Publication:
New Approaches to the Identification of Low-Frequency Drivers: An Application to Technology Shocks

dc.contributor.author Dieppe, Alistair
dc.contributor.author Neville, Francis
dc.contributor.author Kindberg-Hanlon, Gene
dc.date.accessioned 2019-11-21T16:40:38Z
dc.date.available 2019-11-21T16:40:38Z
dc.date.issued 2019-10
dc.description.abstract This paper addresses the identification of low-frequency macroeconomic shocks, such as technology, in Structural Vector Autoregressions. Whilst identification issues with long-run restricted VARs are well documented, the recent attempt to overcome said issues using the Max-Share approach of Francis et al. (2014) and Barsky and Sims (2011) has its own shortcomings, primarily that they are vulnerable to bias from confounding non-technology shocks. A modification to the Max-Share approach and two further spectral methods are proposed to improve empirical identification. Performance directly hinges on whether these confounding shocks are of high or low frequency. Applied to US and emerging market data, spectral identifications are most robust across specifications, and non-technology shocks appear to be biasing traditional methods of identifying technology shocks. These findings also extend to the SVAR identification of dominant business-cycle shocks, which are shown will be a variance-weighted combination of shocks rather than a single structural driver. en
dc.identifier http://documents.worldbank.org/curated/en/133781571930814658/New-Approaches-to-the-Identification-of-Low-Frequency-Drivers-An-Application-to-Technology-Shocks
dc.identifier.uri http://hdl.handle.net/10986/32656
dc.language English
dc.publisher World Bank, Washington, DC
dc.relation.ispartofseries Policy Research Working Paper;No. 9047
dc.rights CC BY 3.0 IGO
dc.rights.holder World Bank
dc.rights.uri http://creativecommons.org/licenses/by/3.0/igo
dc.subject TECHNOLOGY SHOCK
dc.subject PRODUCTIVITY
dc.subject STRUCTURAL VECTOR AUTOREGRESSION
dc.subject ECONOMIC SHOCKS
dc.subject BUSINESS CYCLE
dc.title New Approaches to the Identification of Low-Frequency Drivers en
dc.title.subtitle An Application to Technology Shocks en
dc.type Working Paper en
dc.type Document de travail fr
dc.type Documento de trabajo es
dspace.entity.type Publication
okr.crossref.title New Approaches to the Identification of Low-Frequency Drivers: An Application to Technology Shocks
okr.date.disclosure 2019-10-24
okr.doctype Publications & Research
okr.doctype Publications & Research :: Policy Research Working Paper
okr.docurl http://documents.worldbank.org/curated/en/133781571930814658/New-Approaches-to-the-Identification-of-Low-Frequency-Drivers-An-Application-to-Technology-Shocks
okr.identifier.doi 10.1596/1813-9450-9047
okr.identifier.externaldocumentum 090224b08723f4e4_1_0
okr.identifier.internaldocumentum 31505127
okr.identifier.report WPS9047
okr.imported true en
okr.language.supported en
okr.pdfurl http://documents.worldbank.org/curated/en/133781571930814658/pdf/New-Approaches-to-the-Identification-of-Low-Frequency-Drivers-An-Application-to-Technology-Shocks.pdf en
okr.statistics.combined 1546
okr.statistics.dr 133781571930814658
okr.statistics.drstats 1267
okr.topic Macroeconomics and Economic Growth :: Business Cycles and Stabilization Policies
okr.topic Macroeconomics and Economic Growth :: Economic Conditions and Volatility
okr.topic Macroeconomics and Economic Growth :: Economic Growth
okr.topic Macroeconomics and Economic Growth :: Economic Theory & Research
okr.topic Science and Technology Development :: Technology Innovation
okr.unit Equitable Growth, Finance and Institutions Global Practice
relation.isSeriesOfPublication 26e071dc-b0bf-409c-b982-df2970295c87
Files
Original bundle
Now showing 1 - 1 of 1
Thumbnail Image
Name:
English PDF
Size:
8.61 MB
Format:
Adobe Portable Document Format
Description:
English PDF
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Plain Text
Description: