives, scholars, and all those with an interest in economic development.Publication Digital-in-Health(Washington, DC: World Bank, 2023-08-18)Technology and data are integral to daily life. As health systems face increasing demands to deliver new, more, better, and seamless services affordable to all people, data and technology are essential. With the potential and perils of innovations like artificial intelligence the future of health care is expected to be technology-embedded and data-linked. This shift involves expanding the focus from digitization of health data to integrating digital and health as one: Digital-in-Health. The World Bank’s report, Digital-in-Health: Unlocking the Value for Everyone, calls for a new digital-in-health approach where digital technology and data are infused into every aspect of health systems management and health service delivery for better health outcomes. The report proposes ten recommendations across three priority areas for governments to invest in: prioritize, connect and scale.