WPS7520 Policy Research Working Paper 7520 Seasonality in Local Food Markets and Consumption Evidence from Tanzania Jonathan Kaminski Luc Christiaensen Christopher L. Gilbert Africa Region Office of the Chief Economist December 2015 Policy Research Working Paper 7520 Abstract This paper revisits the extent of seasonality in African In both cases it is two and a half to three times higher than livelihoods. It uses 19 years of monthly food prices from in the international reference market. Food price seasonality 20 markets and three years of nationally representative is not a major contributor to food price volatility, but it does household panel surveys from Tanzania. Trigonometric translate into seasonal variation in caloric intake of about 10 specifications are introduced to measure the seasonal gap. percent among poor urban households and rural net food When samples are short and seasonality is poorly defined, sellers. Rural net food-buying households appear able to they produce less upward bias than the common dummy smooth their consumption. The disappearance of season- variable approach. On average, the seasonal gap for maize ality from Africa’s development debate seems premature. prices is estimated to be 27 percent; it is 15 percent for rice. This paper is a product of the “Agriculture in Africa—Telling Facts from Myths” project managed by the Office of the Chief Economist, Africa Region and the Jobs Group of the World Bank, in collaboration with the Poverty and Inequality Unit, Development Economics Department of the World Bank, the African Development Bank, the Alliance for a Green Revolution in Africa, Cornell University, Food and Agriculture Organization, Maastricht School of Management, Trento University, University of Pretoria, and the University of Rome Tor Vergata. It is part of a larger effort by the World Bank to provide open access to its research and make a contribution to development policy discussions around the world. Policy Research Working Papers are also posted on the Web at http://econ.worldbank.org. The authors of the paper may be contacted at lchristiaensen@worldbank.org. The Policy Research Working Paper Series disseminates the findings of work in progress to encourage the exchange of ideas about development issues. An objective of the series is to get the findings out quickly, even if the presentations are less than fully polished. The papers carry the names of the authors and should be cited accordingly. The findings, interpretations, and conclusions expressed in this paper are entirely those of the authors. They do not necessarily represent the views of the International Bank for Reconstruction and Development/World Bank and its affiliated organizations, or those of the Executive Directors of the World Bank or the governments they represent. Produced by the Research Support Team Seasonality in Local Food Markets and Consumption – Evidence from Tanzania Jonathan Kaminski, Luc Christiaensen and Christopher L. Gilbert1  JEL: D12, D14, D40, D91, I31  Keywords: maize, rice, seasonality, Sub‐Saharan Africa, calorie, food consumption  1  Jonathan Kaminski (kaminski.jonathan@gmail.com , corresponding author) is at Noble Agri, Luc Christiaensen   (lchristiaensen@worldbank.org ) at the World Bank, and Christopher Gilbert at the SAIS Bologna Center, Johns  Hopkins University (christopher.gilbert@jhu.edu ). The initial draft of the paper was presented at  the “Agriculture  in Africa – Telling Facts from Myths” workshop in November, 2013 at the World Bank in Washington DC, and the  joint IMF, CTED, OEP International Conference “Food Price Volatility: Causes and Challenges” in February 2014, in  Rabat. The authors would like to thank the referees, John Baffes, Christophe Gouel, Wouter Zant and seminar and  conference participants in Accra, Washington, Rabat, Clermont‐Ferrand, Paris, Bologna and Rome II for comments.  1 Introduction Seasonality has disappeared from Africa’s development debate.2 In food prices, the focus has  been on volatility (Galtier and Vindel, 2012; World Bank, 2012; Minot, 2014), ignoring the  predictable (seasonal) component. Information on seasonal fluctuations in household  consumption is even harder to come by. Nonetheless, the welfare consequences of food price  seasonality can be substantial, in particular for food security and nutrition (Sahn, 1989; Dercon  and Krishnan 2000; Khandker, 2012). Policy responses likely also differ from those appropriate  to surprise food price spikes. This paper revisits the extent of seasonality in African livelihoods.  It develops a more robust methodology for measuring and comparing the extent of seasonal  price variation and explores the extent to which seasonality in food prices transmits into caloric  consumption.   A certain degree of seasonality in food prices is unavoidable, even when markets are efficient.  Production is cyclical for most staples (especially cereals), necessitating intertemporal arbitrage.   Storage costs ensue, driven by the physical cost of storage, the opportunity cost of capital, and  post‐harvest loss (Affognon, 2015).  This drives a wedge between prices before and after the  harvest. This price gap can be compounded by high transaction costs across surplus and deficit  markets following poor infrastructure, fuel costs (Dillon and Barrett, 2013), transport  monopolies (Teravaninthorn and Raballand, 2009), market power along the marketing chain  and in storage (even if only seasonal) (Osborne, 2004, 2005), and credit and liquidity constraints  for traders. Sell‐low, buy‐back‐high behavior among liquidity constrained households facing  imperfect capital markets (Stephens and Barrett, 2011) may further push up the seasonal price                                                               2  Seasonality in food prices and food consumption was an important subject of study in the 1990s. Since then, the  topic has largely disappeared from the policy debate and in project design as well as in the academic literature.   The general perception of improved integration of local food markets may have partly motivated the neglect.  Nevertheless, substantial seasonality in price movements is still possible even when domestic food markets are  better integrated. This can happen, for example, if the timing of production is highly correlated across markets and  commodities, and if domestic food markets are poorly integrated with world markets (and/or those across  neighboring countries).   Furthermore, as Zant (2013) emphasizes, the extent of market integration tends to  decrease during periods of food shortage. Devereux, Sabates‐Wheeler and Longhurst (2011) have revived recently  interest in the topic.    2    gap. It increases supply immediately after the harvest and increases market demand several  months later.   Food consumption may also vary seasonally.  It can be intentional, reflecting preferences for  consumption at one time of the year rather than another, for example linked to religious  holidays (Christmas, Ramadan). Often, it has also been linked to seasonality in prices or food  availability (depending on the price elasticity of demand) (Dercon and Krishnan 2000). This is  especially plausible in low income developing countries where staple foods make up a large  share of food consumption and where efficient capital markets or other community‐level  coping mechanisms are still mostly absent so that households are unable to fully smooth their  consumption throughout the year (World Bank, 2014).3   Yet studying seasonality is empirically challenging. Sufficiently long seasonal time series data  are typically unavailable. Even with a monthly price series of 10 years, there are in effect only  10 observations to discern the recurring month effects from the observed intra‐annual  fluctuations (and not 120).  As a result, seasonality estimates, which often rely on a measure of  the difference between the highest and lowest month effects, may be unduly influenced by  irregular price movements. This holds especially when the seasonal patterns are a priori unclear  and the peak and trough months are inferred from the data. Samples of monthly or seasonal  household (food) consumption are usually even shorter (often only spanning one or two years),  and if available, limited to case study areas. This makes it even harder to distinguish regular  seasonal patterns from random intra‐annual variation and to generalize beyond the study area.   This study contributes in three ways. First, methodologically it shows that, when seasonal  patterns are absent or unclear and samples short, trigonometric seasonality models can  significantly reduce the upward bias in seasonality estimates derived from more commonly  used models with monthly dummies.  Second, it adds a series of new, robust and comparable  estimates of food price seasonality based on the more recent experience. Finally, it provides                                                               3  In areas where much food consumption is own production and where there is a large wedge between purchase  and sale prices, the seasonal pattern in food consumption may even reflect seasonality in food availability rather  than prices.  3    empirical insight in the extent to which food price seasonality transmits into seasonality in food  consumption. With the notable exception of Dercon and Krishnan (2000) for Ethiopia, there  remains little systematic information on the magnitude of these links.  The empirical application is to Tanzania, which provides a good backdrop to study seasonality in  prices and consumption.4 It covers a wide array of agro‐ecological settings and cropping  systems and staples (maize and rice) still make up a sizeable share of food consumption (33  percent in rural and 28.5 percent in urban areas).  Seasonality in maize and rice prices is  estimated from 19 years of monthly prices collected during 1995 and 2013 from 20 regional  markets across Tanzania. To estimate seasonality in consumption, three waves of a nationally  representative household consumption panel survey are used. The surveys were conducted  throughout the year on each occasion starting in 2008‐09 and subsequently in 2010‐11 and  2012‐13. The data enabled identification of the staple price effects on food consumption and  simulation of the extent of price induced seasonality in calorie consumption, alongside a  household fixed effect estimation strategy and controlling for other consumption seasonal  factors.    The results show that the seasonal gap in staple prices is substantial in Tanzania, though  variable across markets. It is almost twice as high for maize (27 percent, averaging across  districts), as for rice (15 percent). It is also 2.5 to three times more than the gap observed in  reference markets (10.7 percent in the South African Futures Exchange market for white maize;  and 5 percent broken rice in Bangkok), suggesting substantial excess seasonality. The  contribution of seasonality to overall price volatility is limited (13.1 percent for maize and 7.1  percent for rice). Price induced seasonality in caloric intake is sizeable among poor urban  households and rural net food sellers (around 10 percent). No effects were discerned among  net food buyers.   In what follows, section two shows how commonly used methods of estimating seasonality can  yield substantial upward bias on short samples and how this can be reduced by modeling                                                               4  Baffes, Kshirsagar and Mitchell (2015) provide an analysis of maize price formation in Tanzania.  4    seasonality through a trigonometric specification.  The price seasonality results are in section 3  and section 4 presents the findings on seasonality in food consumption and the link with  seasonality in prices, including across different locations and socioeconomic groups (asset poor  and rich; net staple buyers and sellers). Section 5 concludes.   2 Characterizing seasonality Seasonality refers to more or less regular movements through the year in the item under  consideration. While such movements may take any form in principle, as when religious or  secular holidays are important, it is reasonable to expect the main seasonal movements in food  prices and consumption to be related to the production cycle (i.e. regular weather and climatic  changes throughout the year). When the focus is on a specific commodity with a single annual  harvest, storage costs will dictate that, if no other factors intervene, the price is lowest  immediately after the harvest and that it will then rise steadily throughout the crop year to  reach a maximum immediately before the next harvest (Samuelson, 1957). Looking across  different crops, seasonality is best characterized by crop type and location (geographic and  national).   An important statistical problem that arises in analyzing seasonality is to disentangle seasonal  movements from the longer term trend in prices or consumption on the one hand and from  irregular movements on the other. This problem is acute when the number of data points is  small, putting a premium on parsimony in the specification. A second statistical problem is that  data series are often incomplete. These elements are discussed in turn.  A common approach to characterizing seasonality in the development literature is to estimate  12 monthly seasonal factors (normalized to 11 when the factors are constrained to sum to zero)  in an unrestricted, non‐parametric manner. The estimates of these factors are obtained by  averaging monthly deviations from an estimated trend, with the trend typically estimated by a  12 month centered moving average (Allen, 1954; Goetz and Weber, 1986). Algebraically, let   ym  the estimated trend  pym  be the level of the variable of interest in month m of year y and  p (e.g. in the price or consumption level).  The logarithmic seasonal factors sm are estimated as:  5       ~   p ym Y  1 Y  p ym  p ym  s m  Y  ln ~ 1   Y  ~    (m=1,…,12)       (1)  y 1 p  y 1  p   ym   ym      where Y is the number of years of data available.5   A parametric alternative (adopted by Sahn and Delgado (1989)) is to estimate the seasonal  factors and trend jointly from a dummy variables regression with a deterministic time trend:   11   ln pym      j zmj  tym  ym    (2)  j 1 1 jm where zmj is the dummy variable defined by  zmj    and the time trend  0 jm tym  12*  y  1  m   . Normalizing δ12 = 0 to give seasonal factors  1 12   sm  m    j  m   12 j 1  m  1,,12    (3)  ym      tym .   Here, the time trend is given by   ln p In principle, the non‐parametric (1) method and the parametric regression based alternative (3)  will give similar seasonality estimates. Yet, price series in developing countries have often  missing values. The dummy variables regressions (2) can be performed skipping over the  missing data points. The moving average trend estimation procedure requires that the missing  values be interpolated prior to estimating the seasonal factors. Interpolation can introduce bias  in the estimated seasonal factors even if equation (1) is modified to skip the missing data  points.  This, together with the easy availability of regression software, have resulted in the  dummy variables regression approach becoming standard.                                                                5  The symbol ≈ implies that the two expressions are equal to a first order approximation. For simplicity of  exposition we suppose data are available for complete years.  6    The linear trend model defined by equation (2) supposes that the series under investigation is  trend‐stationary, i.e. that prices revert to a deterministic trend.  However, even if price series  are trend‐non‐stationary, they will generally be difference stationary (Nelson and Kang, 1984).  In this case, we obtain the stochastic trend model – see Stock and Watson (2003, chapter 12).  This suggests a modification to the dummy variables equation to give   11    ln pym      j zmj  ym    (4)  j 1 y,m1    where γ is the constant drift and  ym  lnp where the trend price is now defined by   lnp where we adopt the convention  py0  py1,12 .    The deterministic trend model is a special case of the stochastic trend model in which the trend  innovation variance is zero. Regression estimates of the coefficients in equation (4) will remain  unbiased if the trend is deterministic even though coefficient standard errors will be  contaminated by serial correlation induced by over‐differencing. The presence of both  seasonality and missing prices complicates standard unit root test procedures used to detect  whether the trend is deterministic or stationary. To ensure that differences in seasonality  estimates are driven by the data and not by model specification, a common model is preferred  for the entire set of price series. Below, the stochastic trend model is used to estimate  seasonality in prices.   A key attraction of the unrestricted dummy variable regression approach is that no a priori  structure is imposed on the form of seasonality. It can, for instance, accommodate crops in  which there are two annual harvests. The disadvantage is that a long time series is necessary to  obtain accurate estimates since only a single observation per year is used to estimate each  seasonal factor. This is especially problematic when the extent of seasonality is measured as  the seasonal gap, which is common in this framework6  – see Dostie, Haggblade, and                                                               6  In the public health literature it is also common to use the Gini coefficient (Rau, 2005).    7    Randriamamonjy (2002) and Orr, Mwale and Saiti‐Chitsonga (2009). The seasonal gap measure  is calculated as the difference between the highest and lowest seasonal factor:     gap  max sm minsm    (5)  In statistical terms, this is a range. Although the estimates of the 12 seasonal factors themselves  are unbiased, the range is a nonlinear function of these seasonal factors and so will potentially  be biased. Bias arises if large irregular movements confound identification of the peak and  trough months. This is more likely when samples are short. This bias would not occur if it is  known a priori that the seasonal peak is in month a, say, and the trough is in month b since the  difference  sa sb  is the unbiased difference between two unbiased statistics.   Monte Carlo results indicate that the dummy variable procedures to characterizing seasonality  perform poorly for samples up to 20 years with irregular variations. They frequently suggest the  existence of seasonality which is in effect absent in the data generating process (Table 1,  columns 1‐2).7 With no seasonality genuinely present and using 10 years of data, the average  estimated seasonal gap is 10 percent using the dummy variables approach, while in effect it is  zero.8 In addition, these spurious seasonal factors purport to explain an average of 9.2 percent  of the sample price variability (R2=0.0925). A more extended set of simulations, reported in  Gilbert, Christiaensen and Kaminski (2015) indicates that large biases also persist in cases in  which the seasonality is present, but not well‐defined.  Series of 10 to 15 years of food price  data are common in African samples.  The series used here has 19 years of data.  This weakness of the common dummy variable approach to characterizing seasonality can be  mitigated by using a more parsimonious, but more restrictive functional approach to  characterizing seasonality, such as the trigonometric functions. Ghysels and Osborn (2001)  provide a general discussion of trigonometric representations of seasonality. Here, a pure                                                               7  The experiments estimate seasonal factors from data where no seasonality is present employing 5, 10, 20 and 40  years of data. They are based on 10,000 simulations.   8  The bias and R2 for each of the simulations are very similar when using the moving average deviation approach to  estimate the seasonal gaps (equation 1).   8    cosine function is pursued. The simplest two parameter trigonometric seasonality  representation is:     m   m   m    sm  cos    sin    cos       (6)   6   6   6   where the seasonal amplitude    2  2  and    tan1    measures the phase of the   seasonal cycle, i.e. the location of the peak and trough. The analogue of the seasonal gap is 2λ  but since ω will not in general refer to an integer number of months, this quantity will typically  slightly exceed the gap as measured by equation (4).  Although least squares estimates of  and  β are unbiased, λ and ω are nonlinear functions of these unbiased estimates and are therefore  potentially biased.  In conjunction with a stochastic trend, the seasonal parameters λ and ω may be estimated from  the linear regression:     m   m    ln pym     cos    sin   ym    (7)   6   6  There is no requirement to interpolate over missing data.   Columns 3 and 4 of Table 1 repeat the Monte Carlo experiments using the trigonometric  estimator defined by equation (5). The price data are exactly the same as those used in  analyzing the dummy variables. For all sample lengths, the bias in the estimates of the seasonal  gap is reduced by just under 40 percent relative to the dummy variables method. The degree of  “explanation” provided by seasonality is reduced even more substantially. This gives some  confidence that the trigonometric specification provides a more reliable means of representing  seasonal patterns on short data samples.  Seasonality in consumption and its link with prices  In principle, similar procedures can be followed to examine seasonality in food consumption.  Ideally, as with prices, this requires long time series data on daily or monthly food consumption  9    for each individual or household.  Such data are not available in most countries (and surely not  in Africa). Lacking this information, some inferences can still be made about the degree of  seasonality from nationally representative integrated household consumption surveys, such as  the Living Standard Measurement Studies.9 At a minimum, repeated cross sectional surveys are  needed that are each time conducted throughout the year, so that a representative sample of  households is interviewed in each month of the year.   Let mhw be the month number (January = 1, February = 2, etc.) in which household h was  interviewed in wave w and chw food consumption per equivalent adult of household h in wave  w. The seasonal factors of consumption can then be estimated as:    lnchw  w ' zhw ' xhw h hw    (8)  With κw a wave‐specific intercept (to capture the wave‐specific effects), xhw a vector of time  varying household and environmental characteristics, ηh a household‐specific constant and εhw  a disturbance. The variables of interest are the eleven seasonal variables zhwj  (m = 1,…,11)  defined by  1 mhw  j   zhwj    j  1, ,11     0 otherwise The vector of seasonal factors s derives from the estimated δ coefficients using equation (3)  and the seasonal gap follows from equation (5).   The seasonal factors can in principle be obtained by estimating (8) through pooled OLS (i.e.  setting the household‐specific constants η to zero). Two concerns deserve attention. First, if the  interview months are not random (for example if poorer and more remote areas tend to be  surveyed towards the end of the wave) and heterogeneity across households is not fully  controlled for by the vector of control variables x, then pooled OLS estimates of the seasonal  factors may be biased. Household fixed effects estimation can mitigate these concerns (by  controlling for all time invariant variables affecting both the month of interview and                                                               9  www.worldbank.org/lsms  10    consumption). This requires panel data.  For this to work, interview months must also differ  across waves for a sufficient number of households since otherwise the effect of the month of  interview cannot be identified. While less prone to bias, fixed effects estimation comes at the  expense of precision, making it a more stringent test of seasonality. The availability of three  waves of household panel data in Tanzania, each conducted throughout the year and with  many households interviewed in different months across waves, enables this study to follow  the fixed‐effects estimation route.   Second, seasonal factors are estimated on a limited number of observations for each month  (three in the empirical application of this paper). The Monte Carlo results presented above in  connection with price seasonality indicate that seasonal gaps estimated in short time series  may be biased upwards. It is reasonable to suppose that this result will extend to panels with  short time dimension. The more parsimonious trigonometric specification is therefore also  explored here:   m  m    lnchw  w   sin hw  cos  hw    ' xhw  h  hw    (9)   6   6  Fixed effects estimation of (9) is the preferred specification. For comparison, the estimated  seasonal gap using the dummy variable approach (with and without fixed effects) will also be  reported. To control for sources of consumption seasonality that are unrelated to the  production cycle, such as the effect of specific demand shifters related to religious events and  holidays (e.g. Ramadan and Christmas), a December dummy, to account for possible additional  Christmas expenditure, and a Ramadan dummy are added to the vector of controls xhw .    Finally, understanding the extent to which seasonality in food prices transmits to seasonality in  food consumption is the third core question of interest.  It is natural to suppose that seasonality  in food consumption is a consequence of seasonality in the prices of subsistence foods – see  Dercon and Krishnan (2000), Dostie, Haggblade, and Randriamamonjy (2002) and Ellis and  Manda (2012). High food prices generate both negative income and substitution effects for net  food purchasers.  For net food sellers, greater price seasonality induces larger fluctuations in  income. A larger share of their income depends on food production and their sales are often  11    concentrated right after the harvest. This is the channel emphasized by Khandker (2012) and  Bellemare, Barrett and Just (2013) in studying the welfare loss from food price seasonality and  volatility.  An indicative answer to the question of price induced seasonality in food consumption is given  by the seasonal gap in consumption obtained from estimating (9), at least  to the extent that  the estimated seasonality related to the monthly fluctuations in consumption can be attributed  to movements in the prices of food staples. Controlling for possible demand shifters such as the  religious holidays in the estimation of the seasonal factors makes this plausible. Nonetheless, it  cannot be excluded that other factors, unrelated to staple prices, are driving the results. Also,  the very limited number of observations for each month, remains a concern. If unobserved  common factors have affected food consumption in a particular year across an entire sample or  sub‐sample, this may give rise to misleading seasonality estimates when samples are short.  Examples of such factors in the Tanzanian data include increasingly severe drought conditions  during the 2008‐09 LSMS‐ISA wave and severe flooding which may have impacted December  and January food consumption in the 2010‐11 wave. Inclusion of household fixed effects does  not control for the effect of such unobserved time variant factors.   To address these difficulties the effect of staple prices on food consumption is estimated  directly, conditioning on the month of interview and religious holidays (i.e. conditioning on  other potential sources of seasonality in food consumption). In particular, equation (9) is  extended to:   m  m    lnchw  w  ln phw av   sin hw  cos  hw    ' xhw  h  hw    (10)   6   6  The price‐based seasonal factors for food consumption are then given by the seasonal factors in  the average price series pav multiplied by the estimate of the price elasticity .  Given that the  price seasonal factors are obtained from longer time series market data (19 years in the case of  Tanzania), they will be less subject to the short sample bias problems which potentially affects  the consumption seasonality estimates of equation (8). By controlling for the month of  interview and religious events, the estimated price elasticity is also purged from other seasonal  12    factors affecting consumption. To explore heterogeneity in the elasticity of food demand to  staple prices and thus the effect of staple price seasonality on food consumption, the caloric  price elasticity is estimated separately for poor and rich urban and rural households, with rural  households further divided in (poor and rich) net staple buyers and (poor and rich) net staple  sellers .   Two qualifications remain. First, seasonal movements in food prices have only formed a small  proportion of overall food price variability over the period analyzed. If households respond  more to large price movements than to small movements, the effects of seasonality on caloric  intake will be over‐estimated. A quadratic specification of prices will be tested. Second, it is  possible that households respond more to price changes that are seen as permanent relative to  those such as seasonal movements, seen as transient. Again this can lead to an over‐estimation  of the seasonal impact of prices on food consumption. To explore robustness of the findings,  prices will be split into a seasonal and a deseasonalized component and the equality of both  coefficients will be tested.  The food consumption variable can be represented using spatially and intertemporally deflated  food expenditures or using caloric intake. The latter variable gives a more direct estimate of  changes in consumption quantities and nutritional outcomes. They are the preferred measure  here.  Many rural households are food producers and for these households a proportion of food  expenditure will be imputed from self‐consumed quantities. Even though imputed prices are  derived from other household purchases and quantities in the same period and location/region,  which vary across districts, this complicates matters, as it introduces potential endogeneity by  having prices in the dependent and independent variables.   3 Staple prices display substantial excess seasonality in Tanzania White maize is the most important staple food product in Tanzania (as in most of eastern and  southern Africa). In rural areas it accounts for 50.6 percent of spending on staples and 26.3  13    percent of spending on food.10 In urban areas, the shares are 35.0 and 15.1 percent  respectively. Rice is also an important staple in urban centers (31.1 percent of spending on  staples, and 13.4 percent of spending on food), but less so in the countryside (13.3 percent of  spending on staples).  The focus is on seasonality in maize and rice prices and whether this  translates into seasonality in caloric intake.  Bananas and cassava account on average only for  3.6 and 6.5 percent of total food spending among rural households (even less among urban  households).  Monthly maize and rice price series from 20 regional markets in mainland Tanzania during  1995‐2013 (all regional capitals) were obtained from the national statistical offices.11 Prices are  expressed in local currency and deflated by the national CPI.12 If the data set had been  complete, there would have been 228 observations for each market (or 4,560 observations in  total). Overall, 6.3 percent of the maize prices are missing and 5.4 percent of the rice prices,  indicating that the prices are relatively complete. More than half of the markets are almost  complete (more than 220 observations out of a maximum of 228). However, for some markets  less than half of the possible observations are available, with minimums of 84 (maize) and 105  (rice).  This underlines the importance of using a procedure for estimating seasonal impacts  which is robust to the presence of these gaps.   For comparison purposes, seasonality in international prices for white maize and rice is also  analyzed. The Johannesburg futures market (SAFEX) provides the reference price for white  maize in southern and east Africa. This price is quoted in rand. For rice, the most commonly  used reference price is the Bangkok spot price13 which is quoted in US dollars.  Monthly SAFEX                                                               10  Staples comprise all cereals, tubers and starchy products whether consumed crude or processed. They include  wheat, rice, sorghum, millet, maize, cooking bananas, Irish and sweet potatoes and yams. Pulses (beans, peas and  oilseeds such as groundnuts) are not included. Shares are calculated from the Tanzania (2008‐2009) LSMS‐ISA  household survey.  11  In a companion paper, Gilbert, Christiaensen and Kaminski (2015), provide a systematic analysis of the extent of  price seasonality across an array of staple and non‐staple food and food products in seven African countries.   12  Price seasonality estimates using nominal prices are very similar.   13  White milled 5 percent broken. Source: IMF, International Financial Statistics.  14    prices series for white maize were obtained for the period March 1996‐December 2012;  monthly Bangkok rice prices for 2000‐2012.14  Tanzania is a large country exhibiting significant differences in climate and terrain across  regions. Reflecting these differences, the estimated seasonal patterns for each market differ  both in amplitude (and hence gap size) and phase (seasonal peak and trough dates) (Figure 1).   Comparison of a seasonal model (trigonometric or dummy), with a model without seasonality,  using the Bayesian (Schwartz) Information Criterion (BIC) which penalizes excess  parameterization, confirms seasonality in 19 of the 20 markets for maize and 16 of the 20  markets for rice (Table 2, column 1).  Comparison of the trigonometric with the dummy variable  approach further shows that trigonometric model is preferred in most markets (17 out of 19 for  maize and in all markets for rice). This provides confidence in the use of the more parsimonious  trigonometric model pursued here. The dummy specification is preferred for both the SAFEX  and Bangkok exchange prices.  Maize prices are on average 26.6 percent higher during the peak month than during the trough  (Table 2, trigonometric specification (column 6)). The seasonal price gap for maize in Tanzania is  sizeable. It is also almost twice as large as the gap for rice (15.2 percent on average). Rice is a  tradable product, although Tanzanian rice imports remain small, and as a product consumed  predominantly in urban areas, it is subject to lower intermediation costs.  The estimated gaps  based on the dummy variable approach are slightly higher (30 and 17.8 percent on average for  maize and rice respectively) (Table 2, column 5). This is consistent with the Monte Carlo results,  which suggest a slight upward bias for 20 year samples, if there are no or unclear seasonal  patterns in the underlying data generating process.15  There is also substantial variation in the                                                               14  Sources: Johannesburg Stock Exchange,  https://www.jse.co.za/downloadable‐ files?RequestNode=/Safex/PriceHistory/Spot percent20Months percent20on percent20all percent20Grain  percent20Products and IMF, International Financial Statistics.  15  As Gilbert, Christiaensen and Kaminski (2015) show, when the samples are shorter and seasonal patterns are less  clear as in many other countries and crops, the dummy variable approach tends to generate sizably larger seasonal  gap estimates than those obtained through the trigonometric specification.  A referee suggested that we should  set the seasonal factors to zero in those cases in which the F tests fail to reject the hypothesis of no seasonal  variation. Such non‐rejections are consistent either with an absence of seasonality or with insufficient evidence in  the data to support the claim that the series is seasonal. Setting the seasonal factors to zero in cases where these  are positive but statistically insignificant would bias the estimate of the average seasonal factors towards zero.  15    seasonal gaps across locations, ranging from 13.6 percent to 46.5 percent for maize and  between 3.0 percent and 22.0 percent for rice (Figure 2).   Seasonality in the international prices is estimated at 10.7 percent for SAFEX white maize and  4.7 percent for Bangkok rice.  These findings underline that some degree of price seasonality is  to be expected, even when markets function efficiently. Second, seasonality of international  maize prices is also about twice as high as this of rice, providing confidence in the domestic  findings. Finally, the Tanzanian maize and rice seasonal price gaps are on average 2.5 to three  times higher than those observed in the international markets, with the gap substantially above  the international one in virtually all markets. This points to substantial excess seasonality in  Tanzania’s staple markets.  Finally, the seasonal R2 statistics (Table 2, column 7) show that only 13.1 percent the monthly  variation in maize and rice prices is attributable to seasonality. For rice, this is about half (7.1  percent).16 Seasonality does not appear to be a major contributor to staple price volatility.  While there will benefits from reducing seasonal price fluctuations of staple foods to enable  households to better smooth their consumption expenditures, policies aimed at this objective  will not substitute for policies addressing the overall level of food price volatility.  4 Staple price induced seasonality affects poorer urban households and net food sellers The data on consumption and other household characteristics are from the three available  Living Standard Measurement Study‐Integrated Surveys on Africa (LSMS‐ISA) waves for  Tanzania (2008‐09, 2010‐11 and 2012‐13). These are panel datasets in which considerable  effort is made to recontact households which relocate between waves as well as to track the  components of the households which break up or combine, generating in effect a panel of  individuals. See www.worldbank.org/lsms‐isa for details. The analysis is confined to the                                                               16  When using the dummy variable approach, the shares are about twice as high (22.6 and 15.2 percent for maize  and rice respectively), overestimating the contribution of seasonality to price volatility by a factor two.  16    mainland regions of Tanzania to conform to the price analysis reported in section 3. The LSMS‐ ISA surveys covered 4,232 mainland Tanzanian households in 2008‐09, 4,241 households in  2010‐11 and 4,215 households in 2013‐14.   Interviews took each time place over a 14 month period within the two year survey window,  with the majority of households surveyed within the 12 month period of that year.  Very few  interviews took place in either the first month (September 2008) or the final month (October  2009) of the initial wave.  The second two waves had full initial months but a relatively small  number of interviews in the final one or two months (October and November 2011 and  November 2013). Pearson χ2 tests reject randomness of the interview months over regions.17   This is remedied through the inclusion of household fixed effects and inclusion of time varying  household characteristics, including the asset level of the household (as a proxy for wealth),  household size (persons, not adult equivalents), the sex and education level of the identified  head of household, a rural‐urban dummy and dummy variables for region of residence and  survey wave.18   Households were not generally interviewed in the same month in each wave. This is partly due  to inter‐regional movements and partly due to changes in the interview months for households  that remained in the same region. 5.3 percent of households crossed regional boundaries  between the first two waves and 6.8 percent did so between the second and third waves.  55.2  percent of households that remained in the same region were interviewed in the same calendar  month in the 2008‐09 and 2010‐11 rounds and 40.3 percent were interviewed in the same  month in the 2010‐11 and 2012‐13 rounds. Only 20.5 percent of households that remained in  the same region for all three waves were interviewed in the same calendar month in all three  waves. These features of the data ensure that the month of interview is a time‐varying variable  permitting the estimation of seasonal effects using the FE estimator.                                                               17  The χ2(260) were in excess of 4500 for each of the three waves.  18  Household size is the number of household members. The number of equivalent adults gives a poorer fit. The  rural‐urban dummy distinguishes rural from “other urban” households outside Dar es Salaam which is regarded as  entirely urban and which is accounted for by one of the regional dummies.  17    The proportion of the interview month which lies within the Ramadan period which is defined  by the Islamic lunar calendar is also controlled for. Ramadan advances through the calendar  underlying the LSMS‐ISA data with the consequence that lunar seasonality may confound the  solar seasonality reflected in the crop year and food prices. Many urban households return to  their villages at Christmas and it is plausible that this results in higher caloric intake at that time.  This departure is controlled for by including a dummy variable which takes the value one if the  household was interviewed in December. The seasonality observed in food consumption is  reported net of these confounding effects. Caloric intake is obtained by converting reported  food expenditures or food quantities from the expenditure module into calories. Food  expenditures and intake are reported at the household level for the past 7 days.    Columns 1 and 2 in Table 3 report the pooled OLS estimates of equations (8) and (9)  respectively (for comparison). The pooled OLS estimates indicate significant seasonality. The  trigonometric specification is preferred over the dummy variable approach (lower BIC). Figure 3  charts the dummy variable (solid line) and trigonometric (broken line) seasonal factors from  pooled OLS. The dummy estimates show caloric intake to be low from November to January  and high from March to June with an estimated seasonal gap of 10.6 percent. The estimated  trigonometric factors are (inevitably) much smoother. Relative to the dummy estimates, they  give a lower estimate the depth of the November and January troughs but also the extent of  the March to May recovery. The vertical bars in Figure 3 show the 95% confidence intervals for  the dummy variable seasonal factors. November is the only month in which this confidence  interval excludes zero. Although the trigonometric factors are generally much lower than the  dummy variable estimates, there is only one month (again November) in which the  trigonometric estimate falls outside the 95% dummy variable confidence intervals.  The FE seasonality estimates are reported in columns 3 and 4 of Table 3. The dummy variable  specification does not show significant seasonality,19 unlike the more parsimonious                                                               19  The choice between pooled OLS and the FE estimator involves balancing possible inconsistency arising from  unmodeled household heterogeneity and loss of information in the FE estimation procedure. The information loss  results in two ways. First, the FE transformation results in a loss of approximately one third of the observations  through differencing or by taking deviations about household means. Second, the data are only informative about  seasonal effects for those household who were interviewed in different months in at least one of the three waves.  18    trigonometric specification (which is also preferred by the BIC criterion). Figure 4 plots the two  seasonal functions together with the 95% confidence range for the dummy variable estimates.  The trigonometric seasonal functions (which omit the large December effect given the inclusion  of the December dummy) are again much shallower than the visual pattern suggested by the  dummy variable seasonal factors. In this case, both the trigonometric seasonality function and  the zero axis lie entirely within the 95% dummy variable confidence intervals. The estimated  seasonal gap based on the trigonometric specification is 2.7 percent.   Three conclusions emerge. First, the F tests reject the hypothesis of no seasonality in caloric  intake. This is true of both sets of pooled OLS estimates and of the FE trigonometric estimates.  Second, on average, across Tanzania, seasonality in food consumption appears limited. Third,  notwithstanding these insights and the large cross‐section dimension of the dataset, measuring  consumption seasonality from only three cross‐sections of data remains ambitious and  indicative at best. It also does not tell us whether the observed seasonality in food consumption  is due to seasonality in staple prices, which the paper now probes further by estimating the  elasticity of calorie consumption to staple prices.  The focus in estimating the elasticity of calorie consumption to staple prices is on the effect of  the concurrent price of maize and rice, the two principal staple foods. In particular, an average  staple food price pav is constructed as the logarithmic average of the deflated maize and rice  prices in the district of each reporting household using regionally differentiated expenditure  weights, distinguishing across districts and between urban and rural households.20  The  Tanzanian maize and rice price series contain gaps, which we interpolate using estimates of  equation (4).21                                                               Overall, our FE estimates are effectively based on approximately one third of the number of observations used in  the pooled OLS estimates implying a substantial loss in efficiency.  20   Price data are not reported for the Pwani region which forms the hinterland to Dar es Salaam. We use Dar es  Salaam prices for Pwani households.  21  The procedure for estimating seasonal gaps is robust against the presence of missing values avoiding the need  for interpolation at that stage. However, in constructing the average staples prices we have the choice between  dropping missing observations and interpolating. In the latter case, we can interpolate using estimates of  equations (4). The results are qualitatively similar and in what follows we report the results using interpolated  prices. We use equation (4) to construct interpolated prices for region r over a gap of k months as  19    Both the pooled OLS and the FE estimations of equation (9) (which models seasonality  trigonometrically) show a statistically significant price elasticity, but the FE estimates are larger  (more negative) than those from pooled OL S (Table 4). The estimated seasonal gap of 3.2  percent is correspondingly higher, though still modest in absolute terms. The FE estimates also  appear superior from the statistical standpoint. In the remainder, the focus is on the FE  estimates.22 The seasonal and deseasonalized components of staple prices do not show a  difference in their effects, removing concerns about potential over or underestimation of price  induced seasonality due to differences in the caloric response to regular and irregular price  changes.  Also, linearity in the price elasticity is not rejected—the coefficient on squared prices  is insignificant.   The results in Table 4 are based on a representative national sample. They show a modest  price‐induced seasonal gap in caloric intake, averaging across the entire Tanzanian mainland.   However, households are heterogeneous both in terms of their locations (urban versus rural),  wealth levels and, for rural households, also in their net marketing position (net food buyers or  net food sellers). We consider a three by two disaggregation distinguishing households resident  in Dar es Salaam, which LSMS‐ISA regards as entirely urban, other urban households and rural  households. Then, within each group we distinguish between asset poor and asset non‐poor  households. The staple price elasticity is estimated separately for each subgroup (conditional                                                                 , , , , ̂ , , 1, … ,  where hats upper scripts respectively stand for the estimated  price seasonal factors and price drift. We further improve on this formulation by taking into account the current  period residuals from regions where the data is present:  , , , , ̂ , , ∑ , , , , 1, … ,   where   s i  is  the   region   in   which   the  residuals  from  equation  (4) are most highly  correlated with those for region r over the subset of observations of which observations are available for both  ˆ is the simple regression coefficient associated with the maximum correlation. The accuracy of this  regions and  b r,si ,i interpolation will diminish as the gap length r increases. Omission of all observations involving a missing price  implies a fall in the number of observations available for estimation of 6.8 percent for the other urban sub‐sample,  9.8 percent for the rural net purchasers sub‐sample, and 8.6 percent for the rural net sellers sub‐sample. There is  no loss for the Dar es Salaam sub‐sample. The interpolated prices are used only in estimation of the caloric intake  equation (10).   The Hausman test rejects equality of the coefficients of the pooled and FE estimators (  39  = 95.41 (tail  22 2 probability 0.0000) when applied to the complete set of coefficients, and  1  = 16.13 (tail probability 0.0000) when  2 only the price elasticities are compared).  20    on other seasonal factors as in equation (10)). Differences in price elasticity among rural net  food buyers and net food sellers (poor and rich) are further explored.   The poor are distinguished from the rich using a household asset ownership index. This was  constructed by taking the first leading component of household durables ownership. The asset  index is constructed separately for each survey wave. A household is classified as asset poor if  its asset index is below the median for that group (Dar es Salaam, urban or rural) in each of the  waves in which it was surveyed and as asset rich otherwise. This classification puts 31.1% of the  households into the asset poor classification and 18.1% into the asset rich classification leaving  50.8% as an intermediate vulnerable group. As noted, these classifications depend on different  asset indices in each wave in conjunction with medians that differ across groups. The terms  “asset rich” and “asset poor” are therefore relative, not absolute, measures. Net staple food  buyers are distinguished from net staple food sellers based on whether the absolute value of  the ratio of the difference between their annual staple sales and purchases divided by their  total food expenditures exceeds 5 percent as observed in 2008‐2009 (Palacios‐Lopez,  Christiaensen and Galindo Pardo, 2015).  Net food buyers make up 78.9 percent, net food  sellers 7.2 percent, and the remaining 13.9 percent are marginal market participants, with less  than 5 percent net purchases or sales. When we disaggregate, the marginal participants are  dropped from the analysis.  At the aggregate level, the price elasticities for Dar es Salaam, other urban and rural households  are all negative, but only that for the other urban group is statistically significant at the 5% level  (Table 5). The estimated price‐induced seasonal gaps are larger for the urban than for the rural  areas, and largest for the poor in both urban areas. Yet with sample sizes becoming increasingly  small, and estimates still obtained through fixed effect estimation, precision declines. On these  estimates, the urban poor group suffers from the largest seasonal calorie gap (between 6.6 and  10.4 percent). By contrast, there is no evidence of price responsiveness of caloric intake on the  part of poor rural households in general.   About two‐thirds of rural households produce maize, much of it for own consumption. To the  extent that maize‐producing households retain grain through the year, either domestically or in  21    local warehouses,23 this will provide some insulation against seasonal and other price  movements. This may go some way to explaining the relatively low estimated price elasticity for  rural households. LSMS‐ISA breaks down rural households into three groups: net food  purchasers, net food sellers and an intermediate group. The two bottom panels of Table 5  report estimates of equation (10) for the net buyer and net seller sub‐categories. The number  of observations becomes very small, in particular when considering further division into asset  rich and asset poor categories. The net buyers are the largest group within the rural  classification and the estimates are very similar to those for the entire group. However, the net  food sellers are associated with much greater price responsiveness, apparently irrespective of  asset level. These findings are consistent with those reported by Khandker (2012) for  Bangladesh, i.e. seasonality in food consumption increasing with seasonality in income, with no  clear difference in this pattern between poor and non‐poor households. Net sellers derive more  of their income from crop sales (around 50 percent of total income for rural net sellers versus  35 percent for the rural net buyers), which turns out to be mostly sold in the months  immediately after the harvest (Palacios‐Lopez, Christiaensen, Galindo‐Pardo, 2015), especially  within the first three months after harvest.24 Their incomes are more seasonal as a result.  For  Ethiopia, Bellamare, Barrett and Just (2013) also find that the willingness to pay for price  stabilization is highest among the larger net food sellers.   5 Conclusion While any knowledgeable observer knows of seasonality in African food markets and  consumption, it is much less clear what it is that is actually known. There proves to be  surprisingly little systematic evidence across crops, markets and countries about the extent of  food price seasonality, how it differs across these crops and markets, how it compares to  reference markets, and how it affects household welfare and health outcomes. Moreover, most  available studies date from the 1980s and 1990s and they have typically been conducted on                                                               23  Most maize‐producing households retain grain for about six months for food consumption purposes in most  cases, After 10 months it is 90 percent depleted (Kaminski and Christiaensen, 2014)..   24  Richer rural net sellers manage to spread their sales more evenly over a longer period after the harvest. They  also show a lower price elasticity of caloric intake than poor rural net sellers.   22    short samples. When it comes to consumption, they often having only one year of seasonal  data, rendering it impossible to discern regular seasonal patterns from (idiosyncratic) intra‐ annual variation. This paper revisits this agenda, methodologically and empirically, taking 19  years of food price data over the past two decades and three waves of nationally  representative panel data on household consumption over the past decade from Tanzania.  Three insights emerge.  First, methodologically, the paper has shown that the most widely used technique of estimating  the seasonal gap either from a dummy variables regression or by averaging deviations from a  moving average trend can give upwardly biased estimates of the seasonal gap when  implemented on samples covering less than 20 years. The bias results when non‐systematic  high or low prices are mistakenly taken as identifying seasonal peaks or troughs.  This problem  is particularly severe for crops in which the seasonal pattern is poorly defined. The alternative,  trigonometrically based procedure for estimating seasonal factors on short data samples  proposed here, gives more reliable results.   Second, the current neglect of price seasonality is premature. Wholesale maize prices are  estimated to be 27 percent higher than those during the troughs (on average across the 20  wholesale markets). The seasonal gap is about half as large for rice (15 percent), which is partly  irrigated and more widely traded. Seasonality explains 7 to 13 percent of overall price volatility  (for rice and maize respectively), underscoring that many other sources of domestic food price  volatility remain. Nonetheless, seasonal variation is 2.5 to three times larger than on the  international reference markets (SAFEX for white maize and Bangkok for rice). This suggests  substantial scope for improved access to secure storage and other measures to reduce  seasonality, even more so when targeted to those markets displaying the highest seasonal  gaps. Across markets in the country, they vary between 13 and 46 percent for maize and  between 3 and 22 percent for rice, indicating substantial heterogeneity in food price  seasonality across the country.   Third, there appears price‐induced seasonality in caloric intake (controlling for other seasonal  factors), though not for everyone.  When taken on average across the country, seasonality in  23    food prices induces only a 3.2 percent seasonal gap in caloric intake. However, the extent of  this seasonal variation varies substantially across households. Two groups suffer most – poorer  urban households and rural net food sellers. Both see seasonal swings in caloric intake of about  10 percent, linked to seasonality in maize and rice prices. These variations occur at low levels of  caloric intake and do not account for intra‐household distribution. Substantial detrimental  effects on child malnutrition from food price seasonality cannot be excluded. Rural net food  buying households, who form the largest group in the country, appear to be able to largely  smooth their caloric intake across the crop year.   Together these findings suggest that, while seasonal price variation is not a major contributor  to food price volatility, the issue of seasonality remains relevant for African livelihoods, despite  larger domestic market integration and two decades of economic growth, structural  transformation and urbanization, and poverty reduction.  Seasonal variation in staple prices is  substantially larger than on the international markets, which is consistent with the view that  storage is inefficient and points to the need to improve farm‐ and village‐level storage, among  others. Turning to food consumption, the evidence suggests that households who are net food  buyers do not experience major problems with intra‐annual consumption smoothing. This does  not imply that they are unaffected by high food prices but, on average, they do appear to be  able to cope with regular seasonal price variations. Poor urban households and net food sellers  suffer from much greater seasonal consumption variation.   From a broader measurement perspective, the findings underscore the need to account for  seasonality in prices and consumption in measuring poverty. The importance of doing so has  been illustrated before by Muller (2008), but remains largely ignored in practice (Beegle,  Christiaensen, Dabalen and Gaddis, 2016). With many of our results, especially on consumption,  based on a short sample and one country, replication and extension of the findings using longer  time periods and across different settings is important to strengthen their internal and external  validity. New waves of the LSMS‐ISA surveys in Tanzania and other countries are now becoming  available, opening up exciting opportunities to do so, including along a wider range of welfare  indicators and indicators of longer term impacts such as child growth and nutrition.  24    References  Affognon, H.C. et al., 2015. “Unpacking Postharvest Losses in Sub‐Saharan Africa: A Meta‐ Analysis”, World Development, 66:  49–68.   Allen, R.G.D., 1954. “Seasonal variation in retail prices”.  Economica, 81, 1‐6.  Baffes, J., V., Kshirsaga, and D., Mitchell, 2015. “What Drives Local Food Prices? Evidence from the  Tanzanian Maize Market”, World Bank Policy Research Working Paper 7338.  Beegle, K., L., Christiaensen, A., Dabalen, and I., Gaddis, 2016. “Poverty in a Rising Africa: Africa  Poverty Report” World Bank, Washington D.C.   Bellemare, M., C.B., Barrett and D., Just, 2013. “The Welfare Impacts of Commodity Price Volatility:  Evidence from rural Ethiopia”, American Journal of Agricultural Economics 95 (4): 877‐899.  Chirwa, E. W., Dorward, A. , and M. Vigneri, 2009. “Investigating seasonality and poverty: The  2004/05 Malawi Integrated Household Survey“, in Devereux, Sabates‐Wheeler, and  Longhurst (2011).  Dercon, S., and P.Krishnan, 2000. “Vulnerability, seasonality and poverty in Ethiopia“, Journal of  Development Studies, 36, 25–53.  Devereux, S., R., Sabates‐Wheeler, and R., Longhurst (eds.), 2011. Seasonality, Rural Livelihoods  and Development, London: Routledge.  Dillon, B., and C.B., Barrett, 2013.  “Global crude to local food: an empirical study of global oil  price pass‐through to maize prices in East Africa“, Seattle: University of Washington,  mimeographed.  Dostie, B., S. Haggblade, and J. Randriamamonjy, 2002. “Seasonal poverty in Madagascar:  magnitude and solutions”. Food Policy, 27, 493‐518.  Ellis, F., and E., Manda, 2012. “Seasonal food crises and policy responses: a narrative account of  three food security crises in Malawi”, World Development, 40, 1407‐1417.  Galtier, F., and B., Vindel, 2012. “Gérer l’instabilité des prix alimentaires dans les pays en  développement ‐ Une analyse critique des stratégies et des instruments“, A Savoir, 17:  CIRAD et Agence Française de développement : Montpellier and Paris.  Ghysels, E., and D.R. Osborn, 2001. The Econometric Analysis of Seasonal Time Series.  Cambridge: Cambridge University Press.  Gilbert, C.L., L. Christiaensen and J. Kaminski, 2015. “Food price seasonality in Africa:  measurement and extent”, available at  https://sites.google.com/site/christopherlesliegilbert/publications/unpublished‐ manuscripts   Goetz, S., and M.T. Weber, 1986. “Fundamentals of price analysis in developing countries’ food  systems: A training manual to accompany the microcomputer software program  MSTAT”, Working Paper 29, East Lansing: Michigan State University.  Kaminski, J., and L., Christiaensen, 2014. "Post‐harvest loss in Sub‐Saharan Africa ‐‐ what do  farmers say ?," Global Food Security 3: 149‐158.   25    Khandker, S., 2012. “Seasonality of income and poverty in Bangladesh”, Journal of Development  Economics, 97: 244‐256.  Minot, N., 2014. “Food price volatility in Sub‐Saharan Africa: Has it really increased?” Food  Policy, 45: 45‐56.  Muller, C., 2008. "The measurement of poverty with geographical and intertemporal price  dispersion: evidence from Rwanda," Review of Income and Wealth, 54, 27‐49.  Nelson, C.R., and H. Kang, 1984. “Pitfalls in the use of time as an explanatory variable”, Journal  of Business and Economic Statistics, 2, 73‐82.  Orr, A., Mwale, B., and D. Saiti‐Chitsonga, 2009. “Exploring seasonal poverty traps: six week  window in southern Malawi“, Journal of Development Studies, 45, 227‐255.  Osborne, T., 2004. “Market News in Commodity Price Theory: Application to the Ethiopian  Grain Market”, Review of Economic Studies, 71, 133‐164.   Osborne, T., 2005. “Imperfect competition in agricultural markets: evidence from Ethiopia”,  Journal of Development Economics, 76, 405‐428.  Palacios‐Lopez, A., L., Christiaensen, and C., Galindo Pardo, 2015, “Are most African households  net food buyers?” World Bank, mimeographed.  Rau, R., 2005. “Seasonality in Human Mortality.” Berlin, Springer.  Sahn, D.E., 1989. Seasonality in Third World Agriculture, Baltimore: IFPRI and the Johns Hopkins  University Press.  Samuelson, P.A., 1957. “Intertemporal Price equilibrium: a prologue to the theory of  speculation” Weltwirtschaftliches Archiv 79, 181‐219; reprinted in J.E. Stiglitz, ed.,  (1966), Collected Scientific Papers of Paul A. Samuelson. Cambridge, Mass., MIT Press.  Stephens, E.C, and C.B. Barrett, 2011. “Incomplete credit markets and Commodity Marketing  Behaviour”, Journal of Agricultural Economics, 62, 1‐24.  Stock, J.H., and M.W. Watson, 2003. Introduction to Econometrics. Boston: Addison‐Wesley.  Teravaninthorn, S., and G., Raballand, 2009. Transport prices and costs in Africa: A review of the  main international corridors, Washington D.C.: World Bank.  Wandel, M., and G., Holmboe‐Ottesen, 1992. “Food availability and nutrition in a seasonal  perspective: a study from the Rukwa Region in Tanzania”, Human Ecology, 20‐1: 89‐107.  World Bank, 2012. “Responding to higher and more volatile world food prices”, Economic and  Sector Work Report, 68420, Washington D.C.: World Bank.  World Bank, 2014. “World Development Report 2014: Risk and Opportunity‐Managing Risk for  Development, World Bank: Washington D.C.  Zant, W., 2013. “How is the liberalization of food markets progressing? Market integration and  transaction costs in subsistence economies”. World Bank Economic Review, 27, 28‐54.      26      Table 1  Monte Carlo estimates of seasonality biases  Years  Dummy variables  Trigonometric  2  Bias  R Bias  R2  5  0.142  0.187  0.088  0.034  10  0.100  0.093  0.062  0.017  20  0.071  0.046  0.044  0.008  40  0.050  0.023  0.032  0.004  The table reports the estimated seasonal gap from seasonal estimation procedures  when the data are non‐seasonal, and the apparent degree of explanation provided  by these estimates.   Price changes are normally and independently distributed with mean and variance  equal to 0.01. There is no seasonality and no trend.   Columns (1) and (2) use regression (4) with the seasonal gap measured by equation  (5). Columns (3) and (4) use equation (7) with the seasonal gap measured by 2λ.   Estimates are based on 10,000 simulations.          27    Table 2  Price seasonality results    Locations  Seasonality  Preferred specification  Estimated seasonal gap  Seasonal R2  confirmed  Trigonometric   Dummy  Trigonometric  Dummy  Trigonometric  Maize  Tanzania  20  19  17  2  26.6%  30.0%  13.1%    SAFEX  1  1  0  1  10.7%  11.6%  6.0%  Rice  Tanzania  20  16  16  0  15.2%  17.8%  7.1%    Bangkok  1  1  0  1  4.7%  5.8%  1.9%  Dummy variable seasonal gaps are estimated from equations (4) and (5); trigonometric seasonal gaps are measured from equation (6) and  (7).  In  both  cases,  (simple)  national  averages  of  location  seasonal  gaps  are  reported.  Seasonality  is  “confirmed”  in  a  location  if  the  BIC  associated with either the dummy or the trigonometric specification is lower than on an equation with no seasonality.  The “preferred” of  the dummy and trigonometric specifications for locations in which seasonality is “confirmed” is that with the lower BIC.  The seasonal R2  is the proportional of the monthly price variation explained by seasonality, averaged across all locations.      28      Table 3  Unconditional caloric intake seasonality estimates    Pooled OLS  Fixed Effects    Dummies  Trigonometric  Dummies  Trigonometric  ***  ***    F11,12310 = 3.50 F3,12318 = 6.52 F11,8065 = 1.34 F3,8073  = 2.90**  Significance   [0.0001]  [0.0002]  [0.1950]  [0.0336]  BIC  1.5007  1.4961  0.9279  0.9226  Seasonal gap  10.3%  6.1%  8.2%  2.7%  The table reports the estimates of equations (8) (columns 1 and 3) and (9) (columns 2 and 4).  Columns 1 and 2 report pooled OLS estimates and columns 3 and 4 FE panel estimates.   The Bayesian Information Criterion (BIC) is on a per observation basis. For each estimator, the  lower BIC value is favored. It each time favors the trigonometric specification.  The  seasonal  gap  is  calculated  using  equation  (5)  in  columns  1  and  3  and  as  2λ  in  columns  2  and 4. The estimates in columns 2 and 4 exclude any December effect.  Tail probabilities are reported in square parentheses and robust t statistics in round  parentheses. The symbols *, ** and *** indicate significance at the 10%, 5% and 1% levels  respectively.        29    Table 4  Aggregate price‐based caloric intake seasonality estimates    Pooled OLS  FE  ** ‐0.0890   ‐0.1477***  Price elasticity   (2.49)  (3.83)  ***  Significance of trigonometric  F2,12316 = 9.26 F2,4245 = 0.32  variable coefficients α and β  [0.0001]  [0.7275]  F1,12315 = 4.13**  F1,4245 = 2.46  Nonlinearity  [0.0421]  [0.1169]  *  F1,12315 = 2.97 F1,4245 = 0.17  Persistence  [0.0850]  [0.6838]  BIC  1.4971  0.9207  Seasonal gap  2.0%  3.2%  The table reports the estimates of equation (9) using pooled OLS (column 1)  and Fixed Effects (Fe, column 2).   The nonlinearity test adds the squared price to the equation and tests for its  significance.  The persistence test splits the price into a deseasonalized component and the  seasonal. It tests for equality of the two coefficients.  The Bayesian Information Criterion (BIC) is on a per observation basis. These  values should be compared with the BICs for the same estimator reported in  Table 3.  The seasonal gap is calculated by multiplying the estimated price elasticity and  av the seasonal gap in the price series  phw  , averaged across all households. It  excludes December and Ramadan effects.  Tail probabilities are reported in square parentheses and robust t statistics in  round parentheses. The symbols *, ** and *** indicate significance at the 10%,  5% and 1% levels respectively.        30    Table 5  Disaggregated price responsiveness of caloric intake and implied seasonal gaps    Obser‐ price  trigonometric  average  vations  elasticity  variables  seasonal gap  ‐0.1614  F2,820 = 3.16**  All  2044  2.9%  (0.95)  [0.0429]  Dar es  ‐0.5714  F2,820 = 4.13**  poor  610  10.4%  Salaam  (1.47)  [0.0172]  0.0218  F2,226 = 0.79  Rich  569  ‐  (0.06)  [0.4536]  ‐0.2516**  F2,1040 = 2.37*  All  2264  5.2%  (2.41)  [0.0942]  ‐0.3183  F2,477 = 1.18  Other urban  poor  789  6.6%  (1.44)  [0.3096]  0.1947  F2,231 = 3.01*  Rich  499  ‐  (1.07)  [0.0512]  ‐0.0824*  F2,3005 = 4.41**  All  8048  1.9%  (1.84)  [0.0123]  ‐0.0832  F2,912 = 0.50  All rural  poor  2461  1.9%  (0.98)  [0.6080]  ‐0.1713*  F2,438 = 1.81  Rich  1152  3.9%  (1.82)  [0.1651]  ‐0.0832  F2,2200 = 8.75***  All  5751  1.9%  (1.59)  [0.0002]  Rural net  ‐0.0394  F2,866 = 1.04  poor  1764  0.9%  buyers  (0.38)  [0.1128]  ‐0.1678  F2,671 = 1.06  Rich  875  3.8%  (1.43)  [0.3535]  ‐0.2463**  F2,291 = 0.60  All  844  5.6%  (1.98)  [0.5518]  Rural net  ‐0.4700*  F2,78 = 2.06  poor  234  10.8%  sellers  (1.86)  [0.1345]  ‐0.3496  F2,35 = 0.02  Rich  103  8.0%  (0.97)  [0.9846]  Column 2 of the table reports the price elasticity obtained from Fixed Effects (FE)  estimates of equation (10). The number of observations is measured prior to  application of the FE transformation. Column 3 reports the Wald test for exclusion of  the two trigonometric seasonal variables. t and F statistics are based on robust  estimates of the variance‐covariance matrix. The seasonal gap reported in column 5 is  the seasonal gap in the price variable multiplied by the price elasticity. Because both  prices and the relative maize‐rice weight varies across districts, the gap will also vary  across districts for “other urban” and rural households). We report the simple average  of the gaps across the twenty districts excluding Dar es Salaam. The split of the rural  sample into net food buyers and net sellers excludes a middle category.  * ** *** ,  ,   indicate significance at the 10%, 5% and 1% levels respectively.    31      Figure 1: Estimated trigonometric maize price seasonality patterns, Tanzania      32        Figure 2: Estimated seasonal gaps      33    10% 8% 6% 4% 2% 0% ‐2% ‐4% ‐6% ‐8% ‐10% ‐12% ‐14% Dummy variable seasonal function Trigonometric seasonal function 95% confidence interval for dummy variable seasonal factors   Figure 3: Pooled OLS seasonal functions for caloric intake        34    14% 12% 10% 8% 6% 4% 2% 0% ‐2% ‐4% ‐6% ‐8% ‐10% ‐12% Dummy variable seasonal function Trigonometric seasonal function 95% confidence interval for dummy variable seasonal factors   Figure 4: Panel Fixed Effects seasonal functions for caloric intake    35