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Spatial disparity in incomes and productivity is apparent across and within countries.
Most studies of the determinants of such differences focus on cross-country compar-
isons or location choice among firms. Less studied are the large differences in agricul-
tural productivity within countries related to concentrations of rural poverty. For
policy, understanding the determinants of this geography of agricultural productivity
is important, because strategies to reduce poverty often feature components designed to
boost regional agricultural incomes. Census and endowment data for Ecuador are used
to estimate a model of endogenous technology choice to explain large regional differ-
ences in agricultural output and factor productivity. A composite-error estimation
technique is used to separate systemic determinants from idiosyncratic differences.
Simulations are employed to explore policy avenues. The findings suggest a differentia-
tion between the types of policies that promote growth in agriculture generally and
those that are more likely to assist the rural poor.

Regional differences in incomes within countries are often striking and are
similar in many ways to differences in average incomes among countries. Why
inequality takes on spatially identifiable forms is thought to be related to the
characteristics of place that constrain and influence current economic choice
and to the historical influences of geography on accumulations of assets by
families and communities. To a large degree, spatial differences in economic
opportunity are locally recognized and motivate the movement of labor among
economic sectors and the migration of households that are a ubiquitous aspect
of economic development. Most noticeably, such movements take the form of
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an out-migration from agriculture and a movement from rural to urban space
(Larson and Mundlak 1997).

At the same time, not everyone is positioned to take advantage of opportu-
nities in other sectors or locations. Moreover, barriers such as up-front costs,
risks, and asymmetries in information further constrain migration. When this is
so, circumstances related to household and location characteristics can work in
persistent and reinforcing ways to impoverish communities and regions. Com-
monly, this gives rise to lagging regions with high concentrations of rural poor
who depend substantially on agriculture for food and income.

For policymakers, a key question is whether the aspects of disadvantaged
areas can be changed through policies in a way that creates greater economic
opportunity for poor households. Related to this is the question of how quickly
policy can affect the underlying determinants of regional inequality. In particu-
lar, the short-term efficacy of policy and the mutability of regional differences
are expected to hinge on the degree to which geographic disparities in income
depend on unchanging natural endowments, on quasi-fixed accumulations of
public and private factors and institutions, and on policy-related incentives and
constraints that shape how current resources are used.

To some extent, the study of what makes some regions within a country less
prosperous than others is related to the question of what determines interna-
tional differences in growth and productivity. In this area of research, evidence
from cross-country macroeconomic data suggests that growth and productivity
are driven by broad state variables that determine productivity directly and also
influence choices that affect accumulations over time. A similar conclusion is
reached in studies that look at what determines productivity differences among
manufacturing firms.

This article takes another perspective and focuses on the determinants of
spatial differences in agricultural productivity. It does so chiefly because lagging
regions in poor developing countries usually have few linkages to sectors outside
agriculture. Consequently, it is important to know whether policy instruments
can be identified that bring about significant improvements in agriculture
incomes. However, also of interest is the related question of whether results
from cross-country and firm studies have counterparts in a study of what
determines spatial income differences within a geographically pervasive sector
of a single country.

There are several advantages to studying both issues in the context of agri-
culture in Ecuador. First, because disparities in agricultural productivity and
incomes are large in Ecuador, the determinants of spatial inequality can be
examined in the context of a sector that is important to Ecuador and in a
framework that is different from that of other studies of regional inequality.
Second, because census data are available, techniques can be employed that
provide more focused measures of productivity and its determinants. Third,
the role of endowments is more easily studied in the context of agriculture,
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where soil and climate endowments are well measured and their potential
contribution well identified.

I . BA C K G R O U N D

Most models of production, including related growth models, start with the
assumption that observed income levels arise from a common technology.1 The
assumption is rooted in the firm-theory conditions required to derive a well-
defined production function. However, the notion that all firms use the same
method to produce creates logical tensions because very heterogeneous levels of
productivity are often observed in practice.2 For studies based on farm data,
differences in productivity can arguably be assigned to idiosyncratic differences
in farms and farmers. However, in studies based on aggregate country or sector
data, differences in the capability to apply available technology are attributed
instead to identifiable country or sector traits. Even so, a common underlying
technology is expected to prevail in the long run, and this notion has conse-
quences for modeling approaches.

One view, associated with the endogenous growth literature, suggests that
output and productivity differences among nations and among firms are driven
largely by differences in adopted technology.3 Because, in this view, the cost of
technology diffusion is low and the benefits are high, countries and firms will
converge to a common technology in the long run. Trade and open investment
channels are expected to facilitate technology diffusion. Consequently, this
literature generally sees initial conditions and the speed with which new tech-
nologies can be adopted as keys to development. Empirically, studies of this type
focus on short-run growth rates or rates of productivity convergence.

A related literature sees technology adoption as less automatic and focuses on
barriers (see Parente and Prescott 1994 and references therein). In a similar way,
the economic geography literature argues that the costs of adopting new produc-
tion methods are often specific to location, potentially creating a range of
barriers to adoption that vary geographically (see the survey by Henderson,
Shalizi, and Venables 2001). In particular, local information about techniques
and local-factor markets that support particular forms of production is seen as
the basis for spillovers that contribute to productivity and become a force
concentrating on economic activity. Transaction costs, the location of endow-
ments, and history play a role as well, creating a shifting set of incentives for
centers of economic activity.

1. Griliches (1996) provides a history of early efforts to measure productivity, including a review of

early structural models. Mundlak (2001) reviews agricultural production modeling.

2. See related criticisms raised by Stigler (1976).

3. See early studies by Mankiw, Romer, and Weil (1992) and Barro and Sala-i-Martin (1992). Klenow

and Rodriguez-Clare (1997) and Brock and Durlauf (2001) provide reviews.
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The relationships among transaction costs, markets, and the capacity of
governments to protect property rights and enforce contracts are the focus of
another related set of studies that emphasize the role of institutions (North 1994;
Hall and Jones 1997). Although expensive to build and maintain, institutions are
expected to contribute to growth in several ways. Institutions are expected to
reduce the risk of diversion or expropriation and to facilitate capital, insurance,
hedging, and other related markets that allow risks to be shared. Reducing and
sharing risks allow for anonymous exchange, increasing competition, and redu-
cing marginal transaction costs. Dynamically, the workings of institutions allow
for faster rates of accumulation of human and physical capital, which contribute
directly to greater output.

Ideas related to institutions and economic geography are integrated with
growth modeling in several studies designed to identify the deep-seated determi-
nants of growth (Sachs and Warner 1997; Bhattacharyya 2004; Rodrik,
Subramanian, and Trebbi 2004). In these studies, factor inputs are viewed as
proximate endogenous variables because investment and other choices related to
factor accumulation are influenced by the same conditioning variables that
determine productivity. For this reason, these studies sometimes take an empiri-
cal approach that excludes factors as a determinant of production growth and
instead rely on reduced-form applied models expressed in terms of the condi-
tioning variables alone.

With this literature in mind, a model is developed in the following section in
which production techniques are endogenous, although potentially constrained
by available technology. The applied model includes many variables related to
endowments, institutions, communities, and households that are expected to
describe the decision environment that determines which of the available tech-
nologies is applied. Because some of these determinants are related to geographic
features that cannot be affected by policy, the relative importance of these
features in explaining regional income disparities is examined.

To some extent, the variables used to describe the decision environment are
related to the types of variables viewed as the fundamental or deep determinants
in the growth literature. This makes possible an exploration of whether the same
basic notions about what determines income differences among countries hold in
explaining regional differences in agricultural incomes. Because cross-sectional
data are used, the study does not look at the dynamic relationship between factor
accumulation and broad determinants of productivity. However, it does focus
on the relative roles of factor use and technology choice to draw inferences about
how quickly changes in these conditioning variables affect incomes.

This has relevance for policy because policies tend to work through the
aspects of the conditioning environment. To the extent that current output is
determined primarily by factors of production, the role of policy will be limited
to its effect on the rates of accumulation. In this case, the benefits of improved
policy will accrue slowly, and previous policies, embodied in current stocks of
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accumulated factors, will determine outcomes largely in the short run. Alterna-
tively, if policy directly affects the choice of technique, changes in policy can
affect growth through productivity increases that are immediate and additional
to long-run effects.

I I . TH E O R Y A N D T H E AP P L I E D MO D E L

The starting point for the applied model is Mundlak’s (1988), 1993 model of
endogenous implemented technology. The model accommodates heterogeneous
production technologies, based on the assumption that the choices that produ-
cers make regarding which technology to apply, and therefore which inputs to
use, are conditioned by earlier decisions, manifested in quasi-fixed factors, and
by the decision environment in which the producers operate. Because the aspects
of the decision environment vary among producers, a set of microeconomic
production solutions results, each potentially characterized by a different tech-
nology.

Using the vectors y�n to denote production, s to denote state variables that
characterize the decision environment, and x* = x(s) to denote inputs, the
aggregation of output can be written as a function of s alone, whereP

y�n � F ðx�; sÞ � �ðsÞ: In general, the production function is not identified. It
is however possible to find an approximating aggregate function, F(x,s), based
on the assumption that observed differences in input allocations are associated
with different implemented technologies conditioned on s. Operationally, the
result is an approximating empirical representative model of production, where
elasticities are functions of the state variables and possibly of the inputs. This is
written as ln y ¼ �ðsÞ þBðx; sÞ;where y is output, B(x,s) represents a production
technology that depends jointly on production factors and state variables, and
�ðsÞ represents a vector of additional productivity effects that depend on state
variables alone. In this framework, productivity and the marginal contributions
of inputs to output are endogenous and arise in response to the changing
decision environment.

The applied model provides functional form to the conceptual model. Because
the production technology function B(x,s) potentially depends on the input and
state variables, it is modeled as a flexible combination of the factors and
exogenous state variables:

Bðx; sÞ �
X

i

bi ln xi þ
1

2

X
i;j

bij ln xi ln xj þ
1

2

X
i;n

ain ln xi ln sn:ð1Þ

The additional systemic state-specific productivity effects are modeled as a
linear combination of the state variables, �ðsÞ �

P
n an ln sn.4 The model is

4. Although, in principle, the state variables are measured as log transformations, most state variables

used to estimate the model are either discrete or expressed as a proportion.
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completed by adding a farm-specific idiosyncratic productivity term, e. The
applied model is therefore given by:

ln y ¼
X

n

an ln sn þ
X

i

bi ln xi þ
1

2

X
i;j

bij ln xi ln xj þ
1

2

X
i;n

ain ln xi ln sn þ e:ð2Þ

In anticipation of the discussion of the data used to estimate the applied
model, additional comments about the model are in order. Because cross-sec-
tional data are used to estimate the model, farm-specific subscripts are implicit in
equation (2). Some state variables relate to location or to ecological measures
that are repeated over subsets of households, and thus it is possible to denote
these using location-specific subscripts instead. Later this relationship is used to
distinguish farm and household effects that are independent of effects related to
geography.

The idiosyncratic term in equation (2) is given a specific form that is moti-
vated by a potential constraint imposed by the set of available technologies from
which the endogenous applied technologies are chosen. To see this, consider the
stochastic productivity measure:

Pðx; sÞ � ln y� Bðx; sÞ � �ðsÞ þ e:ð3Þ

Implicit in the endogenous applied technology framework is the notion that
some states will result, through technology choice, in higher levels of total factor
productivity than others. This is reflected in the deterministic component, G(s).
However, productivity may be additionally affected by an idiosyncratic compo-
nent related to unobservable characteristics of the farm or farmer. Without the
loss of generality, it is possible to rank the deterministic component of produc-
tivity to say something about the idiosyncratic term.

The output outcome associated with the highest level of productivity can be
labeled P �0 ¼ � s0ð Þ, and a conditioned measure of inefficiency with deterministic
and idiosyncratic components u�n ¼ P �0 � P �n can be calculated for each observa-
tion. If the conditional technology that produces P �0 is binding in the sense that
no greater output is feasible, the expected value of the inefficiency term will be
non-negative. For a given set of state variables, producers might be expected to
make the best of their available resources, so that the productivity outcomes
cluster near the limiting technological frontier. However, relatively large ineffi-
ciencies are possible, in which case the distribution of the inefficiency term may
be skewed as well as truncated.

The notion that stochastic productivity is constrained has motivated a series
of applied stochastic frontier models. Generally, applied frontier models treat
stochastic departures from the frontier as inefficiencies in the application of a
single technology. This differs conceptually from the model developed here,
where applied technologies are endogenous. Nevertheless, in a way that is
similar to statistical frontier models, productivity in the applied model is sto-
chastic and potentially constrained in a manner that would result in
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idiosyncratic terms that have a skewed distribution. Consequently, the estima-
tion techniques associated with frontier models can be used to potentially
improve the estimation of the proposed model.

Specifically, the stochastic component of the model can be more fully speci-
fied as e � v� u, so that the error is composed of a symmetric normally dis-
tributed error term, v, and a non-negative random term, u. By convention, the
composite error is expressed as a difference between the two components.
Consequently, all other things equal, lower values of u are associated with higher
levels of output.

To estimate the composite-error model, it is necessary to assign a specific
underlying distributional form to the unobserved distance term, u, to separate it
from the also unobserved random component, v. For reasons that are developed
later, a normal-truncated-normal composite error is specified, where
v � iidN 0; �2

v

� �
and where u � iidNþ �ðzÞ; �2

u

� �
, where m = Skdkzk. Using this

specification, the distribution of the idiosyncratic productivity term can be
modeled as conditional on additional variables. This feature is used later to
include related endogenous variables that are expected to influence productivity.

Less complex error structures are nested within the normal-truncated-normal
distribution given above. First, when m = 0, the two-parameter truncated-normal
distribution collapses to the single-parameter half-normal, that is,
u � iidNþ 0; �2

u

� �
(Stevenson 1980). Additionally, when E(u) = 0, the composite

error can be represented by a single symmetric distribution, and simpler estima-
tion techniques can be used. A variety of tests have been devised to test for the
composite-error structure, as discussed after the following review of data used to
estimate the model.

I I I . DA T A

Farm and household data used in the analysis are taken from the 2000 Third
Agricultural Census of Ecuador. The data are generated by a complete census of
large-scale farms and a large representative sample of smaller farms. The com-
plete survey contains observations on more than 128,000 farms and is represen-
tative at the canton level. This study used data on the nearly 108,000 farms in
Ecuador that produce field crops. The census contains information about phy-
sical output, land use, labor, and production methods, as well as key information
related to marketing. Information about farming households is collected as well.
Output prices are not part of the survey, although detailed spatial data on farm
products are available from ongoing producer price surveys by the National
Institute of Statistics and Census. How these data were matched with the
physical output data is explained in a supplemental appendix (available at
http://wber.oxfordjournals.org/). The census data were also supplemented with
environmental and climate data from the Sistema de Monitoreo Socioambiental
Ecuatoriano (Ecociencia 2002). These data were matched with the census data
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at the canton level. After the data sets were matched, observations with incon-
sistencies were dropped. Large-scale plantations were also excluded, leaving a
sample of 107,269 farms. The variables used to estimate the model are described
briefly below.

Production is measured as valued crop output and is calculated for each farm
by matching spatial price data with production quantities from the census. This
measure does not include livestock production, although livestock production
enters into the analysis as a conditioning variable. The factors of production—
variables related to land, labor, and capital—are taken directly from the census
and measured as quantities.

The census distinguishes between irrigated and rainfed croplands, and the
share of cropland irrigated is included as an explanatory variable. The census
data also reveal whether additional inputs, including fertilizers, pesticides, and
improved seeds, were used in combination with irrigation or applied to rainfed
land. The census does not indicate quantities of inputs applied but reports the
surface area receiving inputs. In practice there is less variation in the data than
the questionnaire might suggest, as the share of irrigated or rainfed land receiv-
ing additional inputs is frequently either zero or one, especially for small- and
medium-scale farms. Moreover, when additional inputs are used, they are gen-
erally used in combination. Consequently, the share of rainfed land and the share
of irrigated land receiving fertilizer are included as separate explanatory vari-
ables and taken as an indicator of additional input bundles. Specified in this way,
the marginal effects of shifting into irrigation land that is already in production
and the separate marginal effects of applying additional inputs to rainfed or
irrigated lands can be identified.

Labor is given as the number of workers. The data distinguish between family
members who work on the farm and hired workers. The census also notes the
number of seasonal workers for farms that employ them. The census provides
data on farm machinery used on each farm but does not provide sufficient
information to calculate a standard representation of on-farm capital. Therefore,
the number of vehicles—tractors, trucks, and related machinery (thrashers,
plows)—used on each farm is a proxy for on-farm capital.

The state variables fall into three broad categories: farmer characteristics and
social capital, markets and institutions, and nature and risk. The farmer char-
acteristics and social networks include three household measures. One is a
measure of the farmer’s formal education, the second is of the level of agricul-
tural education, both measured in years, and the third is a discrete variable
indicating the gender of the primary farmer. Two variables capture social
capital. One is a discrete variable that indicates whether the farmer has received
assistance from a gremio, a type of voluntary producer association common in
Ecuador. The other variable indicates whether an indigenous language other
than Spanish is spoken at home and is meant to capture the effects of belonging
to an indigenous ethnic group.
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The second set of state variables captures the influences of markets and
government services. Included are private markets for credit and technical
assistance, intermediate buying arrangements, and participation in output mar-
kets. An additional variable signals whether the farm is isolated from markets
and is set to one when the nearest market is 90 minutes or more away. Conse-
quently, the variable captures both distance to market and the quality of the
transportation system. Three variables capture differences in government ser-
vices. Two are discrete variables indicating whether the farm has received
technical assistance from the government and whether the government has
provided credit. A third, a continuous variable, gives the share of farmland
that is titled.

The third set of state variables captures nature and risk. The indicators of
nature include climate and topology measures. The climate measure is the ratio
of average precipitation to moisture lost from the soil due to evaporation and
transpiration at the canton level. The measure is used to classify canton climates
as arid/dry, moist, humid, or wet, following the classifications used by the
United Nations Convention to Combat Desertification.5 The topology measure
is related to steeply sloped land in Ecuador and is reported as the percentage of
canton area at risk of eroding. Two variables are related to production and
income risk. One is the historic coefficient of variation in rainfall. The other is
the share of farmland devoted to uses other than crops, a measure of diversifica-
tion, a common risk mitigation strategy.

The census data reveal a wide range of scale for agriculture in Ecuador.
Production technology choices likely vary in ways related to scale, as indicated
by the descriptive statistics reported in table 1. The table contains sample
averages and median values for three quantiles, which are based on farm area
under field crops. First-quantile farms are very small; crops typically cover about
two-thirds of a hectare and range up 1.5 hectares. Middle-quantile farms are
typically 3 hectares in size, and the largest farms in the group are under 5
hectares. The third quantile contains a wide range of farms, including large-
scale commercial farms of nearly 400 hectares.

Revenue per hectare from crops in Ecuador averaged $676 for the census year
and increased with scale, from $472 for small-scale farms to $1,031 for the
largest farms. The number of workers per farm increased with scale as well, but
not proportionally. Small farms had more than five full-time workers for every
hectare of land, whereas large farms had more than 3 hectares of land for every
full-time worker. The decline in labor with scale was matched by an increase in
capital.6 Differences among the remaining variables in table 1 are small. The
average share of cropland irrigated is slightly higher on small farms than on
medium- and large-scale farms. The rates of fertilizer application on irrigated

5. Details of the climate classifications are available at www.unccd.entico.com/english/glossary.htm.

6. The movement of labor out of agriculture and capital into agriculture is a pervasive pattern

associated with economic growth; see Mundlak, Larson, and Crego (1998).
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lands are relatively low, but similar across scale; fertilizer use rates were higher
on rainfed land.

IV. ES T I M A T I O N RE S U L T S

The model was estimated using the data described above. In some cases, input
variables such as hired labor take on zero values. To handle this in a log-based
functional form, we used a set of corresponding dummy variables, based on an
approach suggested by Battese (1997). To address possible differences in the
distribution of the composite error due to scale, we also added dummy variables
to the set of variables determining u. With these modifications, the final model
contains 118 parameters. Of these, 68 percent are individually statistically
significant. To keep the discussion of the estimation results manageable, we
calculated mean-value elasticities from the estimated parameters, and these are
discussed below. The full set of estimated parameter results are given in tables
S.1 and S.2 of the supplemental appendix.

Before the derived elasticities are discussed, results related to the composite-
error specification should be mentioned. The composed form of the stochastic term
may arise when the distribution of the farm-specific idiosyncratic components of
productivity is skewed and truncated by a binding technology. The results from
two tests are reported, and both are consistent with this characterization.

TA B L E 1. Descriptive Statistics, by Farm Size

Small Scale Medium Scale Large Scale All Farms

Number of farms 36,428 35,085 35,756 107,269
Median size of cropland 0.64 2.70 10.00 2.60
Farm averages
Crop revenue per hectare (US$) 472 525 1,031 676

Cropland (hectares) 0.66 2.78 21.40 8.26
Family workers 3.34 3.50 3.19 3.34
Hired workers 0.11 0.29 2.79 1.06

Capital index 35 51 215 100
Average shares

Share of full-time workers
who are family members

0.96 0.94 0.79 0.90

Share of hired workers
who are seasonal

0.10 0.21 0.67 0.33

Cropland irrigated 0.25 0.20 0.21 0.22
Irrigated cropland with fertilizer 0.17 0.15 0.20 0.17
Rainfed cropland with fertilizer 0.27 0.24 0.27 0.26
Landholdings titled 0.73 0.70 0.77 0.73

Source: Authors’ analysis based on data described in text.
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The first test is based on a statistic constructed from the variances of the two
composite-error terms, � ¼ �2

u= �
2
v þ �2

u

� �
. When g = 0, the composite-error

model is indistinguishable from a model with a symmetrically distributed error
term, and thus a test of the statistical significance of g constitutes a test of the
composite-error specification. The test is easy to perform, because a related
parameter, �ð�Þ, appears as a parameter in the model’s likelihood function.
The estimated value of the parameter is statistically different from zero, lending
support for the assumed composite form (table 2).

Even so, because g is tied to estimates of the composite-term variances, the test is
conditional and potentially sensitive to how the composite error is specified. For this
reason, a second test was applied, based on an approach developed by Schmidt and
Lin (1984) and modified by Coelli (1995). The related test statistic is based on least
squares residuals and consequently is independent of prior assumptions about the form
of the composite error. The calculated statistic is also significant (table 2). Moreover,
the test-statistic value is negative, which is consistent with a clustering of production
technologies around a binding technological frontier (Coelli 1995, p. 253).

Elasticity Estimates

Elasticities and standard errors, calculated from estimated model coefficients
and sample averages, are reported in table 3 for the four factors of production,
for qualitative differences in the factors, and for state variables.

The factor elasticities relate to the slope function, B(x,s). Because the elasti-
cities are functions of both state and input variables, each farm is potentially
associated with a different set of factor elasticities. In this sense, the elasticities
reported in table 3 represent average effects across technologies.

The mean-valued factor elasticities in table 3 are all significantly different
from zero. They sum to 1.159, suggesting increasing returns to scale for a typical
farm in Ecuador.7 The elasticity for family labor is positive, but quantitatively

TA B L E 2. Tests of the Composite-Error Structure

Test Score

Parameter estimate, �ð�Þ 1.76 (0.019)*
Coelli’s test statistic �141.97*

Note: Numbers in parentheses are standard errors.

*Results are significant at the 1 percent level.

Source: Authors’ analysis based on data described in text.

7. It is also the case that the underlying parameters used to calculate the elasticities are collectively

different from zero at standard confidence levels and that average returns to scale are different from 1. The

elasticities for family and hired labor are statistically different from one another as well. See supplemental

appendix table S.4.
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less that half that of hired labor.8 The land elasticity is about as large as the
combined elasticities of the other production factors. The elasticity on capital is
lower than might be expected, although the estimated value is consistent with
cross-country studies that have relied on proxy measures of capital (Mundlak,
Larson, and Butzer 1999).

Estimates related to qualitative differences in the factors suggest that bringing
an additional 1 percent of existing cropland under irrigation increases output by
0.2 percent. Applying chemical inputs to irrigated land brings about a slight
increase in output. The elasticity for chemical inputs on rainfed land is signifi-
cantly higher and in line with fertilizer elasticities estimated from cross-country

TA B L E 3. Elasticities Calculated at Mean Values

Elasticity Standard Error

Production factors
Family labor 0.120 0.018**
Hired labor 0.264 0.025**
Cropland 0.656 0.008**
Capital 0.119 0.048*
Returns to scale 1.159 0.056**

Factor characteristics
Irrigation 0.209 0.007**
Additional inputs on irrigated land 0.020 0.004**
Additional inputs on rainfed land 0.131 0.006**
Seasonal labor 0.069 0.003**

State variables
Formal education 0.014 0.002**
Agricultural education 0.017 0.004**
Female head of housea �0.125 0.015**
Indigenous ethnicitya 0.033 0.022
Participates in output marketsa 0.562 0.044**
Sells to intermediate buyera 0.019 0.020
Isolated from marketsa 0.013 0.020
Assistance from the gremioa 0.055 0.026**
Precipitation variation �0.047 0.010**
Land diversification �0.039 0.009**
Moist climatea 0.161 0.028**
Humid climatea �0.055 0.024*
Wet climatea 0.157 0.030**
Risk of erosiona �0.027 0.004**

*Significant at the 5 percent level; **significant at the 1 percent level.
aDiscrete variable.

Source: Authors’ analysis based on data described in text.

8. As an anonymous referee pointed out, the marginal value product for family labor, given by the

average product times the elasticity, is less than 15 percent that of hired labor at sample averages.
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data. Supplementing full-time labor with seasonal workers has a small but
statistically significant effect on output.

The elasticities reported in the bottom block of table 3 relate to the systemic
state-specific productivity effects, G(s). Because the state variables also affect the
factor elasticities related to B(x,s), the reported elasticities are partial and
capture only the direct effect of the state variables on output and productivity.
The role that the state variables play in determining factor elasticities is discussed
later.

Although many of the state-variable elasticities are statistically significant,
most are quantitatively small. Both general education and education related to
agriculture have a small but positive effect on productivity. Productivity among
households headed by a woman is lower, perhaps because this group includes a
disproportionate number of single-parent households. Productivity does not
differ significantly by ethnic group. The dummy variable that distinguishes
between farmers who produce for market and those who do not is significant
and quantitatively large, but because more than 90 percent of farmers in Ecua-
dor already participate in output markets, the variable is less interesting for
policy. Productivity is higher for farmers who participate in a marketing
cooperative, but other variables related to marketing are not statistically sig-
nificant or quantitatively large. Productivity is less for farms subject to greater
rain variability and also for farms that diversify out of crops, a result consistent
with the notion that some costs associated with risk take the form of forgone
opportunities. The effects of climate and erosion risk are significant and similar
in size.

As discussed, measured productivity includes both the systemic component,
G(s), and a stochastic term, E, which includes the non-negative idiosyncratic
term, u. To a degree, the idiosyncratic component of productivity relates to
farm or farmer characteristics that cannot be observed. However, it is likely that
some variables that ultimately affect technology choice and productivity are
determined by a process that links these observed variables to the unobserved
idiosyncratic characteristics of the farm or farmer. The most discussed example
is access to credit, with the likelihood of receiving credit expected to be related to
a borrower’s unobserved entrepreneurial and cognitive abilities (McKernan
2002; Khandker and Faruqee 2003). However, related arguments have been
made about the provision of government technical assistance (Godtland and
others 2004) and land titling (Deininger and Chamorro 2004). For these reasons,
some state-like variables are endogenous and therefore stochastic and are related
to the idiosyncratic component of productivity. Consequently, a set of codeter-
mined variables are included in the specification of e. These correspond to z in
the model presented in Section III.9

9. This approach, believed to be novel, retains information about the stochastic component of the

related endogenous variable. This information is stripped away in traditional approaches designed to

construct nonstochastic proxies that can be treated as deterministic explanatory variables.
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The five endogenous variables included as determinants relate to private
market access for credit and technical assistance and access to public programs
for credit, technical assistance, and land titling services. Additionally, two
dummy variables are included, which correspond to the second (medium) and
third (large) cropland quantiles, to account for possible differences in the dis-
tribution of the stochastic productivity measure related to scale.10

Related coefficients from the estimated model are summarized in table 4. As
discussed, frontier production models conventionally represent the non-negative
component of the composite error as a departure from the efficiency frontier.
Consequently, the negative coefficients in table 4 indicate that these variables are
associated with a reduction in the mode of the inefficiency distribution and, all
other things equal, an increase in output. As table 4 summarizes, all coefficients
are negative and all but the coefficient on public technical assistance are statis-
tically significant.

Although indicative, the coefficients themselves are a very rough measure of
how shifts in the distributional mode of u affect output. This is because the
average effect of the stochastic productivity component is determined not only
by the mode of the distribution but also by the overall shape of the distribution,
especially the point of truncation. For this reason, discrete changes in the pre-
dicted value of u are used to calculate output elasticities, rather than relying on
an evaluation of the elasticities at a single point along the distribution.

Because for each farm observation f the estimated model provides predictions
of uf conditional on vf, the average effect of a discrete change in the z variables
can be calculated. This is done by using the estimated model to simulate the

TA B L E 4. Z-Variable Coefficients and Calculated Elasticities

Elasticity Coefficient Standard Error

Technical assistance, privatea 0.045 �0.501 0.069**
Credit, privatea 0.075 �0.848 0.080**
Share of land titled 0.034 �0.363 0.034**
Technical assistance, publica 0.007 �0.077 0.086
Credit, publica 0.025 �0.270 0.105*
Medium scalea 0.048 �0.525 0.038**
Large scalea 0.106 �1.213 0.055**

*Significant at the 5 percent level; **significant at the 1 percent level.

Note: Elasticities are calculated as discrete changes.
aDiscrete variable.

Source: Authors’ analysis based on data described in text.

10. Larger farms and larger endowments of managerial skill are potentially related. However,

heteroskedasticity related to variance of the strictly positive efficiency term will also affect its mean, so

there are mechanical reasons for including the terms as well.
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effect on each uf of switching in sequence each zk from zero to one, holding other
values constant, so that � ln y=�zk ¼ ��ujdzk¼ 0;1 . Average effects, ��uk , can be
calculated over all observations or any subgroup of farms. Given the specifica-
tion in equation (2), the calculated difference is similar to the coefficient on a
dummy variable in a semilogarithmic equation; consequently, mean elasticities
are given by "k ¼ exp ��ukð Þ � 1 (Halvorsen and Palquist 1980).

Elasticity estimates based on the procedure outline above are also reported in
table 4. Among these, elasticities associated with private market access to credit
and technical assistance are large relative to public program elasticities and to
some state-variable elasticities. This is noteworthy, because these effects are
additional to past accumulations of physical or educational capital. Among the
public programs, land titling has the largest effect on output. Although the
elasticity on access to credit through public programs is smaller than the elasti-
city associated with private credit markets, the results suggest that credit pro-
grams have a measurable impact. In contrast, the measured effect of public
technical assistance programs is quantitatively small and statistically insignif-
icant.

Because the implicit small-farm dummy variable is suppressed in the esti-
mated model, the elasticities associated with the remaining quantile dummy
variables can be interpreted as differences from the efficiencies found on small-
scale farms. The results indicate that as the amount of land brought under crops
increases, inefficiencies decline in a way that is separate from the returns to scale
or the related effects of increasing factor use. That is to say, for a given set of
factors and conditioning state variables, larger farms tend to cluster more closely
to a frontier that is presumably limited by technology. This has policy relevance
because it suggests that innovations in technology will especially benefit larger
farms that are currently constrained by available technology. The results also
suggest a potential to improve agricultural incomes by identifying constraints
that lead smaller farms to choose less efficient technologies.11

Choice and Factor Elasticities

In the conceptual model, technological choice is expected to affect both total
factor productivity and the marginal productivity of factors. In the applied
model, state variables are used to measure these influences. As discussed, one
consequence is that measured values of total factor productivity take on geo-
graphic patterns because some determining state variables are location specific.
To a degree, this is also true for measured factor elasticities. Nevertheless, factor
elasticities depend on combined factor levels in addition to state variables, so
that geography may play a relatively smaller role.

As a practical matter, it is possible to use parameters from the applied model
to quantify the relative contributions of factors and state variables in

11. Key results are robust to alternative specifications. See tables S.4–S.6 in the supplemental

appendix.
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determining factor elasticities. To illustrate, consider the effect on output of a
change in the first input:

@ ln y

@ ln x1
� @Bðx; sÞ

@ ln x1
¼ b1 þ

1

2

X
j

b1j ln xj þ
1

2

X
n

a1n ln sn:ð4Þ

Of the three terms on the right side of equation (4), the first two are the portion
of the factor elasticity that is due to input levels, whereas the last term captures
changes due to state variables.

Using the approach illustrated in equation (4), factor elasticities were calcu-
lated based on variable averages from each of the three farm scale quantiles. The
elasticities were further decomposed into factor and state-variable effects. Over-
all, the results suggest that factor elasticities are determined largely by input
levels (table 5). This can be seen in the returns to scale elasticity, which sum-
marizes the sometimes offsetting changes in the underlying composition of
elasticities. The returns to scale elasticity falls slightly as scale increases, and
both the absolute values of the elasticities and the direction of change are driven
by factor effects. Moreover, for medium- and large-scale farms, the state vari-
ables largely account for differences from constant returns to scale.

For small farms, measured differences between the elasticities of family and
hired labor are large, but the gap closes as more land is brought under produc-
tion, operating mostly through factor effects. However, for hired labor, the
complementary effects of state variables on the elasticity of labor increases

TA B L E 5. Decomposition of Production Elasticities, by Farm Size

Small Scale Medium Scale Large Scale

Elasticity
Family labor 0.099 0.114 0.151

Due to factors 0.043 0.062 0.106
Due to state variables 0.056 0.052 0.045

Hired labor 0.343 0.239 0.192
Due to factors 0.273 0.127 0.022
Due to state variables 0.070 0.112 0.169

Cropland 0.693 0.680 0.642
Due to factors 0.724 0.717 0.685
Due to state variables �0.031 �0.037 �0.043

Capital 0.102 0.153 0.122
Due to factors 0.066 0.118 0.119
Due to state variables 0.036 0.035 0.003

Returns to scale 1.238 1.186 1.107
Due to factors 1.106 1.024 0.932
Due to state variables 0.132 0.161 0.175

Technical efficiency 0.398 0.425 0.476

Source: Authors’ analysis based on data described in text.
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with scale, preventing the gap from closing further.12 Differences in cropland
elasticities are not large among the three quantiles and are driven by a slight
decline due to factor effects. The elasticity of capital increases rapidly between
the first and second quantiles, whereas the state-variable effect falls between the
second and third quantiles.

As discussed, the estimated parameters suggest that the distribution of u shifts
with scale. There are additional determinants of the distribution relating to
markets and government programs, and related average participation rates
vary among the three scale quantiles as well. The combined effect is reflected
in the summary measure of technical efficiency, Tq, which is a quantile average
of the farm-specific measures of technical efficiency, E exp �uf

��vf

� �� �
(table 5).

Generally, access to markets and government programs increases with scale,
although the resulting elasticity differences are small. Consequently, the distri-
butional determinants combine to produce rates of technical efficiency that
increase with scale.13

V. DE T E R M I N A N T S O F RE G I O N A L DI F F E R E N C E S

This section turns to a key motivation of the article, explaining observed regio-
nal differences in output and productivity. The analysis relies on the estimated
model, which is used to map observed differences in factor use and the con-
ditioning state variables to observed differences in output. This allows a decom-
position of differences in revenue among typical farms of each region into factor
and productivity effects. In addition, spatial differences in factor productivity are
further decomposed into effects that correspond to the following classes of the
state variable: household characteristics and social capital, nature and risk, and
markets and institutions. From a policy perspective, this approach complements
the elasticity discussion, which focused on which factors are most important in
determining agricultural output and productivity. This analysis explores how
differences in the spatial array of factors and state variables combine to generate
observed spatial differences in output and productivity.

Broadly, the simulation strategy is to construct regional and national repre-
sentations of farm output and to use those representations to measure the
relative importance of factor use and productivity in explaining average revenue
differences among regions. Specifically, for each classification of farm scale
(small, medium, and large), national averages are calculated for the vector of
production factors (�xq), state variables (�sq), z-variables (�zq), and also provincial
averages (�xRq , �sRq , and �zRq ). To take into account the indirect role of state variables

12. Calculated marginal value products follow the same pattern, but in a more dramatic fashion.

Estimated marginal value product for family labor is roughly 1 percent that of hired labor for small farms

and close to 70 percent for large farms.

13. Details about participation rates are summarized in table S.6 in the supplemental appendix.
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in the factor marginal products, we calculated elasticities are calculated based on
the regional averages and coefficients from the model.

Let "Riqð�Þ represent input factor elasticities evaluated at � �xRq ; �s
R
q

� �
, and let

"Rnqð�Þ represent the systemic productivity elasticities evaluated at � �sRq

� �
. Fol-

lowing the approach noted earlier, regional idiosyncratic productivity elastici-

ties, "RkqðuÞ, are calculated based on regional quantile averages of uf(z).

Consequently, the calculated productivity measure includes systemic differences
due to differences in the level of state variables plus regional differences in the
distribution of idiosyncratic efficiencies.

Expected differences in regional (R) output for each farm classification (q) can
then be expressed as

�yR
q � �FR

q þ�PR
q ;ð5Þ

where the change in factor use is given by

�FR
q �

X
i

"R
iqð�Þ ln �xR

iq � ln �xiq

� �
ð6Þ

and the change in total factor productivity is given by14

�PR
q �

X
n

"R
nqð�Þ ln�sR

nq � ln�snq

� �
þ
X

k

"R
q ðuÞ �zR

kq � �zkq

� �
:ð7Þ

For each class of farm, the exercise explains how differences in the distribution
of factors and state variables result in differences in agricultural output. The
simulation results are detailed and cover each of the 21 provincial areas of
Ecuador. To conserve space, we reported only summary results here.15

The results illustrate the differences in regional output and productivity in
Ecuador (table 6). Across all sizes of farms, regional differences average about
17 percent in absolute terms. In a mechanical way, output differences can be
attributed primarily to factors generally and to land specifically. However, this is
partly because the farm-size classes are based on area under crops. The first and
third quantiles contain the tails of the underlying distribution of land among
farms and therefore contain greater variation. After adjusting for land, output
differences related to more intensive use of capital and labor inputs and those
related to productivity are similar on average.

Still, the averages mask differences related to scale. With increases in scale, the
role of productivity in explaining regional differences diminishes, whereas effects
tied to factor intensification become more pronounced. This can be seen

14. The z variables and some state variables are expressed as shares (for example, share of farm land

titled) and are therefore not converted into logs.

15. Detailed results are summarized in tables S.7–S.12 in the supplemental appendix.
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graphically in figure 1, where the circles mark simulated differences due to
capital and labor and the squares mark productivity effects for each of the 21
geographic areas in the data. For small-scale farms, the factor and productivity
effects are commingled. In moving along the figure from the small- to medium-
to large-scale farms, it can be seen that the state-variable effects begin to shift
closer to zero, whereas the spread in capital-plus-labor effects increases.

The productivity effects can be further decomposed by the underlying deter-
mining state variables (table 6). The results suggest that the three public pro-
grams included in the model explain little of the observed regional differences in
output, regardless of scale, even though the elasticities on the credit and titling
programs were of moderate size. For credit, this is because program penetration
is limited—only 2 percent of farms receive credit through this program. For
titling, there is little regional variation, because most farmland in most provinces
is titled. The effect of differences in household characteristics accounts for about
2 percent of regional output for small farms and less than 1 percent for large
farms. Differences in the use of markets and networks accounts for about 4.5
percent of regional output among small farms, 2.5 percent among medium-scale
farms, and less than 1 percent among large farms. The effects of risk, as given by
the variation in rainfall and the effects of diversifying land use, have a limited
role in explaining regional differences. In contrast, nature, as measured by
differences in climate, soil conditions, and slope characteristics, is an important
determinant of output differences.

To summarize, the simulation results suggest that differences in applied
technologies, conditioned by the state variables and associated with productiv-
ity, diminish as farms become larger in scale and more intensive in other inputs.
Of the differences attributable to productivity, nature is an important

TA B L E 6. Average Absolute Differences in Regional Output and Related
Determinants, by Farm Size

Small Scale Medium Scale Large Scale All Farms

Output 0.167 0.090 0.256 0.171
Factors 0.124 0.059 0.243 0.142

Land 0.117 0.035 0.180 0.111
Capital and labor 0.051 0.046 0.091 0.063

Productivity 0.073 0.053 0.034 0.053
Public programs 0.004 0.004 0.004 0.004
Households 0.021 0.017 0.009 0.016
Markets and networks 0.045 0.025 0.009 0.027
Risk 0.008 0.008 0.006 0.008
Nature 0.045 0.040 0.034 0.040

Note: Differences are expressed as shares of national average output value by scale.

Source: Authors’ analysis based on data described in text.
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determinant on all farms. For small farms, household characteristics and access
to markets play important roles as well.

VI . SU M M A R Y A N D CO N C L U S I O N S

Because farmers face different circumstances with different resources, they choose
different approaches to farming. This means that economic data about agricul-
tural production span a variety of applied technologies. This article applies a
flexible-form model to measure the interrelated effects on production of inputs
and the state variables that condition this endogenous choice of technology.

Working through the decision environment, state variables are expected to
influence total factor productivity directly and to influence the elasticities of
production inputs. Statistically significant evidence of both effects is found. Even
so, the results suggest that some of the ways factors and state variable interact to
determine different levels of output and productivity vary with scale, and this
has implications for policy.

-.2 -.1 0 .1 .2

large

medium

small

State variables Factors, excluding land

FI G U R E 1. Simulated Differences in Output Attributable to Factor Intensifica-
tion and Productivity, by Farm Scale

Source: Authors’ analysis based on data described in text.
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To a large degree, output differences among large- and medium-size farms are
explained by differences in factor use. Factors are important for small-scale
farmers as well; however, significant differences in productivity outcomes
remain among small-scale farms even after factor differences are taken into
account. These remaining differences are explained largely by differences in
the conditioning state variables. This is consistent with the notion that technol-
ogy choice is more constrained among smallholder farms and that productivity is
therefore more sensitive to differences in the decision environment.

As farm scale increases, differences in productivity are reduced, and this
comes about by way of two complementary effects. First, productivity contains
a component related to the unobservable idiosyncratic characteristics of farms
and farm managers. In the applied model, this gives rise to a composite-error
stochastic term from which a measure of technical efficiency can be derived.
Evidence is found in favor of the composite-error structure, and further evidence
suggests that the derived measure of technical efficiency increases with farm size
alone.

Second, there is also evidence that market and program participation out-
comes, potentially related to these idiosyncratic farm characteristics, influence
the technical efficiency measure. Access to such programs is more common
among larger farms, which also boosts measured efficiency. Consequently, the
two effects work in reinforcing ways to provide higher estimates of technical
efficiency on larger farms. This is taken as evidence that larger farms are better
able to, and frequently do, choose farming approaches that are closer to a
binding technological frontier.

Taken together, the findings suggest a differentiation between the types of
policy that promote growth in agriculture generally and those that are more
likely to assist the rural poor. Because most agricultural output is produced on
larger farms that operate close to the technological frontier, programs that
promote relevant new technologies can be expected to spur sectorwide growth.
For regions that depend primarily on agriculture, growth may have additional
spillover effects on incomes through markets for related goods and services. At
the same time, smallholder households in Ecuador that depend on agriculture
are disproportionately poor and tend to use a ranging set of technologies.
Consequently, policies most likely to benefit the poor are those that change the
constraints and incentives that lead some households to choose less efficient
technologies over more productive alternatives.

Still, the results suggest that building effective strategies for reducing rural
poverty is no easy task. Many of the state variables that explain productivity
differences among smallholders are related to the aspects of geography that are
not easily changed. This limits the range of available policy instruments and the
scope for policy-led increases in productivity. Among the remaining policy
avenues, simulation results point to the importance of investments in infrastruc-
ture and institutions that support markets, especially credit markets. These
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markets can lead to the adoption of more productive technologies in the short
run and can facilitate the buildup of productive assets in the long run.

Accumulated assets can be lost, and the results suggest that farmers forgo
more productive technologies to take ex ante precautions against such loss. This,
together with evidence of the central role that productive assets play in deter-
mining incomes, suggests the importance of policies that promote formal and
informal insurance markets and provide for safety nets when these markets
prove inadequate.

Studies of cross-country growth experiences find important roles for geogra-
phy and for market-enhancing institutions. In a similar way, the results of this
study suggest that climate and institution-dependent markets influence regional
differences in agricultural productivity. The study results also indicate the
importance of accumulated factors to short-run output. With time, the same
conditioning factors that influence short-run productivity will likely influence
stocks of these variables as well. However, this process may take generations to
complete. Consequently, care should be exercised in drawing policy conclusions
about the pace of growth from studies that methodologically set aside the
influence of accumulated factors. This is particularly the case for many devel-
oping countries, where agriculture remains an important component of national
income.
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