Journal Article

Evaluating Multi-Sensor Nighttime Earth Observation Data for Identification of Mixed vs. Residential Use in Urban Areas

Mostrar el registro sencillo de la publicación

collection.link.125
https://openknowledge.worldbank.org/handle/10986/4401
collection.name.125
C. Journal articles published externally
dc.contributor.author
Aubrecht, Christoph
dc.contributor.author
León Torres, José Antonio
dc.date.accessioned
2016-11-17T18:53:44Z
dc.date.available
2016-11-17T18:53:44Z
dc.date.issued
2016-02-04
dc.date.lastModified
2021-05-25T10:54:36Z
dc.description.abstract
This paper introduces a novel top-down approach to geospatially identify and distinguish areas of mixed use from predominantly residential areas within urban agglomerations. Under the framework of the World Bank’s Central American Country Disaster Risk Profiles (CDRP) initiative, a disaggregated property stock exposure model has been developed as one of the key elements for disaster risk and loss estimation. Global spatial datasets are therefore used consistently to ensure wide-scale applicability and transferability. Residential and mixed use areas need to be identified in order to spatially link accordingly compiled property stock information. In the presented study, multi-sensor nighttime Earth Observation data and derivative products are evaluated as proxies to identify areas of peak human activity. Intense artificial night lighting in that context is associated with a high likelihood of commercial and/or industrial presence. Areas of low light intensity, in turn, can be considered more likely residential. Iterative intensity thresholding is tested for Cuenca City, Ecuador, in order to best match a given reference situation based on cadastral land use data. The results and findings are considered highly relevant for the CDRP initiative, but more generally underline the relevance of remote sensing data for top-down modeling approaches at a wide spatial scale.
en
dc.identifier.citation
Remote Sensing
dc.identifier.issn
2072-4292
dc.identifier.uri
http://hdl.handle.net/10986/25372
dc.language.iso
en_US
dc.publisher
MDPI
dc.rights
CC BY 3.0 IGO
dc.rights.holder
World Bank
dc.rights.uri
http://creativecommons.org/licenses/by/3.0/igo/
dc.subject
top-down modeling
dc.subject
urban areas
dc.subject
nighttime lights
dc.subject
human activity
dc.subject
global spatial data
dc.subject
urbanization
dc.subject
spatial economics
dc.subject
geospatial modeling
dc.title
Evaluating Multi-Sensor Nighttime Earth Observation Data for Identification of Mixed vs. Residential Use in Urban Areas
en
dc.type
Journal Article
en
okr.associatedcontent
http://www.mdpi.com/2072-4292/8/2/114 Journal website (version of record)
okr.date.disclosure
2016-11-07
okr.externalcontent
External Content
okr.googlescholar.linkpresent
yes
okr.identifier.doi
10.3390/rs8020114
okr.identifier.doi
10.1596/25372
okr.identifier.report
111072
okr.language.supported
en
okr.peerreview
Academic Peer Review
okr.topic
Macroeconomics and Economic Growth :: Spatial and Local Economic Development
okr.topic
Urban Development :: Municipal Housing and Land
okr.topic
Urban Development :: National Urban Development Policies & Strategies
okr.topic
Urban Development :: Urban Economic Development
okr.unit
Global Practice on Social, Urban, Rural & Resilience (GSURR)
okr.volume
8(2)

Mostrar el registro sencillo de la publicación



Este ítem aparece en la(s) siguiente(s) colección(ones)