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Foreword

Health outcomes are invariably worse among the poor—often markedly so. The 
chance of a newborn baby in Bolivia dying before his or her fi fth birthday is more 
than three times higher if the parents are in the poorest fi fth of the population 
than if they are in the richest fi fth (120‰ compared with 37‰). Reducing inequali-
ties such as these is widely perceived as intrinsically important as a development 
goal. But as the World Bank’s 2006 World Development Report, Equity and Devel-
opment, argued, inequalities in health refl ect and reinforce inequalities in other 
domains, and these inequalities together act as a brake on economic growth and 
development. 

One challenge is to move from general statements such as that above to moni-
toring progress over time and evaluating development programs with regard to 
their effects on specifi c inequalities. Another is to identify countries or provinces in 
countries in which these inequalities are relatively small and discover the secrets of 
their success in relation to the policies and institutions that make for small inequal-
ities. This book sets out to help analysts in these tasks. It shows how to implement a 
variety of analytic tools that allow health equity—along different dimensions and 
in different spheres—to be quantifi ed. Questions that the techniques can help pro-
vide answers for include the following: Have gaps in health outcomes between the 
poor and the better-off grown in specifi c countries or in the developing world as a 
whole? Are they larger in one country than in another? Are health sector subsidies 
more equally distributed in some countries than in others? Is health care utilization 
equitably distributed in the sense that people in equal need receive similar amounts 
of health care irrespective of their income? Are health care payments more progres-
sive in one health care fi nancing system than in another? What are catastrophic 
payments? How can they be measured? How far do health care payments impover-
ish households?

Typically, each chapter is oriented toward one specifi c method previously out-
lined in a journal article, usually by one or more of the book’s authors. For example, 
one chapter shows how to decompose inequalities in a health variable (be it a health 
outcome or utilization) into contributions from different sources—the contribution 
from education inequalities, the contribution from insurance coverage inequalities, 
and so on. The chapter shows the reader how to apply the method through worked 
examples complete with Stata code. 

Most chapters were originally written as technical notes downloadable from 
the World Bank’s Poverty and Health Web site (www.worldbank.org/povertyand
health). They have proved popular with government offi cials, academic research-
ers, graduate students, nongovernmental organizations, and international organi-
zation staff, including operations staff in the World Bank. They have also been used 
in training exercises run by the World Bank and universities. These technical notes 
were all extensively revised for the book in light of this “market testing.” By col-
lecting these revised notes in the form of a book, we hope to increase their use and 



usefulness and thereby to encourage further empirical work on health equity that 
ultimately will help shape policies to reduce the stark gaps in health outcomes seen 
in the developing world today. 

François J. Bourguignon 
Senior Vice President 
and Chief Economist

The World Bank

x Foreword
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Preface 

This volume has a simple aim: to provide researchers and analysts with a step-by-
step practical guide to the measurement of a variety of aspects of health equity. 
Each chapter includes worked examples and computer code. We hope that these 
guides, and the easy-to-implement computer routines contained in them, will stim-
ulate yet more analysis in the fi eld of health equity, especially in developing coun-
tries. We hope this, in turn, will lead to more comprehensive monitoring of trends 
in health equity, a better understanding of the causes of these inequities, more 
extensive evaluation of the impacts of development programs on health equity, and 
more effective policies and programs to reduce inequities in the health sector. 

Owen O’Donnell
Eddy van Doorslaer

Adam Wagstaff
Magnus Lindelow
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1
Introduction 

Equity has long been considered an important goal in the health sector. Yet inequal-
ities between the poor and the better-off persist. The poor tend to suffer higher 
rates of mortality and morbidity than do the better-off. They often use health ser-
vices less, despite having higher levels of need. And, notwithstanding their lower 
levels of utilization, the poor often spend more on health care as a share of income 
than the better-off. Indeed, some nonpoor households may be made poor precisely 
because of health shocks that necessitate out-of-pocket spending on health. 

Most commentators accept that these inequalities refl ect mainly differences in 
constraints between the poor and the better-off—lower incomes, higher time costs, 
less access to health insurance, living conditions that are more likely to encourage 
the spread of disease, and so on—rather than differences in preferences (cf. e.g., 
Alleyne et al. 2000; Braveman et al. 2001; Evans et al. 2001a; Le Grand 1987; Wagstaff 
2001; Whitehead 1992). Such inequalities tend therefore to be seen not simply as 
inequalities but as inequities (Wagstaff and van Doorslaer 2000). 

Some commentators, including Nobel prize winners James Tobin (1970) and 
Amartya Sen (2002), argue that inequalities in health are especially worrisome—
more worrisome than inequalities in most other spheres. Health and health care 
are integral to people’s capability to function—their ability to fl ourish as human 
beings. As Sen puts it, “Health is among the most important conditions of human 
life and a critically signifi cant constituent of human capabilities which we have rea-
son to value” (Sen 2002). Society is not especially concerned that, say, ownership 
of sports utility vehicles is low among the poor. But it is concerned that poor chil-
dren are systematically more likely to die before they reach their fi fth birthday and 
that the poor are systematically more likely to develop chronic illnesses. Inequali-
ties in out-of-pocket spending matter too, because if the poor—through no fault 
of their own—are forced into spending large amounts of their limited incomes on 
health care, they may well end up with insuffi cient resources to feed and shelter 
themselves. 

The rise of health equity research 

Health equity has, in fact, become an increasingly popular research topic during 
the course of the past 25 years. During the January–December 1980 period, only 33 
articles with “equity” in the abstract were published in journals indexed in Med-
line. In the 12 months of 2005, there were 294 articles published. Of course, the total 
number of articles in Medline has also grown during this period. But even as a 
share of the total, articles on equity have shown an increase: during the 12 months 
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of 1980, there were just 1.206 articles on equity published per 10,000 articles in Med-
line. In 2005, the fi gure was 4.313, a 260 percent increase (Figure 1.1). 

The increased popularity of equity as a research topic in the health fi eld most 
likely refl ects a number of factors. Increased demand is one. A growth of interest 
in health equity on the part of policy makers, donors, nongovernmental organiza-
tions, and others has been evident for some time. Governments in the 1980s typi-
cally were more interested in cost containment and effi ciency than in promoting 
equity. Many were ideologically hostile to equity; one government even went so 
far as to require that its research program on health inequalities be called “health 
variations” because the term “inequalities” was deemed ideologically unaccept-
able (Wilkinson 1995). The 1990s were kinder to health equity. Researchers in the 
fi eld began to receive a sympathetic hearing in many countries, and by the end of 
the decade many governments, bilateral donors, international organizations, and 
charitable foundations were putting equity close to—if not right at—the top of 
their health agendas.2 This emphasis continued into the new millennium, as equity 
research became increasingly applied, and began to focus more and more on poli-
cies and programs to reduce inequities (see, e.g., Evans et al. 2001b; Gwatkin et al. 
2005). 

1The chart refers to articles published in the year in question, not cumulative numbers up 
to the year in question. The numbers are index numbers, the baseline value of each series 
being indicated in the legend to the chart. 
2Several international organizations in the health fi eld—including the World Bank (World 
Bank 1997) and the World Health Organization (World Health Organization 1999)—now 
have the improvement of the health outcomes of the world’s poor as their primary objective, 
as have several bilateral donors, including, for example, the British government’s Depart-
ment for International Development (Department for International Development 1999). 

0

eq
ui

ty
 a

rt
ic

le
s 

(1
98

0 
=

 1
00

)
1,000

900

800

700

600

500

400

300

200

100

2005200019951990

equity articles per 10,000 articles (1980 = 1.206)

equity articles (1980 = 33)

1985
year

1980

Figure 1.1 Equity Articles in Medline, 1980–20051

Source: Authors.



 Introduction 3

Supply-side factors have also played a part in contributing to the growth of 
health equity research: 

• Household data sets are more plentiful than ever before. The European 
Union launched its European Community Household Panel in the 1990s. The 
Demographic and Health Survey (DHS) has been fi elded in more and more 
developing countries, and the scope of the exercise has increased too. The 
World Bank’s Living Standards Measurement Study (LSMS) has also grown 
in coverage and scope. At the same time, national governments, in both the 
developing and industrialized world, appear to have committed ever more 
resources to household surveys, in the process increasing the availability of 
data for health equity research. 

• Another factor on the supply side is computer power. Since their introduc-
tion in the early 1980s, personal computers have become increasingly more 
powerful and increasingly cheaper in real terms, allowing large household 
data sets to be analyzed more and more quickly, and at an ever lower cost. 

• But there is a third supply-side factor that is likely to be part of the explana-
tion of the rise in health equity research, namely, the continuous fl ow (since 
the mid-1980s) of analytic techniques to quantify health inequities, to under-
stand them, and to examine the infl uence of policies on health equity. This 
fl ow of techniques owes much to the so-called ECuity project,3 now nearly 
20 years old (cf., e.g., van Doorslaer et al. 2004; Wagstaff and van Doorslaer 
2000; Wagstaff et al. 1989). 

The aim of the volume and the audience 

It is those techniques that are the subject of this book. The aim is to make the tech-
niques as accessible as possible—in effect, to lower the cost of computer program-
ming in health equity research. The volume sets out to provide researchers and 
analysts with a step-by-step practical guide to the measurement of a variety of 
aspects of health equity, with worked examples and computer code, mostly for the 
computer program Stata. It is hoped that these step-by-step guides, and the easy-to-
implement computer routines contained in them, will complement the other favor-
able demand- and supply-side developments in health equity research and help 
stimulate yet more research in the fi eld, especially policy-oriented health equity 
research that enables researchers to help policy makers develop and evaluate pro-
grams to reduce health inequities.

Each chapter presents the relevant concepts and methods, with the help of 
charts and equations, as well as a worked example using real data. Chapters also 
present and interpret the necessary computer code for Stata (version 9).4 Each 
chapter contains a bibliography listing the key articles in the fi eld. Many suggest 

3The project’s Web site is at http://www2.eur.nl/bmg/ecuity/. 
4Because of the narrow page width, some of the Stata code breaks across lines. The user will 
need to ensure breaks do not occur in the Stata do-fi les. Although Stata 9 introduces many 
innovations relative to earlier versions of Stata, most of the code presented in the book will 
work with earlier versions. There are however some instances in which the code would have 
to be adjusted. That is the case, for example, with the survey estimation commands used in 
chapters 2, 9, 10, and 18. Version 9 also introduces new syntax for Stata graphs. For further 
discussion of key differences, see http://www.stata.com/stata9/.
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further reading and provide Internet links to useful Web sites. The chapters have 
improved over time, having been used as the basis for a variety of training events 
and research exercises, from which useful feedback has been obtained. 

The target audience comprises researchers and analysts. The volume will be 
especially useful to those working on health equity issues. But because many chap-
ters (notably chapters 2–6 and chapters 10 and 11) cover more general issues in the 
analysis of health data from household surveys, the volume may prove valuable to 
others too. 

Some chapters are more complex than others, and some sections more complex 
than others. Nonetheless, the volume ought to be of value even to those who are 
new to the fi eld or who have only limited training in quantitative techniques and 
their application to household data. After working through chapters 2–8 (ignor-
ing the sections on dominance checking in chapter 7 and on statistical inference 
in chapter 8), such a reader ought to be able to produce descriptive statistics and 
charts showing inequalities in the more commonly used health status indicators. 
Chapters 16, 18, and 19 also provide accessible guides to the measurement of pro-
gressivity of health spending and the incidence of catastrophic and impoverish-
ing health spending. Chapter 14 provides an accessible guide to benefi t incidence 
analysis. The bulk of the empirical literature to date is based on methods in these 
chapters. The remaining chapters and the sections on dominance checking and 
inference in chapters 7 and 8 are more advanced, and the reader would benefi t from 
some previous study of microeconometrics and income distribution analysis. The 
econometrics texts of Greene (1997) and Wooldridge (2002) and Lambert’s (2001) 
text on income distribution and redistribution cover the relevant material. 

Focal variables, research questions, and tools

Typically, health equity research is concerned with one or more of four (sets of) 
focal variables.5

• Health outcomes 
• Health care utilization 
• Subsidies received through the use of services 
• Payments people make for health care (directly through out-of-pocket pay-

ments as well as indirectly through insurance premiums, social insurance 
contributions, and taxes) 

In the case of health, utilization, and subsidies, the concern is typically with 
inequality, or more precisely inequalities between the poor and the better-off. In 
the case of out-of-pocket and other health care payments, the analysis tends to focus 
on progressivity (how much larger payments are as a share of income for the poor 
than for the better-off), the incidence of catastrophic payments (those that exceed 
a prespecifi ed threshold), or the incidence of impoverishing payments (those that 
cause a household to cross the poverty line). 

5For a review of the literature by economists on health equity up to 2000, see Wagstaff and 
van Doorslaer (2000). 
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In each case, different questions can be asked. These include the following:

1. Snapshots. Do inequalities between the poor and better-off exist? How large 
are they? For example, how much more likely is it that a child from the poor-
est fi fth of the population will die before his or her fi fth birthday than a child 
from the richest fi fth? Are subsidies to the health sector targeted on the poor 
as intended? Wagstaff and Waters (2005) call this the snapshot approach: the 
analyst takes a snapshot of inequalities as they are at a point in time. 

2. Movies. Are inequalities larger now than they were before? For example, were 
child mortality inequalities larger in the 1990s than they had been in the 1980s? 
Wagstaff and Waters (2005) call this the movie approach: the analyst lets the 
movie roll for a few periods and measures inequalities in each “frame.” 

3. Cross-country comparisons. Are inequalities in country X larger than they are 
in country Y? For example, are child survival inequalities larger in Brazil 
than they are in Cuba? Examples of cross-country comparisons along these 
lines include van Doorslaer et al. (1997) and Wagstaff (2000). 

4. Decompositions. What are the inequalities that generate the inequalities in the 
variable being studied? For example, child survival inequalities are likely to 
refl ect inequalities in education (the better educated are likely to know how 
to feed a child), inequalities in health insurance coverage (the poor may be 
less likely to be covered and hence more likely to pay the bulk of the cost out-
of-pocket), inequalities in accessibility (the poor are likely to have to travel 
farther and for longer), and so on. One might want to know how far each of 
these inequalities is responsible for the observed child mortality inequali-
ties. This is known as the decomposition approach (O’Donnell et al. 2006). 
This requires linking information on inequalities in each of the determinants 
of the outcome in question with information on the effects of each of these 
determinants on the outcome. The effects are usually estimated through a 
regression analysis; the closer analysts come to successfully estimating 
causal effects in their regression analysis, the closer they come to producing 
a genuine explanation of inequalities. Decompositions are also helpful for 
isolating inequalities that are of normative interest. Some health inequalities, 
for example, might be due to differences in preferences, and hence not ineq-
uitable. In principle at least, one could try to capture preferences empirically 
and use the decomposition method to isolate the inequalities that are not due 
to inequalities in preferences. Likewise, some utilization inequalities might 
refl ect differences in medical needs, and therefore are not inequitable. The 
decomposition approach allows one to isolate utilization inequalities that do 
not refl ect need inequalities. 

5. Cross-country detective exercises. How far do differences in inequalities across 
countries refl ect differences in health care systems between the countries, 
and how far do they refl ect other differences, such as income inequality? For 
example, the large child survival inequalities in Brazil may have been even 
larger, given Brazil’s unequal income distribution, had it not been for Brazil’s 
universal health care system. The paper on benefi t incidence by O’Donnell 
et al. (2007), which tries to explain why subsidies are better targeted on the 
poor in some Asian countries than in others, is an example of a cross-coun-
try detective exercise. 
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6. Program impacts on inequalities. Did a particular program narrow or widen 
health inequalities? This requires comparing inequalities as they are with 
inequalities as they would have been without the program. This latter counter-
factual distribution is, of course, never observed. One approach, used in some 
of the studies in Gwatkin et al. (2005), is to compare inequalities (or changes 
in inequalities over time) in areas where the program has been implemented 
with inequalities in areas where the program has not been implemented. Or 
inequalities can be compared between the population enrolled in the program 
and the population not enrolled in it. This approach is most compelling in 
instances in which the program has been placed at random in different areas 
or in instances in which eligibility has been randomly assigned. Where this is 
not the case, biases may result. Methods such as propensity score matching 
can be used to try to reduce these biases. Studies in this genre are still rela-
tively rare; examples include Jalan and Ravallion, who look at the differential 
impacts at different points in the income distribution of piped water invest-
ments on diarrhea disease incidence, and Wagstaff and Yu (2007), who look 
inter alia at the impacts of a World Bank-funded health sector reform project 
on the incidence of catastrophic out-of-pocket spending. 

Answering all these questions requires quantitative analysis. This in turn 
requires at least three if not four ingredients. 

• First, a suitable data set is required. Because the analysis involves compar-
ing individuals or households in different socioeconomic circumstances, the 
data for health equity analysis often come from a household survey. 

• Second, there needs to be clarity on the measurement of key variables in the 
analysis—health outcomes, health care utilization, need, subsidies, health 
care payments, and of course living standards. 

• Third, the analyst requires a set of quantitative methods for measuring inequal-
ity, or the progressivity of health care payments, the incidence and intensity of 
catastrophic payments, and the incidence of impoverishing payments. 

• Fourth, if analysts want to move on from simple measurement to decompo-
sition, cross-country detective work, or program evaluation, they require 
additional quantitative techniques, including regression analysis for decom-
position analysis and impact evaluation methods for program evaluation in 
which programs have been nonrandomly assigned. 

This volume will help researchers in all of these areas, except the last—impact 
evaluation—which has only recently begun to be used extensively in the health sec-
tor and has been used even less in health equity analysis. 

Organization of the volume 

Part I addresses data issues and the measurement of the key variables in health 
equity analysis. It is also likely to be valuable to health analysts interested in health 
issues more generally. 

• Data issues. Chapter 2 discusses the data requirements for different types of 
health equity analysis. It compares the advantages and disadvantages of dif-
ferent types of data (e.g., household survey data and exit poll data) and sum-
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marizes the key characteristics of some of the most widely used household 
surveys, such as the DHS and LSMS. The chapter also offers a brief discus-
sion and illustration of the importance of sample design issues in the analy-
sis of survey data.

• Measurement of health outcomes. Chapters 3–5 discuss the issues involved in 
the measurement of some widely used health outcome variables. Chapter 
3 covers child mortality. It describes how to compute infant and under-fi ve 
mortality rates from household survey data using the direct method of mor-
tality estimation using Stata and the indirect method using QFIVE. It also 
explains how survey data can be used to undertake disaggregated mortality 
estimation, for example, across socioeconomic groups. Chapter 4 discusses 
the construction, interpretation, and use of anthropometric indicators, with 
an emphasis on infants and children. The chapter provides an overview of 
anthropometric indicators, discusses practical and conceptual issues in con-
structing anthropometric indicators from physical measurements, and high-
lights some key issues and approaches to analyzing anthropometric data. The 
chapter presents worked examples using both Stata and EpiInfo. Chapter 5 is 
devoted to the measurement of self-reported adult health in the context of 
general population health inequalities. It illustrates the use of different types 
of adult health indicators—medical, functional, and subjective—to describe 
the distribution of health in relation to socioeconomic status (SES). It shows 
how to standardize health distributions for differences in the demographic 
composition of SES groups and so provide a more refi ned description of 
socioeconomic inequality in health. The chapter also discusses the extent to 
which measurement of health inequality is biased by socioeconomic differ-
ences in the reporting of health. 

• Measurement of living standards. A key theme throughout this volume and 
throughout the bulk of the literature on health equity measurement is the 
variation in health (and other health sector variables) across the distribution 
of some measure of living standards. Chapter 6 outlines different approaches 
to living standards measurement, discusses the relationship between and 
the merits of different measures, shows how different measures can be con-
structed from survey data, and provides guidance on where further infor-
mation on living standards measurement can be obtained.

Part II outlines quantitative techniques for interpreting and presenting health 
equity data. 

• Inequality measurement. Chapters 7 and 8 present two key concepts—the 
concentration curve and the concentration index—that are used through-
out health equity research to measure inequalities in a variable of interest 
across the income distribution (or more generally across the distribution of 
some measure of living standards). The chapters show how the concentra-
tion curve can be graphed in Stata and how the concentration index—and its 
standard error—can be computed straightforwardly. 

• Extensions to the concentration index. Chapter 9 shows how the concentration 
index can be extended in two directions: to allow analysts to explore the 
sensitivity of their results to imposing a different attitude to inequality (i.e., 
degree of inequality aversion) to that implicit in the concentration index and 
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to allow a summary measure of “achievement” to be computed that captures 
both the mean of the distribution as well as the degree of inequality between 
rich and poor.

• Decompositions. What are the underlying inequalities that explain the inequal-
ities in the health variable of interest? For example, child survival inequalities 
are likely to refl ect inequalities in education (the better educated are more 
likely to know how to feed a child effi ciently), in health insurance coverage, 
in accessibility to health facilities (the poor are likely to have to travel far-
ther), and so on. One might want to know the extent to which each of these 
inequalities can explain the observed child mortality inequality. This can be 
addressed using decomposition methods (O’Donnell et al. 2006), which are 
based on regression analysis of the relationships between the health vari-
able of interest and its correlates. Such analyses are usually purely descrip-
tive, revealing the associations that characterize the health inequality, but if 
data are suffi cient to allow the estimation of causal effects, then it is possible 
to identify the factors that generate inequality in the variable of interest. In 
cases in which causal effects have not been obtained, the decomposition pro-
vides an explanation in the statistical sense, and the results will not neces-
sarily be a good guide to policy making. For example, the results will not 
help us predict how inequalities in Y would change if policy makers were to 
reduce inequalities in X, or reduce the effect of X and Y (e.g., by expanding 
facilities serving remote populations if X were distance to provider). By con-
trast, if causal effects have been obtained, the decomposition results ought 
to shed light on such issues. Decompositions are also helpful for isolating 
inequalities that are of normative interest. Some health inequalities, for 
example, might be due to differences in preferences and hence are not ineq-
uitable. In principle at least, one could try to capture preferences empirically 
and use the decomposition method to isolate the inequalities that are not due 
to inequalities in preferences. Likewise, some utilization inequalities might 
refl ect differences in medical needs and therefore are not inequitable. The 
decomposition approach allows one to isolate utilization inequalities that do 
not refl ect need inequalities. 

Part III presents the application of these techniques in the analysis of equity in 
health care utilization and health care spending. 

• Benefi t incidence analysis. Chapter 14 shows how benefi t incidence analysis 
(BIA) is undertaken. In its simplest form, BIA is an accounting procedure 
that seeks to establish to whom the benefi ts of government spending accrue, 
with recipients being ranked by their relative economic position. The chapter 
confi nes its attention to the distribution of average spending and does not 
consider the benefi t incidence of marginal dollars spent on health care (Lan-
jouw and Ravallion 1999; Younger 2003). Once a measure of living standards 
has been decided on, there are three principal steps in a BIA of government 
health spending. First, the utilization of public health services in relation to 
the measure of living standards must be identifi ed. Second, each individual’s 
utilization of a service must be weighted by the unit value of the public sub-
sidy to that service. Finally, the distribution of the subsidy must be evaluated 
against some target distribution. Chapter 14 discusses each of these three 
steps in turn.



 Introduction 9

• Equity in health service delivery. Chapter 15 discusses measurement and expla-
nation of inequity in the delivery of health care. In health care, most atten-
tion—both in policy and research—has been given to the horizontal equity 
principle, defi ned as “equal treatment for equal medical need, irrespective of 
other characteristics such as income, race, place of residence, etc.” The analy-
sis proceeds in much the same way as the standardization methods covered 
in chapter 5: one seeks to establish whether there is differential utilization 
of health care by income after standardizing for differences in the need for 
health care in relation to income. In empirical work, need is usually prox-
ied by expected utilization given characteristics such as age, gender, and 
measures of health status. Complications to the regression method of stan-
dardization arise because typically measures of health care utilization are 
nonnegative integer counts (e.g., numbers of visits, hospital days, etc.) with 
highly skewed distributions. As discussed in chapter 11, nonlinear methods 
of estimation are then appropriate. But the standardization methods pre-
sented in chapter 5 do not immediately carry over to nonlinear models—they 
can be rescued only if relationships can be represented linearly. Chapter 15 
therefore devotes most of its attention to standardization in nonlinear set-
tings. Once health care use has been standardized for need, inequity can 
be measured by the concentration index. Inequity can then be explained by 
decomposing the concentration index, as explained in chapter 13. In fact, 
with the decomposition approach, standardization for need and explanation 
of inequity can be done in one step. This procedure is described in the fi nal 
section of chapter 15. 

• Progressivity and redistributive effect of health care fi nance. Chapter 16 shows how 
one can assess the extent to which payments for health care are related to 
ability to pay (ATP). Is the relationship proportional? Or is it progressive—
do health care payments account for an increasing proportion of ATP as the 
latter rises? Or, is there a regressive relationship, in the sense that payments 
comprise a decreasing share of ATP? The chapter provides practical advice 
on methods for the assessment and measurement of progressivity in health 
care fi nance. Progressivity is measured in regard to departure from pro-
portionality in the relationship between payments toward the provision of 
health care and ATP. Chapter 17 considers the relationship between progres-
sivity and the redistributive impact of health care payments. Redistribution 
can be vertical and horizontal. The former occurs when payments are dis-
proportionately related to ATP. The chapter shows that the extent of vertical 
redistribution can be inferred from measures of progressivity presented in 
chapter 16. Horizontal redistribution occurs when persons with equal abil-
ity to pay contribute unequally to health care payments. Chapter 17 shows 
how the total redistributive effect of health payments can be measured and 
how this redistribution can be decomposed into its vertical and horizontal 
components. 

• Catastrophe and impoverishment in health spending. One conception of fairness 
in health fi nance is that households should be protected against catastrophic 
medical expenses (World Health Organization 2000). A popular approach 
has been to defi ne medical spending as “catastrophic” if it exceeds some 
fraction of household income or total expenditure within a given period, 
usually one year. The idea is that spending a large fraction of the household 
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budget on health care must be at the expense of consumption of other goods 
and services. Chapter 18 develops measures of catastrophic health spending, 
including the incidence and intensity of catastrophic spending, as well as a 
measure that captures not just the incidence or intensity but also the extent 
to which catastrophic spending is concentrated among the poor. Chapter 19 
looks at the measurement of impoverishing health expenditures—expendi-
tures that result in a household falling below the poverty line, in the sense 
that had it not had to make the expenditures on health care, the household 
could have enjoyed a standard of living above the poverty line. 
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2
Data for Health Equity Analysis: Requirements, 
Sources, and Sample Design

The fi rst step in health equity analysis is to identify appropriate data and to under-
stand their potential and their limitations. This chapter provides an overview of 
the data needs for health equity analysis, considering how data requirements may 
vary depending on the analytical issues at hand. The chapter also provides a brief 
guide to different sources of data and their respective limitations. Although there 
is some scope for using routine data, such as administrative records or census data, 
survey data tend to have the greatest potential for assessing and analyzing differ-
ent aspects of health equity. With this in mind, the chapter also provides examples 
of different types of survey data that analysts may be able to access. Finally, it offers 
a brief discussion and illustration of the importance of sample design issues in the 
analysis of survey data. 

Data requirements for health equity analysis

Health outcomes and health-related behavior

Data on health outcomes are a basic building block for health equity analysis. But 
how can health be measured? Murray and Chen (1992) have proposed a classifi ca-
tion of morbidity measures that distinguishes between self-perceived and observed 
measures (see table 2.1).

For most of these measures, data are not collected routinely and can be obtained 
only through surveys. However, as is discussed further below, surveys differ sub-
stantially, both in the range of measures covered and in the approach to measure-
ment. For example, some surveys include only short questions about illness epi-
sodes. Other surveys, such as the Indonesia Family Life Survey, use trained health 
workers in enumerator teams and collect detailed “observed” morbidity data, 
including measured height, weight, hemoglobin status, lung capacity, blood pres-
sure, and the speed with which the respondent was able to stand up fi ve times from 
a sitting position. 

Health equity analysis can also be concerned with health-related behavior. The 
most obvious question in this respect concerns the utilization of and payment for 
health services. Questions on these issues have been included in many surveys, 
although the level of detail has varied considerably. But health-related behavior 
extends beyond the utilization of health services. Other variables relevant to health 
equity analyses include (i) behavior with an effect on health status (smoking, 
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drinking, and diet), (ii) sexual practices, and (iii) household-level behavior (cooking 
practices, waste disposal, sanitation, sources of water). Some data on health service 
use are collected through routine information systems and population censuses 
(e.g., immunizations), but more detailed data are likely to be available only through 
surveys. 

In the case of both health outcomes and health-related behaviors, it is important 
to keep in mind that variation in the variable of interest may arise for many rea-
sons. Some of these relate to health system characteristics—for example, features 
of health fi nancing or service delivery arrangements. But there is also likely to be 
variation due to biological, environmental, social, and other factors. Although it 
is often diffi cult to identify the contribution of different factors in practice, this is 
clearly an important issue to address in thinking about the policy implications of 
health equity analysis. 

Living standards or socioeconomic status

Concerns for health equity arise in the relationships between health, or health-
related behavior, and a variety of individual characteristics, such as social class, 
ethnic group, sex, age, and location. This book is concerned primarily with health 
equity defi ned in relation to socioeconomic status or living standards. The goal is 
to assess and to understand how health outcome or health-related behaviors vary 

Table 2.1 A Classifi cation of Morbidity Measures

Self-Perceived

Symptoms and impairments  Occurrence of illness or specifi c symptoms during a 
defi ned time period

Functional disability  Assessment of ability to carry out specifi c functions and 
tasks, or restrictions on normal activities (activities of 
daily living, e.g., dressing, preparing meals, or performing 
physical movement)

Handicap  Self-perceived functional disability within a specifi cally 
defi ned context

Observed

Physical and vital signs  Aspects of disease or pathology that can be detected 
by physical examination (e.g., blood pressure and lung 
capacity)

Physiological and  Measures based on laboratory examinations (e.g., blood, 
pathophysiological indicators   urine, feces, and other bodily fl uids), body measurements 

(anthropometry)

Physical tests  Demonstrated ability to perform specifi c functions, both 
physical and mental (e.g., running, squatting, blowing up 
a balloon, or performing an intellectual task)

Clinical diagnosis  Assessment of health status by a trained health 
professional based on an examination and possibly 
specifi c tests

Source: Authors.
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with some measure of socioeconomic status or living standards. This is not to 
say that other types of comparisons are not of interest or relevant to policy—they 
clearly are. However, comparisons across, say sex, ethnic group, or geographic loca-
tion, typically are not amenable to the techniques described in this book and hence 
receive less attention in what follows. 

For the purposes of analyzing socioeconomic health inequalities, health-related 
information must be complemented by data on living standards or socioeconomic 
status. As is discussed in detail in chapter 6, there are many approaches to living 
standards measurement, including direct approaches (e.g., income, expenditure, or 
consumption) and proxy measures (e.g., asset index). In practice, the choice of liv-
ing standards measure is often driven by data availability. Nonetheless, the choice 
of measure may infl uence the conclusions, so it is important for analysts to be aware 
of both the assumptions that underpin the chosen measure and the potential sensi-
tivity of fi ndings. 

It is also important to distinguish between cardinal and ordinal measures of liv-
ing standards. In the case of cardinal measures—for example, income or consump-
tion in dollars or units of another currency—numbers convey comparable infor-
mation about magnitude. Ordinal measures only rank individuals or households 
and do not permit comparisons of magnitudes across units. Some forms of health 
equity analysis require a cardinal measure of living standards. This is the case, for 
example, with fi nancing progressivity and the poverty impact of health payments 
or health events. But in some cases, a ranking of households by some measure of 
living standards suffi ces. For example, measures of inequality in health and health 
care. 

Other complementary data

For some forms of health equity analysis, data on the relevant health variables and 
a measure of living standards suffi ce. Often, however, other complementary data 
are required. For example, if multivariate analysis of health-related variables is to 
be used to better understand why observed inequalities arise, then data on com-
munity, household, and individual characteristics are required. This could include, 
for example, availability and characteristics of health care providers, environmen-
tal and climatic characteristics of the community, housing characteristics, educa-
tion, sex, ethnicity, and so on. 

Complementary data are also required to identify the distribution of pub-
lic health expenditure in relation to living standards, so-called benefi t-incidence 
analysis. The primary requirement is data on unit subsidies to health services. 
This information tends to be based on public expenditure data, but in some cases, 
more detailed cost information is available. Taking account of regional variation 
in unit costs requires data on the geographic location of the individual. Extending 
the analysis to examine variation in utilization with, for example, sex and ethnicity, 
requires data on the relevant demographics. Analysis of health fi nancing fairness 
and progressivity depends on detailed data on user payments for health care. 

The data requirements of different types of health equity analysis are summa-
rized in table 2.2. As discussed in the rest of this chapter, the richest data for health 
equity analysis are likely to be from household surveys, but routine administrative 
data can also prove useful.
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Data sources and their limitations

Household surveys and other nonroutine data

Household surveys are implemented on a regular basis in many countries and are 
probably the most important source of data for health equity analysis. Some house-
hold surveys are designed as multipurpose surveys, with a focus on a broad set 
of demographic and socioeconomic issues, whereas other surveys focus explicitly 
on health. Surveys sample from the population and are representative, or can be 
made representative, of the population as a whole (or whatever target population 
is defi ned for the survey). They have the advantage of permitting more detailed 
data collection than is feasible in a comprehensive census. Although many surveys 
are conducted on an ad hoc basis, there are an increasing number of multiround 
integrated survey programs. These include the Living Standards Measurement 
Study (World Bank), the Demographic and Health Surveys (ORC Macro), the Mul-
tiple Indicator Cluster Surveys (UNICEF), and the World Health Surveys (WHO).1 
The Living Standards Measurement Surveys are different from the other surveys 
in that they collect detailed expenditure data, income data, or both. In that sense, 
the Living Standards Measurement Surveys are a type of household budget sur-
vey.2 Many countries implement household budget surveys in some form or other 
on a semiregular basis. A core objective of these surveys is to capture the essential 
elements of the household income and expenditure pattern. In some countries, the 
surveys focus exclusively on this objective and are hence of limited use for health 
equity analysis. However, it is also common for household budget surveys to 
include additional modules—for example, on health and nutrition—making them 

Table 2.2 Data Requirements for Health Equity Analysis

   Living Living
   standards standards   Back-
 Health Utilization measure measure Unit User ground
 variables variables (ordinal) (cardinal) subsidies payments variables

Health inequality ✓  ✓

Equity in utilization  ✓ ✓

Multivariate 
 analysis ✓ or ✓  ✓   ✓

Benefi t-incidence 
 analysis  ✓ ✓  ✓  (✓)

Health fi nancing 

 – Progressivity    ✓  ✓

 –  Catastrophic 
payments    ✓  ✓

 – Poverty impact    ✓  ✓

Source: Authors.

1Some surveys, in particular the Demographic and Health Surveys and some budget surveys, 
are repeated on a regular basis and can in that sense be considered “semiroutine” data.
2These surveys are sometimes called “family expenditure surveys,” “expenditure and con-
sumption surveys,” or “income and expenditure surveys.”
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ideal for detailed analysis of the relationship between economic status and health 
variables. 

Aside from large-scale household surveys, there are often a wealth of other non-
routine data that can be used for health equity analysis. This may include small-
scale, ad hoc household surveys and special studies. It may also be possible to 
analyze data from facility-based surveys of users (exit polls) from an equity per-
spective. Relative to household surveys, exit polls are cheap to implement (in par-
ticular if they are carried out as a component of a health facility survey) and are an 
effi cient means of collecting data on health service use and perceptions. With exit 
polls it is also easier to associate outcomes of health-seeking behavior (e.g., client 
perceptions of quality, payments, receipt of drugs) with a particular provider and 
care-seeking episode. This is often diffi cult in general household surveys, in which 
typically specifi c providers are not identifi ed and in which recall periods of up to 4 
weeks can result in considerable measurement error. However, unlike a household 
survey, an exit poll provides information only about users of health services.

Although survey data can be of considerable value for health equity analysis, it 
is important to be aware of their limitations. For one thing, large-scale surveys are 
expensive to conduct and, as a result, they tend to be implemented only periodically. 
Moreover, the scope, focus, and measurement approaches can vary across surveys 
and over time, limiting the scope for comparisons. Another challenge concerns 
the way the survey sample is selected and what this implies for making inferences 
from the data. It is important for analysts to be aware of the “representativeness” of 
the survey data and to take this into account when drawing conclusions about the 
wider population. It is also important to be aware of how to adjust the analysis for 
departures from simple random sampling, arising from, for example, stratifi cation 
or multistage sampling. These issues are discussed in more detail below. Finally, 
survey data can be misleading, or “biased,” because of problems in both the sample 
design and the way the survey is implemented (see box 2.1). Both of these problems 
can lead analysts to draw inappropriate inferences from survey data.

Box 2.1 Sampling and Nonsampling Bias in Survey Data

When analyzing survey data, analysts must be aware of potential sources of sampling 
and nonsampling bias. Sampling bias refers to a situation in which the sample is not 
representative of the target population of interest. For example, it is inappropriate to 
draw inferences about the general population on the basis of a sample drawn from 
users of health facilities. The reason is that different groups in the population use health 
facilities to different degrees—for example, due to differences in access or need. Sam-
pling bias can also arise from the practice of “convenience sampling” aimed at avoiding 
remote or inaccessible areas or from the use of an inaccurate or inappropriate sampling 
frame. These potential problems point to the need for analysts to be well aware of the 
sampling procedure.

There are also many potential forms of nonsampling bias that can arise in the pro-
cess of survey implementation. For example, nonresponse or measurement errors may 
be systematically related with variables of interest—for example, nonresponse about 
utilization of health services may be higher among the poor. If this were the case, ana-
lysts should be cautious in interpreting results and drawing inferences about the gen-
eral population. In some cases, it may be possible to correct for this bias by modeling 
nonresponse. Other potential sources of nonsampling bias include errors in recording 
or data entry.

Source: Authors.
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Routine data: health information systems and censuses

Some forms of routine data may be suitable for health equity analysis. Health infor-
mation systems (HIS) collect a combination of health data through ongoing data 
collection systems. These data include administrative health service statistics (e.g., 
from hospital records or patient registration), epidemiological and surveillance 
data, and vital events data (registering births, deaths, marriages, etc.). HIS data are 
used primarily for management purposes, for example, for planning, needs assess-
ments, resource allocation, and quality assessments. However, in some contexts, 
HIS data include demographic or socioeconomic variables that permit equity anal-
ysis. This is the case, for example, in Britain, where mortality data based on death 
certifi cates have been used for tabulations of mortality rates by occupational group 
since the 19th century. Similar analysis has been undertaken in other countries 
by ethnic group or educational level. Although many HIS do not routinely record 
socioeconomic or demographic characteristics, this may change in the future as the 
importance of monitoring health system equity becomes more recognized. 

Periodic population and housing censuses are another form of routine data. 
Censuses are an important source of data for planning and monitoring of popula-
tion issues and socioeconomic and environmental trends, in both developed and 
developing countries. National population and housing censuses also provide 
valuable statistics and indicators for assessing the situation of various special pop-
ulation groups, such as those affected by gender issues, children, youth, the elderly, 
persons with a disability, and the migrant population. Population censuses have 
been conducted in most countries in recent years.3 Census data often contain only 
limited information on health and living standards, but have sometimes been used 
to study health inequalities by linking the information to HIS data. For example, 
socioeconomic differences in disease incidence and hospitalization have been stud-
ied by linking cause-of-death or hospital discharge records with census data. In the 
United States, there have also been efforts to link public health surveillance data 
with area-based socioeconomic measures based on geocoding. Although poor data 
quality and availability may currently preclude such linking in low-income coun-
tries, census data may be used to study equity issues by constructing need indica-
tors for geographic areas based on demographic and socioeconomic profi les of the 
population.

Notwithstanding the potential for using routine data for health equity analysis, 
it is important to be aware of the common weaknesses of such data. In particular, 
coverage is often incomplete and data quality may be poor. For example, as a result 
of spatial differences in the coverage of health facility infrastructure, routine data 
are likely to be more complete and representative in urban than in rural areas. Sim-
ilarly, better-off individuals are more likely to seek and obtain medical care and, 
hence, to be recorded in the HIS. Moreover, in cases in which routine data are used 
for management purposes, there may exist incentives for staff to record informa-
tion inaccurately. 

Data sources and their limitations are summarized in table 2.3.

3Information about dates of censuses in different countries can be found on http://unstats.
un.org/unsd/demographic/census/cendate/index.htm.
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Table 2.3 Data Sources and Their Limitations

Type of data Examples Advantages Disadvantages

Survey data 
(household)

Living Standards 
Measurement Study 
(LSMS), Demographic 
and Health Surveys 
(DHS), Multiple 
Indicator Cluster 
Surveys (MICS), 
World Health 
Surveys (WHS) 

Data are representa-
tive for a specifi c 
population (often 
nationally), as well as 
for subpopulations

Many surveys have 
rich data on health, 
living standards, and 
other complementary 
variables

Surveys are often 
conducted on a regular 
basis, sometimes 
following households 
over time

Sampling and 
nonsampling errors 
can be important

Survey may not be 
representative to of 
small subpopulations 
of interest

Survey data 
(exit poll)

Ad hoc surveys, often 
linked to facility 
surveys

Cost of implementa-
tion is relatively low 

Detailed information 
that can be related to 
provider characteristics 
is provided about users 
of health services 

Data on payments and 
other characteristics of 
visit are more likely to 
be accurate

Exit polls provide no 
information about 
nonusers

Data often contain 
limited information 
about household 
and socioeconomic 
characteristics

Survey responses 
may be biased 
from “courtesy” to 
providers or fear of 
repercussions

Administrative 
data

HIS, vital registration, 
national surveillance 
system, sentinel site 
surveillance

Data are readily 
available

Data may be of poor 
quality

Data may not be 
representative for the 
population as a whole

Data contain limited 
complementary 
information, e.g., 
about living standards

Census data Implemented on a 
national scale in 
many countries

Data cover the entire 
target population (or 
nearly so)

Data contain only 
limited data on health

Data collection is 
irregular

Data contain limited 
complementary 
information, e.g., 
about living standards

Source: Authors.
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Examples of survey data

Demographic and Health Surveys (DHS and DHS+)

The Demographic and Health Surveys (DHS) have been an important source of 
individual and household-level health data since 19844 The design of the DHS drew 
on the experiences of the World Fertility Surveys5 (WFS) and the Contraceptive 
Prevalence Surveys, but included an expanded set of indicators in the areas of pop-
ulation, health, and nutrition. DHS are nationally representative, with sample sizes 
typically ranging from 5,000 to 30,000 households. 

The standard Demographic and Health Surveys consist of a household ques-
tionnaire and a women’s questionnaire (ages 15–49). The core questionnaire con-
centrates on basic indicators and is standardized across countries. The household 
questionnaire covers basic demographic data for all household members, house-
hold and dwelling characteristics, and nutritional status of young children and 
women ages 15 through 49. The women’s questionnaire contains information on 
general background characteristics, reproductive behavior and intentions, contra-
ception, maternity care, breastfeeding and nutrition, children’s health, status of 
women, AIDS and other sexually transmitted diseases, husband’s background, and 
other topics. Some surveys also include special modules tailored to meet particular 
needs. 

Aside from the standard DHS, interim surveys are sometimes implemented to 
collect information on a reduced set of performance-monitoring indicators. These 
surveys have a smaller sample size and are often conducted between rounds of 
DHS. In addition, many of the DHS have included tools to collect community-level 
data (Service Availability Modules). More recently, detailed facility surveys—Ser-
vice Provision Assessments—have been implemented alongside household surveys 
with a view to providing information about the characteristics of health services, 
including their quality, infrastructure, utilization, and availability.

Further information, including a list of past and ongoing surveys, survey 
reports, questionnaires, and information on how to access the data, can be found 
on http://www.measuredhs.com.

The Living Standards Measurement Study

The Living Standards Measurement Study (LSMS) was established by the World 
Bank in 1980 to explore ways of improving the type and quality of household data 
collected by government statistical offi ces in developing countries. LSMS surveys 
are multitopic surveys, designed to permit four types of analysis: (i) simple descrip-
tive statistics on living standards, (ii) monitoring of poverty and living standards 

4For further information about the history of DHS, see http://www.measuredhs.com/about-
dhs/history.cfm. In 1997 DHS changed its name to DHS+ to refl ect the integration of DHS 
activities under the MEASURE program. Under that mandate, DHS+ is charged with col-
lecting and analyzing demographic and health data for regional and national family plan-
ning and health programs.
5The WFSs were a collection of internationally comparable surveys of human fertility con-
ducted in 41 developing countries in the late 1970s and early 1980s. The project was con-
ducted by the International Statistical Institute (ISI), with funding from USAID and 
UNFPA.
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over time, (iii) description of the incidence and coverage of government programs, 
and (iv) measurement of the impact of policies and programs on household behav-
ior and welfare (Grosh et al. 2000). The fi rst surveys were implemented in Côte 
d’Ivoire and Peru. Other early surveys followed a similar format, although consid-
erable variation has been introduced over time. 

The household questionnaire forms the heart of the LSMS survey. Typically, it 
includes a health module that provides information on (i) health-related behavior; 
(ii) utilization of health services; (iii) health expenditures; (iv) insurance status; and 
(v) access to health services. The level of detail of the health section has, however, 
varied across surveys. Complementary data are typically collected through com-
munity and price questionnaires. In addition, detailed service provider (health 
facility or school) data have been collected in some LSMS surveys. The facility sur-
veys have been included to provide complementary data primarily on prices of 
health care and medicines and health care quality. 

Further information, including a list of past and ongoing surveys, survey 
reports, questionnaires, and information on how to access the data, can be found at 
http://www.worldbank.org/lsms/.

UNICEF multiple indicator cluster surveys 

The multiple indicator cluster surveys (MICS) were developed by UNICEF and oth-
ers in 1998 to monitor the goals of the World Summit for Children. By 1996, sixty 
developing countries had carried out stand-alone MICS and another 40 had incor-
porated some of the MICS modules into other surveys. 

The early experience with MICS resulted in revisions of the methodology and 
questionnaires. These revisions drew on the expertise and experience of many 
organizations, including WHO, UNESCO, ILO, UNAIDS, the United Nations Statis-
tical Division, CDC Atlanta, MEASURE (USAID), and academic institutions. 

The MICS typically include three components: a household questionnaire, a 
women’s questionnaire (15–49 years), and a child (under 5 years) questionnaire. 
The precise content of questionnaires has varied somewhat across countries. 
Household questionnaires often cover education, child labor, maternal mortality, 
child disability, water and sanitation, and salt iodization. The women’s question-
naires have tended to include sections on child mortality, tetanus toxoid, maternal 
health, contraceptive use, and HIV/AIDS. Finally, the child questionnaire covers 
birth registration, vitamin A, breast-feeding, treatment of illness, malaria, immuni-
zations, and anthropometry. 

Further information, including a list of past and ongoing surveys, survey 
reports, questionnaires, and information on how to access the data can be found at 
http://www.childinfo.org/index2.htm.

WHO World Health Survey

WHO has developed a World Health Survey (WHS) to compile comprehensive base-
line information on the health of populations and on the outcomes associated with 
the investment in health systems. These surveys have been implemented in 70 coun-
tries across the full range of development in collaboration with the people involved 
in routine HIS. The overall aims of the WHS are to examine the way populations 
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report their health, understand how people value health states, and measure the per-
formance of health systems in relation to responsiveness. In addition, it addresses 
various issues such as health care expenditures, adult mortality, birth history, vari-
ous risk factors, and the like. 

In the fi rst stage, the WHS targets adult individuals living in private households 
(18 years or older). A nationally representative sample of households is drawn, and 
adult individuals are selected randomly from the household roster. Sample sizes 
vary from 1,000 to 10,000 individuals.

The content of the questionnaires varies across countries but, in general, covers 
general household information, geocoding, malaria prevention, home care, health 
insurance, income indicators, and household expenditure (including on health). 
In addition, a specifi c module is administered to household members who are 
trained or are working as health professionals. This module covers a limited set 
of issues, including occupation, location of work, hours of work, main activities in 
work, forms and amount of payment, second employment, reasons for not work-
ing (if applicable), and professional training. The individual questionnaire includes 
sections on sociodemographic characteristics, health state descriptions, health state 
valuations, risk factors, mortality, coverage, health system responsiveness, and 
health goals and social capital.

Further information, including country reports and questionnaires can be found 
at http://www.who.int/healthinfo/survey/en/index.html.

WHO multicountry evaluation of the integrated management 
of childhood illnesses

Currently, WHO is coordinating a multicountry evaluation (MCE) of the inte-
grated management of childhood illnesses (IMCI).6 Integrated survey instruments 
for costs and quality have been developed and implemented (or are being imple-
mented) in Bangladesh, Tanzania, Peru, and Uganda. The purpose of the MCEs is 
to (i) document the effects of IMCI interventions on health workers’ performance, 
health systems, and family behaviors; (ii) determine whether, and to what extent, 
the IMCI strategy as a whole has a measurable impact on health outcomes (reduc-
ing under-5 morbidity and mortality); (iii) describe the cost of IMCI implementa-
tion at national, district, and health facility levels; (iv) increase the sustainability of 
IMCI and other child health strategies by providing a basis for improving imple-
mentation; and (v) support planning and advocacy for childhood interventions by 
ministries of health in developing countries and national and international part-
ners in development. Worldwide there are 30 countries at different stages of imple-
mentation of IMCI, among which Uganda, Peru, Bangladesh, and Tanzania will 
participate in the MCE.

Further information, including country reports, questionnaires, and how to 
access data can be found at http://www.who.int/imci-mce/.

6The Integrated Management of Childhood Illnesses (IMCI) Strategy was developed by 
WHO and UNICEF to address fi ve leading causes of childhood mortality, namely, malaria, 
pneumonia, diarrhea, measles, and malnutrition. The three main components addressed by 
the strategy are improved case management, improved health systems, and improved fam-
ily and community practices.
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RAND surveys

RAND has supported the design and implementation of Family Life Surveys (FLS) 
in developing countries since the 1970s. Currently available country surveys include 
Indonesia (1993, 1997, 1998, 2000), Malaysia (1976–7, 1988–9), Guatemala (1995), and 
Bangladesh (1996). Further information about these surveys and information on 
how to access the data can be found at http://www.rand.org.

INDONESIA FAMILY LIFE SURVEY The Indonesia Family Life Survey (IFLS) is 
an ongoing, multitopic longitudinal survey. It aims to provide data for the mea-
surement and analysis of a range of individual- and household-level behaviors 
and outcomes. It includes indicators of economic well-being, education, migration, 
labor market outcomes, fertility and contraceptive use, health status, use of health 
care and health insurance, intrahousehold relationships, and participation in com-
munity activities. In addition, community-level data are collected. These include 
detailed surveys of service providers (schools and health care providers) in the 
selected communities. The fi rst wave of the survey (IFSL1) was conducted in 1993/4, 
covering approximately 7,000 households. The IFLS2 and IFLS2+ were conducted in 
1997 and 1998, and a further wave (IFLS3) in 2000. 

MALAYSIAN FAMILY LIFE SURVEYS  The Malaysian Family Life Surveys were 
conducted in 1976/7 and 1988. The surveys contain extensive histories on employ-
ment, marriage, fertility, and migration. Respondents in the fi rst wave were fol-
lowed in a second wave, and a refreshment sample was added. 

MATLAB HEALTH AND SOCIOECONOMIC SURVEY The Matlab Health and Socio-
economic Survey was implemented in 1996 in Matlab, a rural region in Bangladesh 
in which there is an ongoing prospective demographic surveillance system. The 
general focus of the survey was on issues relating to health and well-being for rural 
adults and the elderly, including the effects of socioeconomic characteristics on 
health status and health care utilization; health status, social and kin network char-
acteristics, and resource fl ows; and community services and infrastructure. The 
study included a survey of individuals and households, a specialized out-migrant 
survey (sample of individuals who had left the households of the primary sample 
since 1982), and a community provider survey. 

GUATEMALAN SURVEY OF FAMILY HEALTH The Guatemalan Survey of Family 
Health is a single cross-section survey that was conducted in rural communities in 
4 of Guatemala’s 22 departments. The survey was fi elded in 1995. 

University of North Carolina surveys

The Carolina Population Center at the University of North Carolina at Chapel Hill 
has been involved in a range of different data collection exercises. Much of the 
data are publicly available. Information can be found at http://www.cpc.unc.edu/
projects/projects.php. 

CEBU LONGITUDINAL HEALTH AND NUTRITION SURVEYS The Cebu Longitudi-
nal Health and Nutrition Survey is a study of a cohort of Filipino women who gave 
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birth between May 1, 1983, and April 30, 1984, and were reinterviewed, with their 
children, at three subsequent points in time until 1998/9. 

CHINA HEALTH AND NUTRITION SURVEY The China Health and Nutrition Sur-
vey is a six-wave longitudinal survey conducted in eight provinces of China between 
1989 and 2004. It provides a wealth of detailed information on health and nutrition 
of adults and children, including physical examinations. 

NANG RONG (THAILAND) PROJECTS The Nang Rong projects represent a major 
data collection effort that was started in 1984 with a census of households in 51 vil-
lages. The villages were resurveyed in 1988 and again in 1994/5. New entrants were 
interviewed, and a subsample of out-migrants was followed. 

Sample design and the analysis of survey data

Survey data provide information on a subset of a population—a sample. If the sam-
ple is appropriately selected, it provides the basis for drawing inferences about the 
target population, for example, all children under fi ve in a particular country. A 
sample is selected from a sampling frame, which is a list of sampling units (e.g., 
households).7 In a probability sampling design, every element in the sampling 
frame has a known, nonzero chance of being selected into the survey sample. This 
is not true with nonprobability methods, such as quota or convenience sampling 
and random walks. 

The most straightforward way of selecting a sample is by simple random 
sampling–sampling units are selected from the sampling frame with equal prob-
ability.8 In many cases, a single-stage random sampling design is impractical. This 
may be so because of the diffi culty in drawing up a complete list for the entire target 
population, because of concern that the sample would contain “too few” members 
of some subpopulations, or because of high costs and logistical constraints in visit-
ing a randomly selected sample. Because of these and other concerns, many surveys 
have what is referred to as a complex survey design. Three factors that arise from 
the sample design have important implications for data analysis (Deaton 1997).

• Stratifi cation Stratifi cation is the process by which the population is 
divided into subgroups or subpopulations, and sampling is then done sepa-
rately for each subpopulation. Stratifi cation can be done on the basis of geog-
raphy, level of urbanization, socioeconomic zones or administrative areas, 
and so forth. Stratifi cation is used when there is an expectation of heteroge-
neity between different subpopulations. It can then reduce sampling error 
and ensures that representative estimates can be produced for each strata. 

7The sampling units are often the same as the members of the target population, but that is 
not always the case. For example, because it would be very diffi cult to construct a list of all 
children under 5 in any country, it may be more convenient to consider households as the 
sampling units and then to include all children under 5 from the selected households in the 
sample.
8In theory, simple random sampling is done with replacement of units after each draw. In 
practice, sampling is usually without replacement, and there should be a slight adjustment 
to the standard errors to correct for this (see, for example, Deaton [1997]).
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• Cluster sampling A cluster is a naturally occurring unit or grouping 
within the population (e.g., enumeration areas). Cluster sampling entails 
randomly selecting a number of clusters and then including all or a random 
selection of units within the cluster. In multistage cluster sampling, further 
clusters are selected from within the fi rst cluster. For example, enumeration 
areas may be the primary sampling unit, followed by households as sec-
ondary sampling units, and individuals as the fi nal unit. Cluster sampling 
is useful because it reduces the informational requirement in the sampling 
process (a complete list of sampling units is required only for selected clus-
ters) and because it can signifi cantly reduce the costs of survey implementa-
tion. However, if there is a great deal of homogeneity within clusters, but 
heterogeneity between clusters, cluster sampling can substantially increase 
standard errors. 

• Unequal selection probabilities In many surveys, different observations 
may have different probabilities of selection. This may be the consequence 
of stratifi cation or other sample design decisions. In this case, it is necessary 
to weight each observation in the analysis to generate unbiased estimates of 
parameters of interest. The weights are equal (or proportional) to the inverse 
of the probability of being sampled. As a consequence, the weight for a spe-
cifi c observation can be interpreted as the number of elements in the popula-
tion that the observation represents. In other words, if an element has a very 
small probability of selection relative to other elements, it should be weighted 
more heavily in the analysis. 

The importance of taking sample design into account: an illustration

Many software packages have preprogrammed features for the analysis of com-
plex survey data. That is the case, for example, with Stata, SPSS, and EpiInfo. For 
example, in Stata, survey commands can be used for descriptive analysis (e.g., 
svydes, svymean, svyprop, svytotal, svytab), estimation (e.g. svyreg, 
svyprobit, svylogit, svymlogit, svyoprobit, svypois), and postestima-
tion testing (e.g., svytest).9 Issues in the multivariate analysis of complex survey 
data are discussed in greater detail in chapter 10. Here, we simply illustrate the 
importance of taking sample design into account when making inferences about a 
population mean. 

The following example is based on the 1997 Mozambique Living Standards and 
Measurement Survey. The survey sample was selected through a three-stage pro-
cess, with stratifi cation by province (11 provinces—the variable province) and 
area (urban/rural—urban), primary sampling at the locality level (locality), 
followed by sampling of households within each locality. Sampling weights are 
recorded in the variable wgt. In surveys in which samples are stratifi ed along more 
than one dimension, a stratifi cation variable (with a unique value for each strata) 
typically has to be constructed by the analyst. For example in the Mozambique data, 

9For most Stata commands, adjustment for unequal sampling probabilities can be made 
by applying the weights option, for example, [pw=weight]. Standard errors can also be 
adjusted for cluster design by the option cluster(). Nonsurvey commands do not handle 
stratifi ed sampling, however.
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there are 21 separate strata (two strata (urban/rural) for each of the 11 provinces, 
except for Maputo City Province, which is only urban). This stratifi cation variable 
can be easily constructed in Stata using the group function of the egen command. 

egen strata = group(province urban)

We now have the three variables—wgt, strata, and locality—required to 
take sample design fully into account in the analysis. Here, we consider how child 
immunization rates, estimated from a dummy variable vacc indicating whether 

Table 2.4 Child Immunization Rates by Household Consumption Quintile, Mozambique, 
1997

Effect on Point Estimates and Standard Errors of Taking Sample Design into Account 

A

pweight: -

strata: -

psu: -

Quintile Mean s.e. Deff

Poorest 0.545 0.014 1.000

2 0.659 0.014 1.000

3 0.708 0.013 1.000

4 0.805 0.011 1.000

Richest 0.892 0.008 1.000

Total 0.728 0.006 1.000

n 6,447

No. strata 1

No. PSUs 6,447  

B

pweight: wgt

strata: -

psu: -

Quintile Mean s.e. Deff

Poorest 0.531 0.017 1.694

2 0.629 0.019 2.196

3 0.621 0.019 2.117

4 0.708 0.024 3.416

Richest 0.843 0.014 1.488

Total 0.654 0.009 2.138

n 6,447

No. strata 1

No. PSUs 6,447

C

pweight: wgt

strata: strata

psu: -

Quintile Mean s.e. Deff

Poorest 0.531 0.017 1.630

2 0.629 0.019 2.164

3 0.621 0.019 2.075

4 0.708 0.024 3.366

Richest 0.843 0.014 1.456

Total 0.654 0.008 1.942

n 6,447

No. strata 21

No. PSUs 6,447

D

pweight: wgt

strata: strata

psu: locality

Quintile Mean s.e. Deff

Poorest 0.531 0.028 4.469

2 0.629 0.033 6.577

3 0.621 0.026 4.014

4 0.708 0.029 5.092

Richest 0.843 0.018 2.485

Total 0.654 0.017 8.313

n 6,447

No. strata 21

No. PSUs 273

Source: Authors.



 Data for Health Equity Analysis Requirements, Sources, and Sample Design 27

a child is immunized, vary across consumption quintiles (quint). Four different 
cases are considered: 

A. sample design not taken into account

svyset

B. sample weights taken into account

svyset [pw=wgt]

C. sample weights and stratifi cation taken into account

svyset [pw=wgt], strata(strata)

D. sample weights, stratifi cation, and clustering taken into account

svyset locality [pw=wgt], strata(strata)

In each case, the svyset command is followed by

svy: mean vacc, over(quint)

As can be seen from table 2.4, the application of weights has a substantial impact on 
both point estimates and standard errors. In this application, taking stratifi cation 
into account reduces the standard errors only slightly, whereas taking clustering 
into account increases the standard errors substantially. This illustrates that appli-
cation of weights is not suffi cient to correct for the sample design. It corrects the 
point estimates, but not the standard errors, confi dence intervals, and test statistics.

These effects are described by the design effect (deff), which is a measure of 
how the survey design affects variance estimates. deff is calculated as the design-
based variance estimate divided by an estimate of the variance that would have 
been obtained if a similar survey had been carried out using simple random sam-
pling. It is obtained from the command estat effects following svy.
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3
Health Outcome #1: Child Survival

Child mortality is a commonly used measure of average population health (Inter-
national Monetary Fund et al. 2000; UNICEF 2001) and has been used in studies 
of the gaps in health outcomes between the poor and the better-off (Gwatkin et al. 
2000; Wagstaff 2000). The infant mortality rate (IMR) is the number of deaths occur-
ring in the fi rst year of life per 1,000 live births and measures the probability of a 
child dying before the child’s fi rst birthday. The under-fi ve mortality rate (U5MR) 
measures the probability of death before a child’s fi fth birthday. Although the IMR 
and U5MR can be estimated from vital registration statistics and demographic sur-
veillance systems, these are not widely used in the developing world. In instances 
in which vital registration systems do exist, their comprehensiveness and reliabil-
ity are often doubted. Furthermore, even where they exist, it is uncommon for any 
socioeconomic information to be recorded, making the analysis of socioeconomic 
inequalities in mortality impossible. 

The alternative source of data on child mortality is a household survey. Estimat-
ing mortality rates from survey data involves the use of fertility histories. These are 
constructed from responses to questions posed to women of fertile age about births 
and deaths of children born to them. A complete fertility history uncovers the dates 
of birth, and if applicable the deaths, of all children born to the interviewed woman. 
An incomplete fertility history uncovers only the number of children born to the 
interviewed woman and the number still alive (or equivalently the number who 
have died). 

Complete and incomplete fertility histories call for two different methods of 
mortality estimation, the direct method and the indirect method, respectively. 
Each method has advantages and disadvantages. The complete fertility history 
places greater informational demands on the survey and the interviewed woman, 
but generates more information and permits the estimation of standard errors for 
the mortality estimates. The incomplete history is less demanding in regard to 
information, but requires that the survey data be supplemented with data from a 
model life table, and it is not possible to compute standard errors for the mortality 
estimates. 

This chapter describes how to compute mortality rates from household sur-
vey data by the direct and indirect methods using two statistical packages. It also 
explains how survey data can be used to undertake disaggregated mortality esti-
mation, for example, across socioeconomic groups. 
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Complete fertility history and direct mortality estimation 

The direct method of estimating child mortality involves taking the data from the 
complete fertility history and estimating a life table. This section outlines the steps 
involved and sets out the Stata code using a worked example from the 1998 Viet-
nam Living Standards Survey (VLSS) (Wagstaff and Nguyen 2003). 

Preparing the data: example from the Living Standards Measurement Study

The complete fertility history allows a child-level data set to be assembled contain-
ing data for each child on the date of the mother’s interview, the date of birth of the 
child, a binary variable indicating the child’s status (alive or dead), and the survival 
time. Mortality estimation is based on deaths over a specifi c period of time—usu-
ally the 5 or 10 years before the survey date. It is useful therefore to have a variable 
indicating how old the child was at the interview date in the case of a still-living 
child and, in the case of a child who had died, how old the child would have been at 
the interview date if the child had still been alive at that time. This variable, called 
hypage below, allows one to easily select only those cases in which the child was 
born in the past 5 (or 10) years. 

The fi rst step is to generate the interview date—or more precisely the date the 
fertility history was collected. In a typical living standards measurement study 
(LSMS) survey (for Demographic and Health Surveys [DHS] see below) this date 
is recorded in the fi le preceding the household roster. In the fi rst line of code below 
date2 is the variable recording the date the fertility history was collected. In this 
particular example it was recorded as a numeric variable in the form ddmmyy, where 
dd is the day, mm the month, and yy the last two digits of the year. The month, mm, 
is entered as two digits (e.g., April was entered as 04 rather than 4), but the day, 
dd, had no trailing zero (e.g., 1 April is entered as 104 rather than 0104). The fi rst 
few commands generate three new numeric variables corresponding to the day, the 
month, and the year (in full—i.e., as 1997, rather than 97) when the fertility history 
was collected. The mdy function puts this into the date variable intrvdate2. The 
data are then sorted by household ID (househol), in anticipation of a merge with 
the fertility history data, and saved. 

gen intrvdate = date2
tostring intrvdate 
gen str2 year = substr(intrvdate,-2,.)
gen str2 mnth = substr(intrvdate,-4,.)
destring year , replace
replace year = 1900+year
destring mnth , replace
gen day = int(date2/10000)
gen intrvdate2 = mdy(mnth,day,year)
format %d intrvdate2 
sort househol
save fi lename, replace

The next step is to generate each child’s date of birth (dob) in the fertility history 
data fi le. In the commands below, s8aq05y denotes the last two digits of the year of 
birth of the child, s8aq05d is the day of the month the child was born, and s8aq05m 
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is the month. In all fertility histories, there is the problem of what to do with cases 
in which some information in the date of birth is missing. One option is to drop 
such cases, but this reduces the sample size. Moreover, because it is likely that these 
cases are more often than not children who have died, dropping them will bias 
downward the estimated mortality rate. An alternative (the procedure adopted 
below) is to drop cases in which the year of birth is missing, but to replace missing 
months by 6 and missing days by 15. The mdy command creates a date variable cor-
responding to the dob. 

gen yob = 1900+s8aq05y
gen daybrth = s8aq05d
replace daybrth = 15 if s8aq05d==.
gen mob = s8aq05m
replace mob = 6 if s8aq05m==.
gen dob = mdy(mob,daybrth,yob)
format %d dob
sort househol

Next the fertility history data (the open fi le, or master fi le) and the interview data 
(the using data set) are merged using merge, and variables that measure the child’s 
hypothetical age in days (hypagedays) and years (hypageyrs) are computed. 

merge househol using fi lename 
gen hypagedays = intrvdate2 - dob 
gen hypageyrs = hypagedays/365

The next step is to generate a status variable, dead, taking a value of 1 if the child 
has died and zero otherwise. In the commands below s8aq07 is the relevant ques-
tion (Is child x still living with your household?), 1 being “yes”, 2 being “no, living 
in another place,” and 3 being “no, died.” 

gen dead =(s8aq07==3)

Finally, we need to generate a variable measuring the survival time. This is equal 
to the time elapsed since birth in the case of children who are still alive and equal 
to time between birth and death in the case of children who have died. In the 
1998 VLSS, s8aq09t measures the survival time of children who have died, and 
s8aq09u indicates the units in which the survival time is measured (minutes, 
hours, days, weeks, months, quarters, half years, or years). Here we have computed 
two variables—timedays and timeyears. 

gen timedays = hypagedays
replace timedays = s8aq09t/1440 if dead==1 & s8aq09u==1
replace timedays = s8aq09t/24 if dead==1 & s8aq09u==2
replace timedays = s8aq09t if dead==1 & s8aq09u==3
replace timedays = s8aq09t*7 if dead==1 & s8aq09u==4
replace timedays = s8aq09t*30.42 if dead==1 & s8aq09u==5
replace timedays = s8aq09t*91.25 if dead==1 & s8aq09u==6
replace timedays = s8aq09t*182.5 if dead==1 & s8aq09u==7
replace timedays = s8aq09t*365 if dead==1 & s8aq09u==8
gen timeyears = timedays / 365
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Preparing the data: Demographic and Health Survey

The DHS uses a century month code (CMC) for some of its date variables. A CMC is 
the number of the month since the start of the century. For example, January 1900 is 
CMC 1; January 1901 is CMC 13. The variables needed for direct mortality estima-
tion in DHS are 

V008: date of interview (CMC)
B3: date of birth (CMC)
B7: age at death (month imputed)
B5: whether the child is still alive

The age at interview variable, hypage, can be calculated for children alive and 
children dead in Stata as follows:

gen hypage=(v008-b3)/12

Then, we can generate the surviving time (in years), timeyears, for each child in 
the survey and an indicator of whether the child is dead

gen timeyears=.
replace timeyears=hypage 
replace timeyears=b7/12 if b5==0
gen dead=(b5==0)

Computing mortality rates and standard errors

The IMR and U5MR are computed using a life table, produced using the command 
ltable. The command below selects only those children born in the previous 10 
years, including those born exactly 10 years ago. Stata allows one to specify the 
interval width, which can vary through the life table.1 In the case below, a fi xed 
half-yearly interval is used. 

ltable timeyears dead if hypageyrs <=10 , int(.5) gr

Stata produces a life table along the lines of table 3.1. The lack of decimals in the 
intervals makes interpretation somewhat diffi cult—the fi rst row refers to the fi rst 
half-year of life, the second row to the second half-year of life, and so on. There 
were 5,316 children born during the previous 10 years, of whom 114 died during 
the fi rst six months of life, and 194 were “lost” or censored—that is, they were born 
within six months of the interview date and were therefore not fully exposed to 
the risk of death. The assumption made in the life table is that these 194 children 
were exposed for only half of the interval—in this case three months rather than 
six. The total number of children exposed during the fi rst six months is thus 5,316 
less half of 194, or 5,219. The survival rate for the fi rst six months is therefore (5,316 
– 114) divided by 5,219, or 0.9782. The survival rate for each of the subsequent half-
years is computed in the same way, and from these the cumulative survival func-
tion (labeled simply “survival” in table 3.1) is formed. The IMR is the complement 
of the cumulative survival function at the end of the fi rst year—that is, 1 – 0.9752, 
or equivalently 24.8 per 1,000 live births. The U5MR is equal to 1 – 0.9642, or 35.8 

1For example, one could divide the fi rst year into months using int(0.08333, 0.1666, …, 
0.9167, 1.5, 2, 2.5, …, 10). 
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per 1,000. Stata also produces standard errors for the cumulative survival function, 
which are the standard errors for the IMR and U5MR. For example, the standard 
error for the IMR is 2.2 per 1,000, or 8.9 percent of the IMR (known in this form as 
the relative standard error). Figure 3.1 is the chart produced by the gr option in 
the ltable command above—it shows the cumulative survival function and the 95 
percent confi dence intervals around the point estimates. 

Disaggregated analysis and sample weights

Disaggregated analysis—e.g., mortality rates for different wealth groups—is eas-
ily undertaken simply by adding to the ltable command a by(variable name) 
option. This produces as many life tables as there are categories in the stratifying 
variable. 

Sampling weights cannot be used with ltable. Weighted samples can be han-
dled using Stata’s st commands. When the data are declared to be survival data 
with the stset command, pweights can be specifi ed. The sts list command 
can be used to generate the life table from which the IMR and U5MR can be read.2 

2For a brief discussion of the difference between ltable and sts list, see http://www.
stata.com/support/faqs/stat/ltable.html. 

Table 3.1 Life Table, Vietnam, 1988–98

 Interval  Total  Deaths  Lost  Survival  Error  [95% Conf. Int.] 

 0  1  5316  114  194  0.9782  0.0020  0.9738  0.9818 

 1  1  5008  15  161  0.9752  0.0022  0.9706  0.9791 

 1  2  4832  12  176  0.9727  0.0023  0.9679  0.9768 

 2  2  4644  4  190  0.9719  0.0023  0.9670  0.9760 

 2  3  4450  15  198  0.9685  0.0025  0.9633  0.9730 

 3  3  4237  0  188  0.9685  0.0025  0.9633  0.9730 

 3  4  4049  13  227  0.9653  0.0026  0.9598  0.9701 

 4  4  3809  0  227  0.9653  0.0026  0.9598  0.9701 

 4  5  3582  4  231  0.9642  0.0027  0.9586  0.9690 

 5  5  3347  0  284  0.9642  0.0027  0.9586  0.9690 

 5  6  3063  7  314  0.9619  0.0028  0.9560  0.9670 

 6  6  2742  0  262  0.9619  0.0028  0.9560  0.9670 

 6  7  2480  3  263  0.9606  0.0029  0.9546  0.9659 

 7  7  2214  0  288  0.9606  0.0029  0.9546  0.9659 

 7  8  1926  3  297  0.9590  0.0030  0.9527  0.9645 

 8  8  1626  0  323  0.9590  0.0030  0.9527  0.9645 

 8  9  1303  0  331  0.9590  0.0030  0.9527  0.9645 

 9  9  972  0  349  0.9590  0.0030  0.9527  0.9645 

 9  10  623  1  298  0.9570  0.0036  0.9493  0.9636 

 10  10  324  0  323  0.9570  0.0036  0.9493  0.9636 

 10  11  1  0  1  0.9570  0.0036  0.9493  0.9636

Source: Authors. 
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Incomplete fertility history and indirect mortality estimation

The incomplete fertility history necessitates the use of the indirect method of mortality 
estimation (United Nations 1983). This involves superimposing a model life table on 
data from the incomplete fertility history identifying (i) the number of children born 
to each woman and (ii) the number surviving. Computation can be done using the 
DOS program QFIVE (United Nations 1983). This section outlines the steps involved 
using a worked example based on the 1993 South Africa LSMS (Wagstaff 2000). 

Preparing the data for QFIVE

QFIVE requires data for each of seven age groups on (i) the number of women in the 
sample, (ii) the number of children born, and (iii) the number of children surviving. 
The age groups are: 15–19, 20–24, 25–29, 30–34, 35–39, 40–44, and 45–49. These sum-
mary data can be computed in Stata, but then need to be placed into a text fi le that 
can be read into QFIVE. Typically, the age of the women from whom the fertility his-
tory is collected is not recorded in the fertility module but needs to be merged from 
the household roster. The fi rst step is to sort the household roster by the individual 
ID. In the commands immediately below fi lename is the name of the household ros-
ter fi le; hhid is the household ID, and pcode is the personal ID in the household.  

use fi lename 
sort hhid pcode
save fi lename , replace

The next step is to merge the age data from the household roster into the fertility 
data fi le. In the use command below fi lename is the name of the fertility data fi le; 
in the merge command fi lename is the name of the household roster data fi le. The 
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cases from the household roster for which there are no fertility histories (men, chil-
dren, and women not interviewed) are dropped using the keep command. Cases 
outside the seven age categories used in QFIVE are dropped, as are any men inex-
plicably left in the data fi le. 

clear
use fi lename
sort hhid pcode
merge hhid pcode using fi lename
keep if _merge==3
gen agecat=age
recode agecat 0/14=0 15/19=1 20/24=2 25/29=3 30/34=4 35/39=5 
40/44=6 45/49=7 50/max=8
drop if agecat<1 
drop if agecat>7
drop if gender_n ~=2

In the South Africa LSMS, women reporting no pregnancies are assigned a value 
of –2 for the number of births, no_birth, and for the number of children alive, no_
alive. These are recoded zero. The tabstat commands then summarize, for each 
age group, the number of women, the number of children born, and the number of 
children alive. 

gen numbrths = no_birth
recode numbrths -2=0
gen numalive = no_alive
recode numalive -2=0
tabstat numbrths numalive , by(agecat) stats(co)
tabstat numbrths numalive , by(agecat) stats(su)

The results then need to be inserted into a text fi le. This can be done manually or 
by pasting the Stata output into Microsoft Excel, transposing the data (using Paste 
Special), and copying the transposed data into Microsoft Word. The fi le needs to 
be saved as text (txt) fi le and set out along the lines indicated below. The fi rst row 
of numbers represents the number of births in each age category, the second the 
number of children surviving, and the third the number of women. The spacing 
between the numbers is crucial. It is easiest to check the tab characters and spaces 
boxes on the View menu under the Tools Options menu in Word, replace the tabs 
with spaces, and manually line up the numbers by inserting the appropriate num-
ber of spaces. Some trial and error is inevitable here, and it is essential to check that 
QFIVE is reading the data correctly. The “6” in the fi rst line refers to the month in 
which the data were collected; “1993” is the year; “3” indicates both boys and girls; 
and “1” indicates that the data refer to the number of women, the number of chil-
dren born, and the number of children surviving. 

Input text fi le for QFIVE
S Africa 
 6 1993 3  1 
 312  1608  2841  3948  4294  4391  3734
 290  1469  2554  3490  3744  3794  3186
 2034  2063  1683  1479  1250  1099  853
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Obtaining and interpreting output from QFIVE

Select option 1 (Enter or modify input data) in QFIVE, read in the data, and check 
that they are being read correctly (use PageDown to see the data). Then select 
option 2 (Run Q5), and ask for the data to be directed to the printer, screen, or fi le, as 
desired. If the latter option is selected, the output needs reformatting to be legible: 
read the output fi le into Microsoft Word (select Plain Text as encoding if prompted), 
select the entire fi le (Ctl-A), choose a size 8 font, select landscape as the orientation 
from Page Setup, and select Page Width as the zoom level. This will allow the out-
put to be viewed without wrapping on both screen and paper. 

In its output, QFIVE fi rst reproduces the input data (see table 3.2). Then it pro-
duces estimates of the IMR, U5MR, and child mortality (mortality between the ages 
of 1 and 5). It produces separate estimates for each age group and for each of eight 
different model life tables. The four shown in table 3.3 are based on the popular 
Coale-Demeny life tables.3 The estimates indicate how mortality rates vary with the 
age of the cohort—mostly rates are higher the older the cohort. QFIVE indicates the 
estimated date to which the mortality rate refers, so the estimated rates for different 
years (see fi gure 3.2) can be reported (and graphed). Or an average over cohorts can 
be calculated. If this is done, it is usual to ignore the rates for the two youngest and 
two oldest age groups on the grounds that they refl ect births to young women who 
are unrepresentative and births that took place more than 10 years before the sur-
vey. One option is to take a simple average of the rates occurring in the age groups 
25–29, 30–34, and 35–39, though sometimes it may make sense to include at least 
the rate for the 20–24 age group as well. If the latter group is ignored, the results in 

3QFIVE also produces mortality rates for the UN’s own life tables; the results are not shown 
here. 

Table 3.2 QFIVE’s Reproduction of Input Data for South Africa 

INPUT DATA FOR S Africa 

BOTH SEXES 

ENUMERATION DATE: JUN 1993

 Age Group Number  Number of  Number of

 of  of  Children  Children

 Women  Women  Ever Born  Surviving

 15–19 2034. 312.  290.

 20–24  2063.  1608.  1469.

 25–29  1683.  2841.  2554.

 30–34  1479.  3948.  3490.

 35–39  1250.  4294.  3744.

 40–44  1099.  4391.  3794.

 45–49  853.  3734.  3186.

MEAN AGE AT MATERNITY WAS NOT GIVEN. THE DEFAULT VALUE OF 27.0 WILL 
BE USED. 

Source: Authors.
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Table 3.3 Indirect Estimates of Child Mortality, South Africa

COALE-DEMENY: NORTH  SOUTH  EAST  WEST  

AGE OF  REFERENCE   REFERENCE   REFERENCE   REFERENCE 

WOMAN  DATE  q  DATE  q  DATE  q  DATE  q 

INFANT MORTALITY RATE: q(1)  

15–19 1992.2 .065 1992.2 .063 1992.2 .070 1992.2 .068

20–24 1991.0 .069 1991.0 .076 1990.9 .079 1990.9 .075

25–29 1989.3 .071 1989.2 .081 1989.1 .085 1989.2 .079

30–34 1987.4 .074 1987.2 .087 1987.0 .092 1987.1 .084

35–39 1985.2 .075 1984.9 .091 1984.7 .097 1984.9 .086

40–44 1982.8 .073 1982.3 .092 1982.1 .097 1982.4 .085

45-49 1980.0 .071 1979.2 .092 1978.9 .097 1979.5 .084

PROBABILITY OF DYING BETWEEN AGES 1 AND 5: 4q1

15–19 1992.2 .039 1992.2 .018 1992.2 .018 1992.2 .027

20–24 1991.0 .042 1991.0 .026 1990.9 .022 1990.9 .031

25–29 1989.3 .043 1989.2 .031 1989.1 .025 1989.2 .034

30–34 1987.4 .046 1987.2 .036 1987.0 .029 1987.1 .038

35–39 1985.2 .047 1984.9 .040 1984.7 .031 1984.9 .039

40–44 1982.8 .045 1982.3 .041 1982.1 .031 1982.4 .039

45–49 1980.0 .043 1979.2 .041 1978.9 .031 1979.5 .038

PROBABILITY OF DYING BY AGE 5: q(5)

15–19 1992.2 .101 1992.2 .079 1992.2 .086 1992.2 .093

20–24 1991.0 .108 1991.0 .100 1990.9 .099 1990.9 .104

25–29 1989.3 .111 1989.2 .109 1989.1 .108 1989.2 .110

30–34 1987.4 .116 1987.2 .120 1987.0 .118 1987.1 .118

35–39 1985.2 .119 1984.9 .128 1984.7 .124 1984.9 .122

40–44 1982.8 .115 1982.3 .128 1982.1 .125 1982.4 .121

45–49 1980.0 .112 1979.2 .130 1978.9 .125 1979.5 .119 

NOTE:  A q VALUE OF .999 DENOTES VALUE BELOW A LEVEL 1 MODEL LIFE TABLE.
    "    .000     "     ABOVE A LEVEL 25     "

Source: Authors.

table 3.3 point toward a U5MR for South Africa of 115–119 per 1,000 for 1987. Hill 
and Yazbeck (1994) and Hill et al. (1999) provide guidance for a large number of 
developing countries on which one of the Coale-Demeny life tables is most appro-
priate. In this case, if the North model is used, a U5MR (for 1987) of 115 per 1,000 is 
obtained. 

Disaggregated analysis—for example, mortality rates for different wealth 
groups—is easily undertaken by computing the necessary input data for QFIVE 
separately for each subgroup. Sample weights can be handled by specifying the 
sample weighting scheme when obtaining the data in Stata for the QFIVE input. 
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4
Health Outcome #2: Anthropometrics

Malnutrition remains a widespread problem in developing countries, in particular 
among the poorest and most vulnerable segments of the population. Typically, mal-
nutrition is caused by a combination of inadequate food intake and infection that 
impairs the body’s ability to absorb or assimilate food. It is an important cause of 
low birth weight, brain damage, and other birth defects and contributes to develop-
mental (physical and cognitive) retardation, increased risk of infection and death, 
and other problems in infants and children. 

One approach to studying nutrition is to assess nutritional status on the basis of 
anthropometric indicators. These are based on physical body measurements such 
as height or weight (related to the age and sex) and have the benefi t of being both 
inexpensive and nonintrusive to collect. Nutritional status can be seen as the out-
put of a health production function in which nutrient intake is one input, but in 
which other individual, household, and community variables also feature.

Anthropometric indicators are useful both at an individual and at a popula-
tion level. At an individual level, anthropometric indicators can be used to assess 
compromised health or nutrition well-being. This information can be valuable 
for screening children for interventions and for assessing the response to inter-
ventions. At the population level, anthropometry can be used to assess the nutri-
tion status within a country, region, community, or socioeconomic group and to 
study both the determinants and the consequences of malnutrition. This form of 
monitoring is valuable for both the design and the targeting of health and nutrition 
interventions.

This chapter discusses the construction, interpretation, and use of anthropomet-
ric indicators, with an emphasis on infants and children. The fi rst section provides 
an overview of anthropometric indicators. The second discusses practical and con-
ceptual issues in constructing anthropometric indicators from physical measure-
ments and illustrates these issues with examples based on household data from 
Mozambique. Finally, the third section highlights some key issues and approaches 
to analyzing anthropometric data. 

Overview of anthropometric indicators

Survey data often contain measures of weight and height, in particular for children. 
Weight and height do not indicate malnutrition directly. Besides age and sex, they 
are affected by many intervening factors other than nutrient intake, in particular 
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genetic variation. However, even in the presence of such natural variation, it is pos-
sible to use physical measurements to assess the adequacy of diet and growth, in 
particular in infants and children. This is done by comparing indicators with the 
distribution of the same indicator for a “healthy” reference group and identifying 
“extreme” or “abnormal” departures from this distribution. For example, three of 
the most commonly used anthropometric indicators for infants and children—
weight-for-height, height-for-age, and weight-for-age—can be constructed by com-
paring indicators based on weight, height, age, and gender with reference data for 
“healthy” children (Alderman 2000; World Health Organization 1995).1

Weight-for-height

Weight-for-height (W/H) measures body weight relative to height and has the 
advantage of not requiring age data. Normally, W/H is used as an indicator of cur-
rent nutritional status and can be useful for screening children at risk and for mea-
suring short-term changes in nutritional status. At the other end of the spectrum, 
W/H can also be used to construct indicators of obesity. Low W/H relative to a 
child of the same sex and age in a reference population is referred to as “thinness.” 
Extreme cases of low W/H are commonly referred to as “wasting.” Wasting may be 
the consequence of starvation or severe disease (in particular, diarrhea). Low W/H 
can also be due to chronic conditions, although height-for-age is a better indica-
tor for monitoring such problems. It is important to note that a lack of evidence of 
wasting in a population does not imply the absence of current nutritional problems 
such as low height-for-age. 

Height-for-age

Height-for-age (H/A) refl ects cumulative linear growth. H/A defi cits indicate past 
or chronic inadequacies of nutrition and/or chronic or frequent illness, but can-
not measure short-term changes in malnutrition. Low H/A relative to a child of the 
same sex and age in the reference population is referred to as “shortness.” Extreme 
cases of low H/A, in which shortness is interpreted as pathological, are referred to 
as “stunting.” H/A is used primarily as a population indicator rather than for indi-
vidual growth monitoring.

Weight-for-age 

Weight-for-age (W/A) refl ects body mass relative to age. W/A is, in effect, a compos-
ite measure of height-for-age and weight-for-height, making interpretation diffi cult. 
Low W/A relative to a child of the same sex and age in the reference population is 

1In what follows, we do not distinguish between indexes and indicators. In principle, how-
ever, there are important conceptual differences. An index is simply a combination of dif-
ferent measurements. In contrast, an indicator relates to the use or application of an index to 
measure (or indicate) a specifi c phenomenon or outcome. For example, typically, anthropo-
metric indexes are used as indicators for nutritional status. However, the extent to which the 
anthropometric index is an appropriate indicator depends on the nature of the relationship 
between nutrition and the index in question (formally, the sensitivity and specifi city of the 
indicator). For a more detailed discussion, see WHO (1995). 
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referred to as “lightness,” whereas the term “underweight” is commonly used to 
refer to severe or pathological defi cits in W/A. W/A is commonly used for moni-
toring growth and to assess changes in the magnitude of malnutrition over time. 
However, W/A confounds the effects of short- and long-term health and nutrition 
problems.

Standardization on a reference population

As noted, the construction of anthropometric indicators is based on comparisons 
with a “healthy” reference population. For a long time, the international reference 
standard that was most commonly used (and recommended by the World Health 
Organization [WHO]) was based on data on weight and height from a statistically 
valid sample of infants and children in the United States.2 The validity of this ref-
erence standard stems from the empirical observation that well-nourished and 
healthy children will have a distribution of height and weight very similar to the 
U.S. reference population, regardless of their ethnic background or where they live 
(Habicht et al. 1974). In other words, although there are some differences in growth 
patterns across ethnic groups, the largest part of worldwide variation in anthropo-
metric indicators can be attributed to differences in socioeconomic factors. 

Notwithstanding this empirical regularity, there is a long-standing debate 
about the appropriateness of the U.S. reference standard for children in develop-
ing countries, in particular concerning the extent to which growth paths will 
depend on feeding practices. Refl ecting these concerns, in 1993 the WHO under-
took a comprehensive review of the uses and interpretation of anthropometric ref-
erences, concluding that the National Center for Health Statistics (NCHS)/WHO 
growth reference did not adequately represent early childhood growth. Since then, 
a multicenter growth reference study has been undertaken to develop new growth 
curves for assessing the growth and development of children, and in April 2006, 
the WHO issued new standards for children from birth to fi ve years of age (WHO 
2006).3 These new standards capture the growth and development process of chil-
dren from widely diverse ethnic backgrounds and cultural settings, with mothers 
engaged in fundamental health-promoting practices (breastfeeding and not smok-
ing).4 The new growth standards have been shown to have important implications 
for the monitoring and assessment of child growth and development (de Onis et 
al. 2006). Nonetheless, the new standards have not yet been routinely incorporated 
in standard statistical packages. For this reason, the empirical illustrations used in 
this chapter are not based on the new reference data.5

2This is referred to as the U.S. National Center for Health Statistics (NCHS) reference group. 
Reference standards are available for children and adolescents up to 16 years of age, but are 
most accurate for children up to the age of 10.
3For a detailed discussion of the rationale, implementation, and fi ndings from this work, see 
de Onis et al. (2004, 2006) and Garza and de Onis (2004).
4Some of the differences between the NCHS/WHO and the new WHO growth reference are 
also due to the methodologies applied to construct the two sets of growth curves, in particu-
lar in the treatment of skewed or kurtotic distributions.
5Currently, only the software package ANTRHO has incorporated the new standards. Fur-
ther details on software packages for anthropometric analysis are provided later in this 
chapter. 
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Regardless of what particular reference data are used, anthropometric indices 
are constructed by comparing relevant measures with those of comparable individ-
uals (in regard to age and sex) in the reference populations. There are three ways of 
expressing these comparisons: 

a. z-score (standard deviation score): the difference between the value for an indi-
vidual and the median value of the reference population for the same sex and 
age (or height), divided by the standard deviation of the reference population. 

b. Percent of median: ratio of measured value for an individual to the median 
value of the reference data for the same sex and age (or height).

c. Percentile: rank position of an individual on a given reference distribution, stated 
in regard to what percentage of the group the individual equals or exceeds. 

The preferred and most common way of expressing anthropometric indices is in 
the form of z-scores. That approach has a number of advantages. Most important, 
z-scores can be used to estimate summary statistics (e.g., mean and standard devia-
tion) for the population or subpopulations. This cannot be meaningfully done with 
percentiles. Moreover, at the extreme of the distribution, large changes in height 
or weight are not necessarily refl ected in changes in percentile values. The per-
cent of median is defi cient relative to the z-score in that it expresses deviation from 
the reference median without standardizing for the variability in the reference 
population. 

What criterion do we use to determine whether an individual is malnourished or 
not? Using z-scores, the most commonly used cutoff to defi ne abnormal anthropom-
etry is a value of –2, that is, two standard deviations below the reference median, 
irrespective of the indicator used.6 For example, a child whose height-for-age 
z-score is less than –2 is considered stunted. This provides the basis for estimating 
prevalence of malnutrition in populations or subpopulations (see table 4.1).7 The 
WHO has also proposed a classifi cation scheme for population-level malnutrition. 

Box 4.1 Example Computation of Anthropometric Indices

For example, consider a 12-month-old girl who weighs 9.1 kg. On the basis of the refer-
ence standard weight-for-age for girls, it can be established that the median weight for 
healthy girls of this age is 9.5 and that the standard deviation in the reference popula-
tion is 1.0. On this basis, the following calculation can be made:

z-score(W/A)
9.1 9.5

1
0.4= − = −

 Percent of median (W/A)
9.1
9.5

= ⎛
⎝⎜

⎞
⎠⎟

= 95 8. %

On the basis of aggregated tables, we can establish only that 9.1 falls between the 
30th and 40th percentile.

Source: Authors.

6Using this criterion, approximately 2.3 percent of “healthy” children would be classifi ed as 
having an abnormal defi cit in any particular anthropometric indicator. 
7WHO has also proposed a more general malnutrition classifi cation that distinguishes 
between mild (z-score ≤1), moderate (z-score ≤2), and severe malnutrition (z-score ≤3).
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Other anthropometric indicators

Although weight-for-height, height-for-age, and weight-for-age are the most com-
monly used anthropometric indicators for infants and children, they are by no 
means the only ones that have been used.8

MID-UPPER ARM CIRCUMFERENCE Mid-upper arm circumference (MUAC) is a 
measure of the diameter of the upper arm and gauges both fat reserves and muscle 
mass. It is used primarily for children, but can also be applied to pregnant women 
to assess nutritional status. Measurement is simple and requires minimal equipment. 
MUAC has therefore been proposed as an alternative index of nutritional status, in 
particular in situations in which data on height, weight, and age are diffi cult to collect. 
For children, a fi xed (age-independent) cutoff point has sometimes been used to deter-
mine malnutrition. However, this risks overdiagnosing young children and underdi-
agnosing older children. Reference data based on U.S. children 6 to 60 months of age 
have been incorporated in recent versions of some anthropometric software packages. 

BODY MASS INDEX Body mass index (BMI) is a measure used to defi ne over-
weight and thinness. BMI is defi ned as the weight in kilos divided by the square of 
height in meters. In developing countries, the BMI is used primarily with age-inde-
pendent cutoffs to identify chronic energy defi ciencies (or obesity) in adults (see 
table 4.2). Although there is some scope for using BMI for adolescents, the index 

Table 4.1 WHO Classifi cation Scheme for Degree of Population Malnutrition

 Prevalence of malnutrition 
 (% of children <60 months, below –2 z-scores)

Degree of malnutrition W/A and H/A W/H

Low <10 <5

Medium  10–19 5–9

High 20–29 10–14

Very high ≥30 ≥15

Source: WHO 1995.

8For further discussion of alternative anthropometric indicators, including indicators for 
adolescents and adults, see WHO (1995).

Table 4.2 BMI Cutoffs for Adults over 20 (proposed 
by WHO expert committee)

BMI range Diagnosis

<16 Underweight (grade 3 thinness)

16–16.99 Underweight (grade 2 thinness)

17–18.49 Underweight (grade 1 thinness)

18.5–24.99 Normal range

25.0–29.99 Overweight (preobese)

>30 Obese

Source: Authors.
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varies with age for children and teenagers and must therefore be interpreted in 
relation to BMI-for-age reference charts. 

The incidence of overweight and obesity is a growing problem in many devel-
oping countries. In some regions of the world, in particular South and East Asia, 
prevalence remains relatively low. For example, in fi gure 4.1, a histogram of BMI 
for adults (over 20 years of age) in Vietnam illustrates that although nearly 45 per-
cent of individuals are underweight, overweight and obesity are rare (less than 4 
percent). However, in other regions of the world, the prevalence of overweight and 
obesity is high and rising. 

Computation of anthropometric indicators

Anthropometric indicators can be computed either by using dedicated anthropo-
metric software, which contains the relevant reference data and has easy proce-
dures for constructing the indicators of interest, or by using a Stata add-in called 
zanthro.9 This section provides a brief overview of the most popular anthropo-
metric software packages and a step-by-step guide to either using one of them (EPI-
INFO) or using Stata to compute indicators. 

Software for anthropometric analysis

At the simplest level, anthropometric software uses raw measurement data in com-
bination with reference data to calculate the corresponding anthropometric indica-
tors. Many of the available software packages also have more advanced functions, 

9zanthro is an ado-fi le developed by Suzanna Vidmar and Tim Cole. It can be installed in 
Stata be typing webseek zanthro and following the instructions.

Figure 4.1 BMI for Adults in Vietnam, 1998
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including statistical and graphical analysis. The two most popular software pack-
ages for anthropometric analysis are ANTHRO and EPI-INFO. Both can be down-
loaded without charge.

ANTHRO is a program that can be used to compare the growth of individ-
ual children with the growth patterns of the new 2006 WHO growth standards. 
It requires the sex, height, weight, and age of children to calculate normalized 
anthropometric z-values, percentiles, and percent-of-median. It can use dBase fi les 
for batch processing and has an anthropometric calculator. Recently, beta-versions 
of macros (igrowup) based on ANTHRO have been released for Stata and other 
statistical software.10

EPI INFO is a series of programs for Microsoft Windows. It contains a spe-
cial-purpose module called NutStat, which can be used to compare data on height, 
weight, age, sex, and arm circumference with the international reference standards. 
The program calculates percentiles, z-scores and, depending on the reference data 
used, percent of median. EPI-INFO uses the Microsoft Access fi le format as a data-
base standard, but many other fi le types can be analyzed, imported, or exported.11

From physical measurement to anthropometric indicators: 
a step-by-step guide using EPI INFO

One way to calculate z-scores for anthropometric analysis is to use dedicated soft-
ware. Broadly speaking, this entails four steps: (i) setting up the data in a general 
statistical package, (ii) reading and processing the data in the anthropometrics 
package, (iii) reexporting the constructed variables to the general statistical pack-
age, and (iv) performing basic data cleaning. Each of these steps is described below 
for transitions between Stata and EPI-INFO, with an illustration based on data from 
a living standards survey from Mozambique.12

1. Preparing data for loading into EPI-INFO

The variables that must be loaded into EPI-INFO for the computation of anthropo-
metric indicators depend on the indicators desired and also to some extent on the 
reference data that are used in the analysis (see table 4.3). The data do not need to 
contain all the listed fi elds. 

There are a couple of important points to note in relation to the variables used 
in EPI-INFO. First, for many anthropometric indicators, age-specifi c reference data 
are used. When the data permit it, it is always preferable to calculate age as the dif-
ference between date of measurement and date of birth. This is almost always more 

10ANTHRO program fi les and supporting documentation can be downloaded from http://
www.who.int/childgrowth/software/en/.
11EPI-INFO programs, documentation, and teaching materials can be downloaded from 
http://www.cdc.gov/epiinfo/index.htm. EPI-INFO is a CDC trademark, but may be freely 
copied, distributed, or translated.
12The 1996/97 Mozambique National Household Survey on Living Conditions (Inquérito 
Nacional aos Agregados Familiares Sobre as Condições de Vida) was designed and implemented 
by the National Statistics Institute in Mozambique and was conducted from February 1996 
to April 1997. The sample covers approximately 43,000 individuals in 8,250 households. It 
was selected in three stages and is geographically stratifi ed to ensure representativeness at 
the provincial level and for urban/rural areas.
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accurate than age reported by survey respondents. The reference curves are based 
on “biologic” age rather than calendar age. Biologic age in months divides the year 
into 12 equal segments as opposed to calendar age in which months have from 28 to 
31 days. Although this makes little difference in older children, it can have an effect 
on the anthropometric calculations for infants. Moreover, entering age by rounding 
to the nearest month and/or the most recently attained month can have a substan-
tial effect on the anthropometric calculations, especially for infants. To calculate 
biologic age, anthropometric software calculates the number of days between the 
two dates. The age in days is divided by 365.25 and then multiplied by 12.

Second, for younger children, normally height is measured with the child in a 
recumbent position. This measurement is sometimes referred to as “length,” which 
is contrasted with standing height measurements, referred to as “stature.”14 In some 
cases, this distinction is not important from the point of view of the analyst. For 
example, when the recommended 1978 CDC/WHO reference in EPI-INFO is used, 
recumbent length is assumed from birth to age 24 months, and standing height for 
24 months and older. However, in EPI-INFO it is also possible to use a 2000 CDC ref-
erence standard. If this option is chosen, the user must indicate whether the meas-
urements are recumbent length or standing height for children in the age group of 

Table 4.3 Variables That Can Be Used in EPI-INFO

Variable Description and required format

Sex  1 or M for male, 2 or F for female

Age Months or years

Birth date Not necessary if age data are available

Date of measurement Not necessary if age data are available

ID number Unique individual identifi er

First name 

Last name 

Height In centimeters or inches

Recumbent Boolean or 1/2; whether child is lying down 

Weight In kilos or pounds

Edema13 Boolean or 1/2; excessive amounts of fl uid

Arm circumference In centimeters or inches

Head circumference In centimeters or inches

Notes

Source: Authors.

13Edema refers to the presence of excessive amounts of fl uid in the intracellular tissue. There 
is a strong association between edema and mortality. The presence of edema is therefore 
important for screening and surveillance purposes and can be used to fl ag children as 
severely malnourished, independently of their wasting, stunting, or underweight status. 
However, although edema is included as a variable in many anthropometric software pro-
grams for that reason, it is not generally used for evaluation purposes.
14For details on measurement, see WHO (1995) or http://www.cdc.gov/nccdphp/dnpa/
bmi/meas-height.htm.
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24 to 36 months (for younger and older children, recumbent and standing measure-
ments are assumed, respectively). 

Turning to the Mozambique illustration, the fi rst step is to construct a data set 
with all the relevant variables in the appropriate format. In this case, we have data 
on the birth date, measurement date, sex, weight, and height of children under fi ve 
years old. In the following code, the dates are used to construct the age in months 
and, before the relevant variables are saved in a new data fi le, weight is adjusted to 
account for the fact that a minority of children were weighed with their clothes on. 
At this stage it is also important to ensure that all variables are appropriately coded 
and in the correct units (see table 4.3).

generate birthdate = mdy(birth_mnth, birth_day, birth_yr)
generate measuredate = mdy(visit_mnth, visit_day, visit_year)
generate age_days = measuredate - birthdate
generate age_months = (age_days/365.25) * 12

replace weight_grams = weight_grams – weight_cloth if how_
weighed==1
generate weight_kilos = weight_grams / 1000
keep id sexo age_months weight_kilos height_cm
drop if sexo==. | age_months==. | weight_kilos==. | height_
cm==.
save fi lename, replace

2. Reading and processing the data in EPI-INFO

The NutStat module of EPI-INFO uses data in Access database format.15 There are 
two ways of importing external data into NutStat. The Add Statistics feature simply 
processes the data from a Microsoft Access data fi le and adds the results of calcula-
tions to the fi le. In contrast, the Import Data feature can be used to import data from 
an existing table into a new table that has the data structure required by Nutstat. 
The table can be an EPI-INFO table or a table from Microsoft Access. Both the Add 
Statistics and Import Data features can be accessed from the File menu. Under either 
alternative, the user is fi rst required to choose between the two alternative reference 
standards (1978 CDC/WHO or 2000 CDC). The user must thereafter link variables 
in the imported data fi le with fi elds that EPI-INFO requires to calculate the anthro-
pometric indicators and, for some fi elds, select the unit of measurement. Finally, the 
user selects the statistics or indicators to calculate—for example, z-scores, percen-
tiles, and percent of median for W/A, H/A, and W/H.16 The selection of indicators 
to be calculated is restricted by the variables that were imported. When the data are 
then processed, the new variables are either added to the original fi le (Add Statistics 
option) or saved in a new data fi le (Import option) (see table 4.4). 

15Stata or SPSS data can be converted into Access format using conversion software such 
as DMBScopy or StatTransfer. Alternatively, data can be exported from Stata using the out-
sheet command, which can then be read into Access. It is also possible to copy data from the 
Stata browser and paste it in Access.
16Further anthropometric indicators can be calculated on the basis of specifi c WHO reference 
data (MUAC-for-age) or 2000 CDC reference (head circumference-for-age and BMI-for-age).
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3. Exporting the data for analysis

After the variables of interest have been constructed, the Microsoft Access database 
must be converted into a format that can be read by the general statistical package 
before the variables can be merged with the original data. In our example, z-scores, 
percentiles, and percent of median for W/A, H/A, and W/H were saved in a fi le 
named anthro_data.dta, which can now be merged with the main Statadata fi le. 

use anthro_data.dta, clear
sort id
save, replace
use main_data.dta, clear
sort id
merge id using anthro_data.dta

4. Performing basic data cleaning

In the previous steps, we have added a set of anthropometric indicators to our origi-
nal data. Before we proceed with the analysis of these indicators, there are a number 
of data-cleaning issues and potential sources of bias that analysts must be aware of.

The fi rst issue to contend with concerns the problem of missing values. In most 
surveys, enumerators are not able to obtain all the relevant data for all sampled indi-
viduals. The most common problem concerns the age of the child, in cases in which 
the parent may not know the precise birth date and birth records are not available. 
Data may also be missing for weight or height, for example, because some parents 
do not agree to having their children weighed, or there may have been problems 
with the measuring equipment. A second problem concerns the calculated z-scores; 
errors in measurement, reporting of age, coding, or data entry sometimes result in 
biologically implausible values. The WHO (1995) recommends that, for the purpose 
of analysis, values outside a certain range should be treated as missing values (see 
table 4.5). 

Table 4.4 Key Variables Calculated by EPI-INFO

 Variable names Variable names
Anthropometric indicator 1978 CDC/WHO reference 2000 CDC referencea

H/A z-score fl dWHOHAZ fl dCDCLAZ, fl dCDCSAZ

H/A centile  fl dWHOHAC fl dCDCLAC, fl dCDCSAC

H/A percent of median fl dWHOHAPM

W/A z-score fl dWHOWAZ fl dCDCWAZ

W/A centile fl dWHOWAC fl dCDCWAC

W/A percent of median fl dWHOWAPM

W/H z-score fl dWHOWHZ fl dCDCLAZ, fl dCDCSAZ

W/H centile fl dWHOWHC fl dCDCLAC, fl dCDCSAC

W/H percent of median fl dWHOWHPM

MUAC-for-age MUACAZb MUACAZ

a. If stature and length are processed separately, two variables are created for each indicator.
b. Based on 2000 CDC reference.
Source: Authors.
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These problems can be explored by looking at descriptive statistics, scatter plots, 
and histograms. In the Mozambique data, we construct indicator variables for miss-
ing and implausible values in the variables of interest.

generate missing = (age_months==. | haz==. | whz==. | waz==.)
generate outrange_haz = (haz < -5 | haz > 3)
replace outrange_haz = . if haz==.
... code for whz and waz
drop if missing==1 | outrange_haz==1 | outrange_whz==1 | out-
range_waz==1

In this example, nearly 20 percent of observations have missing values for age, 
weight, or height. In addition, approximately 3 percent of observations have values 
for one or more of the anthropometric indicators that are outside the plausible range. 
This is quite high and casts some doubt on the quality of the data. At this point, 
it is diffi cult to correct the problems that gave rise to missing and implausible val-
ues. However, before dropping these observations, it is important to assess whether 
doing so is likely to result in biases in subsequent estimates. This depends both on 
the proportion of the sample that is being dropped and on the extent to which the 
true values for the variables of interest are systematically different from the rest of 
the sample. Of course, with missing data values for the relevant variables, we can-
not provide a precise answer to this question. That said, we can look at other char-
acteristics of the observations that we are dropping and draw some conclusions on 
that basis. For example, in the Mozambique data, both average income and maternal 
education are signifi cantly lower for the observations that will be dropped, and they 
are disproportionately from rural areas. Hence, we are dropping observations that 
most likely have a poorer nutritional status than the population average. Besides 
such problems of non-sampling bias, sampling bias, whereby the sample that we are 
analyzing is not representative of the target population, can sometimes be impor-
tant for anthropometric data.17 For example, data may be collected through schools 
or clinics that are not attended by all segments of the population. 

Constructing anthropometric indicators using Stata

Some analysts prefer not going through dedicated software for anthropometric 
analysis. Provided relevant macros or add-ins (i.e., zanthro or igrowup) have 
been installed, anthropometric indicators can be constructed in Stata. 

Table 4.5 Exclusion Ranges for “Implausible” z-Scores

Indicator Exclusion range for z-scores

Height-for-age <5.0 and >+3.0

Weight-for-height <4.0 and >+5.0

Weight-for-age <5.0 and >+5.0

Note: If observed mean z-score is below –1.5, the WHO 
recommends that a fl exible exclusion range be used. For details, 
see WHO (1995).

Source: Authors.

17See chapter 2 on sampling and non-sampling bias.
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For example, using the zanthro, the following command lines would generate 
indicator variables for low W/A, H/A, and W/H.

egen haz = zanthro(height_cm, ha, US), xvar(age_months) 
gender(sexo) gencode(male=1, female=2) ageunit(month)

egen whz_stata = zanthro(weight_kilos, wh, US), xvar(height_
cm) gender(sexo) gencode(male=1, female=2)

egen waz_stata = zanthro(weight_kilos, wa, US), xvar(age_
months) gender(sexo) gencode(male=1, female=2) ageunit(month)

In this case, the variables are created using the 2000 CDC reference (US option in 
the zanthro command). If we had instead specifi ed UK as an option, the 1990 Brit-
ish Growth Reference would have been used instead. The command automatically 
generates missing values if the absolute value of the z-score is greater than 5. By 
specifying the option nocutoff, calculation of all z-scores is forced.

Analyzing anthropometric data

At the most basic level, the analysis of anthropometric data concerns the identifi ca-
tion of malnourishment in a population or subpopulation. However, in many cases 
analysts want to go beyond merely establishing prevalence to try to understand the 
causes of malnourishment and how can they be addressed. 

A fi rst step is to look at the distribution of the z-scores and the overall prevalence 
of malnourishment. When compared with the distribution of z-scores in the reference 
population, this provides a fi rst impression of different dimensions of nutritional sta-
tus in the population. In Stata, such descriptive analysis can be carried out as follows:

global zscores “haz waz whz”
foreach x of global zscores { 
 graph twoway histogram `x’ || function normden(x,0,1), 
range(`x’) title(“`x’”) xtitle(“z-score”) ytitle(“Density”) 
legend(off)
 gen below2_`x’ = (`x’ < -2) 
 gen below3_`x’ = (`x’ < -3) 
}
tabstat $zscores below_* [aw=weight], stat(mean sd) col(stat)

where below2_haz is a dummy indicating a height-for-age z-score less than –2, 
and so forth. The results of this analysis of the Mozambique data are reported 
below. As can be seen from the graphs in fi gure 4.2 and from table 4.6, there are 
defi cits in both H/A and W/A, but only limited evidence of wasting. More detailed 
histograms could be drawn by kernel density estimation (kdensity).

It is also useful to look graphically at the relationship between different anthro-
pometric indicators. In general, weight-for-height and height-for-age are not cor-
related, whereas there tends to be a positive correlation between weight-for-height 
and weight-for-age and between weight-for-age and height-for-age (see fi gure 4.3). 
This pattern is confi rmed in the Mozambique data.

twoway (scatter whz haz), ylabel(-6 0 5) xlabel(-6 0 5)
twoway (scatter whz waz), ylabel(-6 0 5) xlabel(-6 0 5)
twoway (scatter waz haz), ylabel(-6 0 5) xlabel(-6 0 5)



Table 4.6 Descriptive Statistics for Child Anthropometric Indicators in Mozambique, 1996/97

 HAZ WAZ WHZ n

Mean –1.88 –1.28 –0.15 4,514

S.D. 1.74 1.31 1.34 4,514

% below –2 S.D. 46.1 28.8 6.4 4,514

% below –3 S.D. 25.4 8.4 1.1 4,514

Source: Authors.

Figure 4.2 Distribution of z-Scores in Mozambique, 1996/97
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For many purposes, anthropometric data should be presented according to age 
and sex groups. The reason is that (i) patterns of growth failure vary with age, (ii) 
the identifi cation of determinants of malnutrition is facilitated, and (iii) as a conse-
quence of irregularities in the reference curves, wasting tends to be exaggerated for 
children in the 12- to 24-month age group. WHO (1995) recommends that at least 
two age disaggregations be used—under 24 months and 24 months and over—but 
for some purposes a more detailed disaggregation may be advisable. 

tabstat below2* [aw=weight] if age_months < 24, stat(mean) 
by(sex)
tabstat below2* [aw=weight] if age_months >= 24, stat(mean) 
by(sex)

Figure 4.3 Correlation between Different Anthropometric Indicators in Mozambique
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Of course, a simple disaggregation of children under fi ve into two age groups still 
hides a great deal of detail. To better understand the nature of malnutrition, it can be 
useful to look at the mean z-score for smaller age groups (e.g., by month). To do so, 
the age variable, which is often continuous, needs to be transformed into a categorical 
variable. The mean z-score for different anthropometric indicators can then be tabu-
lated and graphed. For example, fi gure 4.4 illustrates how the z-score weight-for-age 
in children in Mozambique reaches very low levels already by the age of 10 months.

recode age_months (0/0.999=0) (1/1.999=1) (2/2.999=2) ///
 (3/3.999=3) (4/4.999=4) (5/5.999=5) ///
 (6/6.999=6) (7/7.999=7) (8/8.999=8) ///
 (9/9.999=9) (10/10.999=10) (11/11.999=11) ///
 (12/12.999=12) (13/13.999=13) (14/14.999=14) ///
 (15/15.999=15) (16/16.999=16) (17/17.999=17) ///
 (18/18.999=18) (19/19.999=19) (20/20.999=20) ///
 (21/21.999=21) (22/22.999=22) (23/23.999=23) ///
 (24/24.999=25), gen(age_months_cat2)
tabstat waz if age_months<=24, by(age_months_cat)

Table 4.7 Stunting, Underweight, Wasting by Age and Gender in Mozambique

Age (months)  Group HAZ<–2 WAZ<–2 WHZ<–2 n

0–23 Boys 44.6 35.8 11.2 1,025

 Girls 36.0 23.5 5.7 1,072

 Combined 40.0 29.2 8.3 2,097

24–60 Boys 53.6 28.0 5.0 1,207

 Girls 49.3 29.2 4.4 1,210

 Combined 51.5 28.6 4.7 2,417

Source: Authors.

Figure 4.4 Mean z-Score (weight-for-age) by Age in Months
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It is also useful to explore how anthropometric indicators are related to different 
individual, household, and community characteristics. An important perspective 
in this regard is to assess socioeconomic inequalities in nutritional status. A sim-
ple way of looking at this issue is to examine the prevalence of malnutrition across 
income or wealth quintiles.

Prevalence rates of stunting, underweight, and wasting for different consump-
tion quintiles in Mozambique are graphed in fi gure 4.5a, with a disaggregation by 
sex for stunting in fi gure 4.5b. The graphs show the expected tendency for malnu-
trition to be worse in poorer quintiles. But analysts should avoid drawing unwar-
ranted conclusions about socioeconomic inequalities. In particular, it is important 
to look beyond the simple means by quintiles to assess whether the observed differ-
ences are signifi cant. For example, in the case of stunting, a more detailed analysis 
of the Mozambique data reveals that the only statistically signifi cant difference in 
prevalence between consumption quintiles is between the richest quintile and the 
rest. Moreover, although comparing means by quintiles is a useful place to start, it is 
quite a crude approach to assessing socioeconomic inequalities, and analysts should 
consider using concentration curves and indices discussed in chapters 7 and 8.

It is important that descriptive analysis of anthropometric data be accompanied 
by information to assist in the interpretation of fi ndings. This includes information 
such as general characteristics of the population, sample design and size, method of 
determining age, and proportion of data missing or excluded. For some purposes it 
is also important to report standard errors or confi dence intervals for estimates.

Analysts may wish to go beyond descriptive analysis and use anthropometric 
indicators to examine determinants of malnutrition. In that regard, it is custom-
ary to distinguish between distant and proximate determinants of malnutrition 
(Mosley and Chen 1984). Proximal factors are inadequate dietary intake and dis-
ease. Distant factors do not infl uence malnutrition directly, but rather through their 
impact on proximate determinants. They include, for example, poverty, education, 
cultural factors (e.g., duration of breast feeding, hygiene practices), and community 
and environmental characteristics (e.g., availability and quality of health services, 

Figure 4.5 Prevalence Rates of Stunting, Underweight, and Wasting for Different 
Consumption Quintiles in Mozambique and a Disaggregation by Sex for Stunting
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epidemiological profi le).18 The identifi cation of socioeconomic inequalities should 
therefore be considered just the starting point for further analysis. A socioeconomic 
gradient most likely confounds the infl uence of many complex factors. To under-
stand the contribution of different factors in determining nutritional status, a mul-
tivariate modeling framework is required. This type of analysis also has to contend 
with diffi cult conceptual and empirical issues, which are considered in chapter 10.19

Useful sources of further information

WHO global database on child growth and malnutrition: http://www.who.int/nutgrowthdb/.

Food Nutrition Technical Assistance Project: http://www.fantaproject.org/publications/
anthropom.shtml.

Practical Analysis of Nutritional Data (PANDA): http://www.tulane.edu/~panda2/.
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5
Health Outcome #3: Adult Health

Child mortality and nutrition status, considered in chapters 3 and 4, respectively, 
are important indicators of population health. But they provide only a partial pic-
ture of the level and distribution of health in a population. Survival is a rather 
crude indicator of health that ignores all aspects of health-related quality of life. 
Anthropometrics do indicate quality of life but only in a very partial manner. They 
are not sensitive to many health problems and are of relatively limited use as indi-
cators of adult health status. To examine inequalities in general health in a popula-
tion, a measure of health is required that is sensitive to a wide range of health prob-
lems and is informative about the health of adults. The literature on health status 
or health-related quality of life measurement is vast (see, e.g., Patrick and Chiang 
[2000]). In this chapter, we restrict attention to the measurement of self-reported 
adult health in the context of general population health inequalities. 

Although health is intrinsically a multidimensional concept, for many purposes 
the interest is in an overall measure that collapses the separate dimensions into one 
construct. Several index-scoring algorithms have been developed for a number of 
generic health profi les, such as the SF-36 (Brazier et al. 1998), the Euroqol-5D (Buss-
chbach et al. 1999), the McMaster health utility index (HUI) (Feeny et al. 2002), and 
more recently, the index fi elded in the World Health Organization (WHO) World 
Health Surveys (Salomon et al. 2002). Such aggregated measures are preferable 
to others that either treat health as unidimensional or restrict attention to a single 
dimension, but their availability is usually restricted to health interview surveys, 
which have very limited information on living standards and so are often not suit-
able for the analysis of socioeconomic inequalities in health. 

Besides the distinction between self-perceived and observed health indicators 
introduced in chapter 2, the types of indicators typically available for health equity 
analysis can be categorized under the headings medical, functional, and subjective 
(Wagstaff et al. 1991). Self-perceived indicators could fall into all three categories; 
observed indicators are either medical or functional. Medical indicators measure 
health as defi ned in relation to deviation from medical norms, such as the pres-
ence of certain diseases, conditions, or handicaps. Examples are lists on which the 
respondent indicates the presence of chronic or acute conditions, possibly diag-
nosed by a physician. There may be an indication of the duration of the condi-
tion. Functional indicators defi ne health in relation to a lack of ability to perform 
“normal” tasks or roles. Examples include lists of impaired activities of daily liv-
ing (ADL) or the number of days in a certain period that activities were restricted. 
According to a subjective model, health is defi ned in relation to the individual’s 
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overall perception of his or her health or the changes therein, possibly relative to 
that of other people of a similar age. Typical examples here include the question, 
“How do you rate your health in general—excellent, good, fair, or poor?” or a ques-
tion asking whether respondents feel that their health has improved or deteriorated 
during the past year. It is advisable to use these various measures alongside one 
another to obtain a better picture of the distribution of health in a population. 

In the next section of this chapter, we illustrate the use of different types of adult 
health indicators—medical, functional, and subjective—to describe the distribu-
tion of health in relation to socioeconomic status (SES). One may wish to examine 
the distribution of health in relation to SES conditional on third factors, such as 
age and sex, which are correlated with both health and SES. In the third section, 
we demonstrate how to standardize health distributions for differences in demo-
graphic composition of SES groups and so provide a more refi ned description of 
socioeconomic inequality in health. The fi nal section considers the extent to which 
the measurement of health inequality is biased by socioeconomic differences in the 
reporting of health.

Describing health inequalities with categorical data

Some health survey questions demand simple yes or no responses. From these, 
samples can be divided into fractions of ill and not ill and inequalities in illness 
rates analyzed. But many questions have ordered response categories, for instance, 
self-assessed health (SAH) is (i) very good, (ii) good, (iii) fair, (iv) poor, or (v) very 
poor. Such answers cannot simply be scored as for example, 1,2,3,4,5 because the 
true scale will not be equidistant between categories. Several methods of scaling 
SAH for the purpose of inequality measurement have been tried:

a. Dichotomize the multiple-category responses and measure health as the per-
centage of individuals with that characteristic, that is, those who report their 
health to be “less than good.” This practice avoids the imposition of some 
scale that is assumed to indicate how much more health is enjoyed in one cat-
egory compared with another for any one individual. But it obviously results 
in a loss of information and requires the introduction of an arbitrary cut-
off point (Wagstaff and van Doorslaer 1994). If the threshold at which “less 
than good health” is reported varies across cultures and/or population sub-
groups, then the dichotomous indicator will not indicate variation in preva-
lence of a given level of health across countries and/or socioeconomic groups 
(c.f. Salomon et al 2004). 

b. Use a scoring algorithm to construct a scale that has been validated in 
another context (e.g., Hays et al. 1998). One example is the indicator of func-
tional limitations or ADL index as proposed by the RAND-MOS researchers 
(Hays et al. 1998). It is defi ned simply as the sum of all activities scored as 
0 if “unable to do,” 50 if “able with diffi culty,” and 100 if “able without any 
diffi culty.” This sum ranges between 0 and k*100, where k is the number of 
activities, but can be rescaled to (0,1) using ADL index = (max-sum)/(max-
min), where max and min are the sample maximum and minimum sums, 
respectively. Direct use of generic index scores (such as the HUI, the SF-36, 
or the WHO index) is also based on the use of a “scoring” algorithm derived 
from a (multi-attribute utility) valuation exercise (Brazier et al. 1998; Feeny 
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et al. 2002; Salomon et al. 2002). The relative weights of the various health 
dimensions and items are then derived from (possibly other) respondents’ 
answers to health (utility) valuation questions. One option is to attribute to 
each SAH category the mean, or median, scores of the index value (e.g., mean 
SF-36 score) calculated for the same SAH categories from some other data 
source in which both types of health measures are available. 

c. If no other information on the distribution of health across response cat-
egories is available, one can proceed by arbitrarily assuming a functional 
form for the distribution. The aim is to exploit the full range of categories 
in the SAH question without imposing the unrealistic assumption of equal 
distances between categories. One proposed (but arbitrary) procedure is to 
assume that the observed frequency distribution across the SAH catego-
ries is generated by a latent health variable following a standard lognormal 
distribution (Wagstaff and van Doorslaer 1994). Then, the inverse of the 
cumulative lognormal distribution gives the cut points corresponding to the 
observed frequency distribution. Category scores can then be obtained as 
the expected values within each of the intervals defi ned by the cut points. 

d. An alternative to method c is to generate predictions of an underlying latent 
variable using an ordered probit/logit or an interval regression model (see 
chapter 11) and to rescale these predictions to a 0-1 interval using index = 
(max-sum)/(max-min). If (external) information on the actual distribution 
of a continuous health measure is available (e.g., from another survey), then 
this can be used to scale the responses (van Doorslaer and Jones 2003). This 
has the same aim as method c but estimates the expected values of a latent 
health index given SAH responses and covariates and an assumed distribu-
tion of the error term (normal or logistic). A problem with that approach is 
that the measures then become highly dependent on the variables included 
in the prediction equation.

Allison and Foster (2004) introduce a method of obtaining a partial inequality 
ordering of SAH distributions that is invariant to the scaling of SAH. This is a sig-
nifi cant advance in the literature, but it does have two limitations. First, the inequal-
ity of two SAH distributions can be compared only when their median categories 
coincide. Second, the method allows comparison of total inequality in SAH and not 
in socioeconomic-related inequality in SAH. 

Table 5.1 shows the distributions of adult health across quintiles of equivalent 
expenditure in Jamaica derived from the 1989 Survey of Living Conditions (SLC) for 
12 different indicators. All of the medical model indicators are dichotomous except 
the number of illness days. Two of the functional model indicators are dichotomous, 
the third is a count (number of restricted-activity days), and the fourth is the ADL 
index transformed to a (0,1) scale as described in procedure b above. The subjective 
indicator is SAH with fi ve response categories. From that, two dichotomous indicators 
of less than good health and poor health are created. A third indicator (SAH index 
[lognormal]) is constructed following procedure c above, assuming a lognormal dis-
tribution for latent health. The fi nal indicator (SAH index [HUI]) is derived by assign-
ing the mean SAH-category-specifi c McMaster HUI values estimated from Canadian 
data to the corresponding SAH categories in the Jamaican SLC. While avoiding the 
assumption of lognormality, this involves imposing the obviously strong assumption 
that within SAH categories, health is on average equal in Jamaica and Canada. 
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All indicators show health to be lower among poorer quintiles, but relative differ-
ences in health between the richest and poorest quintiles vary across the indicators.

Demographic standardization of the health distribution 

In the analysis of health inequality, the basic aim of standardization is to describe 
the distribution of health by SES conditional on other factors, such as age and sex. 
This will be referred to as the age-sex standardized health distribution. It is inter-
esting only in the case in which two conditions are satisfi ed: (i) the standardiz-
ing variables are correlated with SES and (ii) they are correlated with health. It is 
important to realize that the purpose is not to build a causal, or structural, model of 
health determination. The analysis remains descriptive, but we simply seek a more 
refi ned description of the relationship between health and SES. 

There are two fundamentally different ways of standardizing, direct and indi-
rect. Direct standardization provides the distribution of health across SES groups 
that would be observed if all groups had the same age structure, for example, but 
had group-specifi c intercepts and age effects. Indirect standardization, however, 
“corrects” the actual distribution by comparing it with the distribution that would 
be observed if all individuals had their own age but the same mean age effect as the 
entire population. 

Both methods of standardization can be implemented through regression anal-
ysis. In each case, one can standardize for either the full or the partial correlations 

Table 5.1 Indicators of Adult Health, Jamaica, 1989
Population and Household Expenditure Quintile Means

 Household expenditure quintiles 

 Total  Poorest  2  3  4  Richest 

Medical model: 4-week illness 

Any illness or injury?  0.144  0.163  0.135  0.141  0.143  0.140 

Number of illness days  1.675  2.279  1.643  1.715  1.550  1.218 

Any acute illness (<4 weeks)  0.088  0.080  0.085  0.087  0.094  0.093 

Any chronic illness (>4 weeks)  0.055  0.083  0.049  0.055  0.047  0.044 

Functional model: activity limitations 

Any major limitation  0.147  0.203  0.169  0.153  0.101  0.115 

Any minor limitation  0.260  0.334  0.314  0.255  0.199  0.205 

Num. of restricted activity days  0.825  1.307  0.818  0.807  0.752  0.461 

ADL index  0.898  0.852  0.885  0.899  0.930  0.924 

Subjective model: self-perceived      

Less than good SAH  0.170  0.238  0.193  0.169  0.134  0.120 

Poor SAH  0.058  0.097  0.066  0.061  0.035  0.034 

SAH index (lognormal)a  1.576  1.948  1.621  1.594  1.404  1.331 

SAH index (HUI)b  0.877  0.856  0.874  0.876  0.887  0.891 

Note:  a. Larger values indicate worse health. 
b. Larger values indicate better health.

Source: Authors.
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of the variable of interest with the standardizing variables. In the former case, only 
the standardizing, or confounding, variables are included in the regression analy-
sis. In the latter case, nonconfounding variables are also included, not to standard-
ize on these variables but to estimate the correlation of the confounding variables 
with health conditional on these additional variables. For example, take the case in 
which age is correlated with education and both are correlated with both health and 
income. If one includes only age in a health regression, then the estimated coeffi -
cient on age will refl ect the joint correlations with education and, inadvertently, one 
would be standardizing for education, in addition to age, differences by income. 
One may avoid this, if so desired, by estimating the age correlation conditional on 
education. 

Indirect standardization

The most natural way to standardize is by the indirect method, which proceeds by 
estimating a health regression such as the following: 

(5.1) y x zi j
j

ji ki
k

ik
= + + +∑ ∑α β γ ε ,

where yi is some indicator of health; i denotes the individual; and α , β , and γ  are 
parameter vectors. The xj are confounding variables for which we want to standard-
ize (e.g., age and sex), and the zk are nonconfounding variables for which we do 
not want to standardize but to control for in order to estimate partial correlations 
with the confounding variables. In the instance that we want to standardize for the 
full correlations with the confounding variables, the zk variables are left out of the 
regression. Ordinary least squares (OLS) parameter estimates (α̂ , β̂ j, γ̂ k), individual 
values of the confounding variables (xji), and sample means of the nonconfounding 
variables ( kz ) are then used to obtain the predicted, or “x-expected,” values of the 
health indicator X̂

iy :

(5.2) ˆ ˆ ˆ ˆy x zi
X

j
j

ji k
k

k= + +∑ ∑α β γ .

Estimates of indirectly standardized health, ÎS
iy , are then given by the difference 

between actual and x-expected health, plus the overall sample mean (ȳ),

(5.3) 
ˆ ˆy y y yi

IS
i i

X= − + .

The distribution of ÎS
iy  (e.g., across income) can be interpreted as the distribution 

of health that would be expected to be observed, irrespective of differences in the 
distribution of the x’s across income. A standardized distribution of health across 
quintiles could be generated, for instance, by averaging ÎS

iy within quintiles.

Direct standardization

The regression-based variant of direct standardization proceeds by estimating, for 
each SES group g, an equation such as the following: 

(5.4) y x zi g jg
j

ji kg ki
k

i= + + +∑ ∑α β γ ε ,
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which is a group-specifi c version of equation 5.1. OLS estimates of the group-spe-
cifi c parameters ( ˆ ˆ ˆα β γg jg kg, , ), sample means of the confounding variables ( jx ), and 
group-specifi c means of the nonconfounding variables ( zkg ) are then used to gener-
ate directly standardized estimates of the health variable D̂S

iy  as follows:

(5.5) ˆ ˆ ˆ ˆ ˆy y x zi
DS

g
DS

g jg
j

j k
k

kg= = + +∑ ∑α β γ .

Note that this method immediately gives the standardized health distribution 
across groups because there is no intragroup variation in the standardized values.

For grouped data, both the direct and indirect methods answer the question, 
“What would the health distribution across groups be if there were no correlation 
between health and demographics?” But their means of controlling for this correla-
tion is different. The direct method uses the demographic distribution of the popula-
tion as a whole (the jx ), but the behavior of the groups (as embodied in the β̂ jg’s 
andγ̂ kg’s). The indirect method employs the group-specifi c demographic charac-
teristics (the jgx ), but the populationwide demographic effects (in β̂ j and γ̂ k). The 
advantage of the indirect method, however, is that it does not require any grouping 
and is equally feasible at the individual level. The results of the two methods will 
differ to the extent that there is heterogeneity in the coeffi cients of x variables across 
groups because the indirect methods impose homogeneity and the difference will 
depend on the grouping used in the direct method. 

Example—age-sex standardization of an SAH distribution, Jamaica 1989

Table 5.2 shows household expenditure quintile means of SAH in Jamaica with 
categories coded according to mean HUI values for corresponding SAH catego-
ries from Canadian data. Results are presented for nonstandardized means and 
for means standardized for age and sex by both direct and indirect methods. For 
each method, results are given with and without control for household expendi-
ture when estimating the age/sex effects on SAH. In the former case, household 
expenditure is being treated as a z variable in equations 5.1 and 5.4. Without doing 
this, the age-sex effects will pick up the omitted expenditure effects and there is a 
danger that standardization will not only correct for differences in demographic 
composition but will also remove part of the “effect” of household expenditure on 

Table 5.2 Direct and Indirect Standardized Distributions of Self-Assessed Health 
Household Expenditure Quintile Means of SAH Index (HUI)

 Standardized 

 Indirect Direct 

   Excl.  Incl.  Excl.  Incl. 
Quintiles Observed expenditure expenditure expenditure expenditure 

Poorest  0.8564 0.8683 0.8682 0.8669 0.8668

  2  0.8742 0.8739 0.8738 0.8777 0.8777

  3  0.8763 0.8772 0.8772 0.8756 0.8756

  4  0.8870 0.8804 0.8805 0.8816 0.8816

Richest  0.8913 0.8859 0.8860 0.8862 0.8862

Source: Authors.
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SAH. In fact, the four standardized distributions are very similar in this example, 
suggesting that there is little heterogeneity in the age-sex effects across quintiles 
and that omitting expenditure from the SAH regressions does not bias these effects. 
However, standardization, by whichever method, does reduce the measured rich-
poor disparities in SAH.

Computation for demographic standardization

Computation of standardized quintile means such as those in table 5.2 is straight-
forward in a package such as Stata. Demographics can be represented by age-sex 
specifi c dummies. In the example above, we use fi ve age groups (18–34, 35–44, 45–
64, 65–74, 75+) for each gender to give 10 dummies (fage1, fage2, etc.). Label the 
health variable y; in the example it is SAH index (HUI). For illustration, (log of ) 
household expenditure (lnhhexp) will be included in the standardizing regres-
sion as a control (z) variable along with years of education (education) and a 
dummy for employment (works).1 Let there be a sample weight variable, weight.2

INDIRECT STANDARDIZATION First, estimate equation 5.1.

global xvar “mage2 mage3 mage4 mage5 fage1 fage2 fage3 fage4 
fage5”
global zvar “lnhhexp education works”
regress y $xvar $zvar [pw=weight]

If control (z) variables were not included in the regression, then predicted values 
(equation 5.2) would be obtained immediately using, 

predict yhat

When control variables are included, as above, they must be set to their mean val-
ues before predictions are obtained. This can be done by using loops, as follows:

foreach z of global zvar {
 quietly sum `z’ [aw=weight]
 gen `z’_mean = r(mean)
 gen `z’_copy = `z’
 replace `z’ = `z’_mean
}  
predict yhat
foreach z of global zvar {
 replace `z’ = `z’_copy
 drop `z’_copy `z’_mean
}

Standardized values (equation 5.3) are then computed by the following:

qui sum y [aw=weight]
gen yis = y-yhat + r(mean)

1In the Jamaican example, lnhhexp was the only z variable. We include others here to make 
the computation more generally applicable.
2The Jamaican sample was self-weighting, but we illustrate a more general case with weights.
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DIRECT STANDARDIZATION Direct standardization requires group-specifi c esti-
mates of the regression coeffi cients. We illustrate the procedure when groups are 
defi ned as expenditure (hhexp) quintiles. Compute a categorical variable identify-
ing quintiles, as follows:

xtile quintile=hhexp [pw=weight], nq(5)

Use a loop to obtain estimates of population means of the standardizing vari-
ables to be used in the prediction equation (equation 5.5):

foreach x of global xvar {

  qui sum `x’ [aw=weight]

  gen `x’_mean = r(mean)

  gen `x’_copy = `x’

}

Now loop through each quintile group, running a regression for each one and 
obtaining predicted values with standardizing variables at population means and 
control variables at group means, as in equation 5.5:

gen yds=.

forvalues i=1/5 {

 qui regr y $xvar $zvar [pw=weight] if quintile==`i’

 foreach x of global xvar {

  replace `x’ = `x’_mean

 }

 foreach z of global zvar {

  qui sum `z’ [aw=weight] if quintile==`i’

  gen `z’_mean = r(mean)

  gen `z’_copy = `z’

  replace `z’ = `z’_mean

 }

 predict yds`i’ if e(sample)

 replace yds=yds`i’ if quintile==`i’

 foreach z of global zvar {

  replace `z’=`z’_copy

  drop `z’_mean `z’_copy

 }

 foreach x of global xvar {

  replace `x’=`x’_copy

 }

}

The predicted variable, yds, is the directly standardized mean health for each 
quintile. The quintile means of nonstandardized and indirectly and directly stan-
dardized health can be compared using the following:

tabstat y yis yds [aw=weight], by(quintile)
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Conclusion

Most of the health indicators obtained from surveys are self-reported. Besides being 
convenient, these indicators have been demonstrated to be effective in capturing 
health variation in a population. Self-assessed health, in particular, has been shown 
to predict mortality even conditional on detailed physiological measures of health 
(Idler and Benyamini 1997; van Doorslaer and Gerdtham 2003). Inevitably, how-
ever, there is heterogeneity in the reporting of health. Perceptions of health depend 
on expectations about health. If these expectations differ systematically across the 
population, comparison across subgroups becomes problematic. If, for instance, the 
poor systematically understate their true health, then the self-reported measures 
will not refl ect the full extent of health inequalities. 

Differences in health disparities derived from self-reported and more objective 
indicators are suggestive of systematic variation in reporting behavior. In Aus-
tralia, Aboriginals tend to report better health despite being seriously disadvan-
taged according to more objective health indicators, such as mortality (Mathers and 
Douglas 1998). In India, the state of Kerala consistently shows the highest rates of 
reported morbidity, despite having the lowest rates of infant and child mortality 
(Murray 1996). Wagstaff (2002) notes that income-related inequalities in objective 
indicators of ill health, such as malnutrition and mortality, tend to be higher than 
those in subjective health. Moreover, the use of subjective health measures has led 
to some improbable health gradients in developing countries, with the rich report-
ing worse health than the poor (Baker and Van der Gaag 1993), which seems quite 
inconsistent with substantial pro-rich inequality in infant and child mortality rate 
and in anthropometric indicators (Gwatkin et al. 2003). 

Formal testing has found evidence of reporting differences across age-sex 
groups but not across socioeconomic groups in Sweden and Canada (Lindeboom 
and van Doorslaer 2004; van Doorslaer and Gerdtham 2003). Milcent and Etile 
(2006) fi nd some evidence of reporting differences by income in the middle catego-
ries of SAH and suggest that bias in the measurement of health inequality can be 
minimized by dichotomizing SAH into an indicator of poor health. This evidence 
is encouraging for the measurement of health inequality in developed countries, 
but one may worry that the bias is greater in developing countries where differ-
ences in the conception of illness by education and income levels may be greater. A 
promising solution to the reporting heterogeneity problem is to identify reporting 
differences from evaluations of given health states represented by hypothetical case 
vignettes and then to purge these reporting differences from individuals’ evalua-
tions of their own health (Salomon et al. 2004; Tandon et al. 2003). Case vignettes 
have been collected in the WHO World Health Surveys. Bago d’Uva et al. (2006) use 
vignettes to test for reporting heterogeneity by demographic and socioeconomic 
factors in data from China, India, and Indonesia. They fi nd that reporting differ-
ences by sociodemographic groups are signifi cant, but that, in general, the size of 
the reporting bias in measures of health disparities is not large.3

3Reporting bias is likely to be larger in response to questions about illness in the past four 
weeks, a common question in the World Bank Living Standards Measurement Surveys. The 
answer to that question may be infl uenced by conceptions of illness, access to health care, 
and work activity (Makinen et al. 2000).
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6
Measurement of Living Standards

The common theme throughout this book is the examination of disparities in a par-
ticular health variable (be it health status, health service utilization, or payments 
for health care) across people with different standards of living. For example, the 
concern might be to see whether gaps in health outcomes between the poor and 
the better off have grown or whether they are larger in one country than another. 
This raises the question of how best to measure living standards. One approach is 
to use “direct” measures, such as income, expenditure, or consumption. Another 
is to use a “proxy” measure, making the best use of available data. One popular 
approach in this vein is to use principal components analysis to construct an index 
of “wealth” from information on household ownership of durable goods and hous-
ing characteristics. 

In approaching the issue of living standards measurement, it is important to 
be aware of the limitations and potential problems of alternative measures. This 
requires an understanding not only of the conceptual differences between differ-
ent approaches, but also of the problems that can arise in the construction of liv-
ing standards variables. With this in mind, this chapter has four purposes: (i) to 
outline different approaches to living standards measurement, (ii) to discuss the 
relationship between and merits of different living standards measures, (iii) to dis-
cuss briefl y how different measures can be constructed from survey data, and (iv) 
to provide guidance on where further information on living standards measure-
ment can be obtained.

An overview of living standards measures

Direct measures of material living standards

The most direct (and popular) measures of living standards are income and con-
sumption. In general terms, income refers to the earnings from productive activities 
and current transfers. It can be seen as comprising claims on goods and services by 
individuals or households. 

In contrast, consumption refers to resources actually consumed. Although 
many components of consumption are measured by looking at household expendi-
tures, there are important differences between the two concepts. First, expenditure 
excludes consumption that is not based on market transactions. Given the impor-
tance of home production in many developing countries, this can be an important 
distinction. Second, expenditure refers to the purchase of a particular good or serv-
ice. However, the good or service may not be immediately consumed, or at least 
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there may be lasting benefi ts. This is the case, for example, with consumer durables. 
Ideally, in this case, consumption should capture the benefi ts that come from the 
use of the good, rather than the value of the purchase itself (see box 6.1). 

Measured income often diverges substantially from measured consump-
tion (see fi gure 6.1). In part, this is due to conceptual differences in the respective 
terms—it is possible to save from income and to fi nance consumption from bor-
rowing. Moreover, although this is not inherent in the defi nition of income, income 
surveys often exclude household production. There is a long-standing and vigor-
ous debate about which is the better measure of standards of living. For developing 
countries, a strong case can be made for preferring consumption, based on both 
conceptual and practical considerations (Deaton and Grosh 2000).

1. Income is received only intermittently, whereas consumption can be “smoothed” 
over time. As a consequence, it is reasonable to expect that consumption will be 
more directly related to current living standards than will current income, at 
least for short reference periods. In other words, although the fl ow of consump-

Box 6.1 Brief Defi nitions of Direct Measures of Living Standards

Income. The amount of money received during a period of time in exchange 
for labor or services, from the sale of goods or property, or as a profi t 
from fi nancial investments.

Expenditure. Money payments or the incurrence of a liability to obtain goods 
or services.

Consumption. Final use of goods and services, excluding the intermediate 
use of some goods and services in the production of others.

Source: Authors.

Figure 6.1 The Relationship between Income and Consumption
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tion over a period of, say, a week or a month, may provide a good indication of 
the level of consumption during a full year, measured income over the same 
period is most likely an inaccurate measure of income for a full year. 

2. Income and expenditure data are both diffi cult to collect. In developed coun-
tries, in which a large proportion of the population works in the formal sector 
and in which consumption patterns are very complex, the balance often tips 
in favor of measuring income rather than consumption. Even so, these sur-
veys often have considerable problems dealing with self-employment, infor-
mal economic activities, and widespread reluctance to disclose information 
on income to survey enumerators. In developing countries, formal employ-
ment is less common, many households have multiple and continually chang-
ing sources of income, and home production is more widespread. In these 
contexts, it is generally far easier to measure consumption than income.

Proxy measures of living standards

Both income and consumption data are expensive and diffi cult to collect, and many 
otherwise useful data sources lack direct measures of living standards (e.g., the 
demographic and health surveys [DHS]). On the face of it, this precludes the analy-
sis of socioeconomic inequalities of health, as well as testing of hypotheses relat-
ing to the impact of living standards on health and health service outcomes. More-
over, the exclusion of living standards measures in multivariate analysis raises the 
possibility that other coeffi cient estimates are rendered biased. These concerns 
have prompted researchers to use data on household assets and other character-
istics to construct alternative measures of welfare or living standards (Bollen et al. 
2001; Filmer and Pritchett 2001; Montgomery et al. 2000; Sahn and Stifel 2000). This 
approach has the considerable merit of requiring only data that can be easily and 
quickly collected in a single household interview and, although lacking somewhat 
in theoretical foundations, can provide a convenient way to summarize the living 
standards of a household. There are three primary approaches to constructing wel-
fare indices, which differ in how different household assets and characteristics are 
weighted in the overall index.1

• “Arbitrary” approach: Some studies have used what may be referred to as 
“naïve” indices to proxy or control for living standards, often constructed as 
the sum of indicator or dummy variables for whether a household possesses 
certain assets (Case et al. 2004; Montgomery et al. 2000; Morris et al. 2000). 
For example, a simple “asset score,” constructed by assigning equal weight to 
each of 10 assets, has been proposed as a “convenient proxy” in the context of 
the new core welfare indicator questionnaire (CWIQ) surveys.2 

• Principal components and factor analysis: As an alternative to a simple sum 
of asset variables that are available in the data, it is possible to use statisti-
cal techniques to determine the weights in the index. The two most common 

1In regression analysis, it is also possible to include assets and other living standards prox-
ies separately in the analysis. Although that may provide adequate control for living stand-
ards, it does not permit a ranking of households or individuals.
2See http://www4.worldbank.org/afr/stats/cwiq.cfm. The CWIQ methodology also sug-
gests that assets can be selected and weighted on the basis of a consumption regression in 
cases in which the requisite data are available.
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approaches for doing that are principal components analysis and factor anal-
ysis.3 These are essentially tools for summarizing variability among a set of 
variables. Specifi cally, principal components analysis seeks to describe the 
variation of a set of variables as a set of linear combinations of the original 
variables, in which each consecutive linear combination is derived so as to 
explain as much as possible of the variation in the original data, while being 
uncorrelated with other linear combinations. Typically, the asset index is 
assumed to be the fi rst principal component—that is, the fi rst linear combi-
nation.4 Principal components analysis suffers from an underlying lack of 
theory to motivate either the choice of variables or the appropriateness of the 
weights.  

• Predicting consumption: In cases in which complementary consumption 
data are available—from a past or parallel survey—it may be possible to 
derive weights for a living standards index through a “consumption regres-
sion.” In other words, consumption data are regressed on a set of household 
assets and characteristics that are common to the two surveys, and coeffi -
cient estimates are used as weights. This approach draws on the techniques 
from the targeting literature, which seek to identify a set of variables that 
predict consumption and use this information to channel services or ben-
efi ts (e.g., cash transfers) to the poorer segments of the population (Coady 
et al. 2004; Grosh and Baker 1995). Consumption regressions have also been 
implemented in other contexts, for example, to link survey and census data 
for the purposes of poverty mapping. In many cases, the estimated models 
have considerable predictive power. However, in both of these cases, the set 
of household and asset characteristics has been broader than has typically 
been the case for assets constructed through principal components or factor 
analysis, including for example, educational status, language, location, and 
ethnic affi liation. In other words, many of the attempts to predict consump-
tion have included not only indicators but also determinants of income and 
consumption.

Some practical issues in constructing living standards variables

Measuring income

Broadly speaking, income is composed of earnings from productive activities and 
transfers. It is customary to distinguish four main components in the measurement 
of income: (i) wage income from labor services; (ii) rental income from the supply 
of land, capital, or other assets; (iii) self-employment income; and (iv) current trans-
fers from government or nongovernment agencies or other households. There is, 
however, some disagreement about what exactly should be considered “productive 

3For a detailed discussion of the statistical techniques, see Bartholomew et al. (2002).
4In contrast to the principal components approach proposed by Filmer and Pritchett (1999), 
Sahn and Stifel (2000) construct a welfare index on the basis of factor analysis. They argue 
that factor analysis is preferable to the principal component method because it does not 
force all of the components to accurately and completely explain the correlation structure 
between the assets. Despite the perceived advantages, they note that the Spearman rank 
correlation between the principal components and factor analysis asset indices is about 0.98 
for each of the samples considered.
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activities,” and hence, what should be included in income measures (McKay 2000). 
In particular, many attempts to measure income have not considered home produc-
tion, although this can be conceived as a form of income. In cases in which home 
production is considered, practical considerations often limit the scope. For exam-
ple, some income measures seek to include subsistence agricultural production in 
the calculation of household income. In contrast, “service activities” such as child 
minding performed in the household are generally excluded. For home-produced 
goods that are either exchanged by barter or consumed directly in the household, 
and for any income received in-kind, values have to be imputed.5 

Although some surveys in developing countries—for example, in Latin America—
have collected detailed income data, attention is often restricted to employment income. 
That is the case, for example, in most Living Standards Measurement Study (LSMS) 
surveys. Moreover, the quality of the data has often been poor. As a consequence, 
income data from these surveys have rarely been used as a proxy for living standards. 
If reasonably complete income data are available, a measure of total income may be a 
useful proxy for living standards, in particular if consumption data are not available. 
In cases in which consumption data are available, it is always advisable to try to assess 
the validity of the relative measures. That entails comparing household income with 
consumption aggregates, but it also requires a detailed analysis of the questionnaire 
and the data collection process.

Measuring consumption and constructing consumption aggregates

As noted, consumption is seen by many as the preferred measure of living stan-
dards. Surveys have differed a great deal in the level of detail of their consump-
tion modules. Some surveys have included comprehensive and detailed lists of 
consumption items. For example, the Brazilian budget survey uses a list of 1,300 
items. Most surveys, however, are less detailed. The LSMS surveys, which have 
been designed and implemented with the explicit objective of measuring living 
standards, have included somewhere in the region of 20 to 40 food items and a sim-
ilar number of nonfood items.6 Because of this heterogeneity, it is not possible to 
provide general guidelines on how to construct consumption aggregates or to fully 
account for the methodological challenges and pitfalls in this process.7 Here, we 
restrict ourselves to a general overview of the steps of the process.

Most surveys collect data on four main classes of consumption: (i) food items, 
(ii) nonfood, nondurable items, (iii) consumer durables, and (iv) housing.8 Consump-
tion is measured with a particular reference period in mind. Although the reference 

5The imputation of values for home production is discussed in more detail below.
6Morris et al. (2000) have suggested that in many contexts, aggregate consumption can 
be proxied by a reduced list of consumption items. They report results in which a proxy 
constructed from 10 items was correlated with total household consumption at the r = 0.74 
level.
7There are, however, good sources of information on these issues. For example, Deaton and 
Zaidi (2002) provide a detailed review and offer many examples of Stata code.
8Because of the diffi culty in defi ning meaningful shadow prices, most consumption mea-
sures exclude publicly supplied goods and services, even though these services can have a 
big impact on material living standards. Similarly, conceptual problems in establishing the 
value of leisure, in particular in contexts in which un- or underemployment is widespread, 
often make it impractical to include leisure as a component of consumption.
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period varies, many surveys aim to accurately measure the total consumption of 
the household in the past year. In this way, temporary drops in consumption are 
ignored, and it is still possible to capture changes in living standards of a single 
individual or household over time. In some contexts—for example, where there are 
important seasonal variations in living standards—it may be appropriate to focus 
on time periods shorter than a year. The reference period should be distinguished 
from the recall period, which refers to the time period for which respondents are 
asked to report consumption in the survey. Recall periods tend to differ for different 
types of goods, such that reporting on goods that tend to be purchased infrequently 
is based on a longer time period. The balance has to be struck between capturing a 
suffi ciently long period so that the consumption during the period is representative 
of the reference period (year) as a whole and making it suffi ciently short such that 
households can remember expenditures and consumption with reasonable accu-
racy. Surveys have taken different approaches to striking that balance. 

In general, there are three steps in the construction of a consumption-based liv-
ing standards measure: (i) construct an aggregate of different components of con-
sumption, (ii) make adjustments for cost of living differences, and (iii) make adjust-
ments for household size and composition. These steps are discussed in turn.

AGGREGATING DIFFERENT COMPONENTS OF CONSUMPTION The fi rst step in con-
structing a consumption aggregate is to simply add up the values of different types 
of consumption. However, before this can be done, a common reference period has 
to be established for all items, and values have to be imputed in cases in which they 
are not available.

Food consumption: A food consumption subaggregate is constructed through 
the aggregation of (i) food purchased in the marketplace, (ii) food that is home-pro-
duced, (iii) food items received as gifts or remittances from other households, and 
(iv) food received as in-kind payment from employers.

1. All data on food expenditures or consumption must be converted to a uni-
form reference period—for example, a year. Some care is required in this 
because the recall periods can sometimes vary for different types of food 
items. For example, some nonperishable food items are consumed infre-
quently. In these cases, “food consumed” during a recall period may be 
different from “food purchased.” Ideally, that should be refl ected in the ques-
tionnaire design by extending the recall period for these items.

2. In some surveys, data may be available for more than one reference period. 
For example, some LSMS surveys collect data both on food expenditures in 
the “past two weeks” and on food expenditures in a “usual month.” In these 
cases, a choice has to be made, taking into account the benefi ts and problems 
of alternative designs.

3. Many households, in addition to consuming goods and services procured in 
the market, also produce goods for the market or home consumption. Home 
production presents both theoretical and practical challenges that relate to 
determining the appropriate value of home-produced goods and services.9 

9In situations in which a large proportion of consumption comes from home production, 
there is a real risk that the measures of living standards refl ect assumptions about the value 
of different goods and services, rather than some theoretically appealing measure of welfare.
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In most surveys, attention is restricted to home-produced food, which typi-
cally is captured in a separate questionnaire module. The survey may collect 
data only on the value of different home-produced food items, or on both value 
and quantity. If data on the value of these items are not available, it is possible 
to impute the value by using quantities and estimates of “farm-gate” prices.

4. Information on food received as in-kind payment may not be collected in all 
surveys, or it may be collected in a different part of the questionnaire from 
other food-related questions. If the data are available, the values should be 
added to other food consumption for a subaggregate.

Nonfood consumption: Most surveys collect data only on purchased nonfood 
items and do not consider home-production. Data generally are collected on a 
wide range of items. However, because values rather than quantities typically are 
reported, the aggregation is straightforward. 

1. Similarly to food consumption, the recall period may vary for different non-
food consumption items. It may be a month for daily-use items, but consid-
erably longer for items that are purchased less frequently. It is therefore 
important to ensure that the data are converted to a common reference period.

2. It may also be advisable to exclude some nonfood expenditures—for exam-
ple, tax payments, gifts, and transfers to other households as well as lumpy 
expenditures (marriages, funerals, etc.). However, there are no general rules 
in this regard, and it will require a judgment based on considerations of the 
particular context and on how the data will be used.

Consumer durables: We have noted that in the case of durable goods, it is not 
appropriate to measure consumption by expenditure on the item. Rather, consump-
tion refers to the “rental equivalent” or “user cost” of the good. This can be thought 
of as comprising two components: (i) the opportunity cost of funds tied up in the 
durable good and (ii) the depreciation of the good. Generally, these values must be 
imputed. For this reason, most surveys collect data on the stock and characteristics 
of durables, rather than on expenditures on these items. 

1. Generally, the most important “durable good” is housing. In this case, rental 
data are sometimes available. For households that do not report rent, a value 
can be imputed by using the relationship between rent and housing char-
acteristics in the subset of households that report rent (a “hedonic regres-
sion”).10 However, this approach can be tenuous in contexts in which this 
subset is a small proportion of all households or in which these households 
are “unrepresentative” in respect to the relationship between paid rent and 
housing characteristics. 

2. For other household durables, the imputation of values is normally done on 
the basis of data on date of purchase and cost of acquisition, combined with 
assumptions about the lifetime of the good. Alternatively, depreciation rates 
can be calculated using reported “current values.” Procedures are described 
in detail by Deaton and Zaidi (2002). 

10A “hedonic regression” simply refers to the regression of rental value on a number of hous-
ing characteristics (e.g., number of rooms, type of fl oor, type of roof, access to water, type of 
toilet, etc.). The estimated relationship can be used to predict values for households in cases 
in which rent is not observed (but housing characteristics are).
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ADJUSTING FOR COST-OF-LIVING DIFFERENCES Monetary estimates of total con-
sumption must be adjusted to refl ect differences in prices. This concerns mainly 
regional differences in prices. For example, prices tend to be lower in rural than 
in urban areas, at least for some goods and services. However, if the fi eldwork was 
carried out during an extensive period, it may also be necessary to take into account 
temporal variation in prices, even in a simple cross-section survey.

Price adjustments raise both practical and conceptual issues (Deaton and Grosh 
2000; Deaton and Zaidi 2002). At a practical level, a decision has to be made about 
the source of price data. In general, there are three options: (i) household-level data 
on the volume and value of purchases, (ii) a dedicated price questionnaire, or (iii) 
price data from separate price surveys. Although household-level price data have 
some problems—in particular in relation to the defi nition of units of consumption 
and heterogeneity in quality—generally, they are seen as the preferred source. It 
may, however, be advisable to average prices over households in clusters. Price data 
from market or community questionnaires have also been used in many surveys. 
Although these data can be diffi cult to collect and have limitations, they are a use-
ful substitute. Data from statistical offi ces or ministries of fi nance are often based 
on irregular price surveys, and the spatial disaggregation of the data may be lim-
ited. These types of data should hence be used only as a last resort. 

In general terms, a price index is constructed as a weighted sum of price ratios 
of different commodities, 
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where k is the set of commodities, w is the weight, ph is the price faced by the house-
hold, and p0 is a reference price (often the median price for the respective commod-
ity). There are different approaches to constructing a price index. The fundamental 
difference concerns the weights that are used. For a Paasche price index, the weights 
are simply the share of each household’s budget devoted to the particular good. 
As a consequence, the weights vary across households. In contrast, the Laspeyres 
price index uses the same weights for all households, based on budget shares of 
households on or near the poverty line. The results from the different approaches 
correspond to different theoretical approaches to the measurement of welfare and 
can sometimes lead to different fi ndings. Although the Laspeyres price index may 
be more convenient to calculate because the weights are constant, Deaton and Zaidi 
(2000) suggest that the Paasche index is preferable because it tends to indicate wel-
fare more correctly.

ADJUSTING FOR HOUSEHOLD SIZE AND COMPOSITION As noted, most surveys 
use the household as a unit of observation in the measurement of consumption. The 
reason is that it would be both costly and time-consuming to collect consumption 
data on an individual basis. It also facilitates the treatment of joint household goods 
such as housing, where it is not possible to assign consumption to specifi c individu-
als. Although this is convenient, we are often interested in individual consumption 
or welfare.11 To obtain individual-level estimates, it is necessary to adjust household 

11Treating the household as the unit of observation also ignores the possibility that the intra-
household distribution of resources can be very uneven.
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estimates of aggregate consumption to refl ect household size and composition. This 
is done by using a defl ator, or equivalence scale. In the simplest case, we can sim-
ply use the number of household members to convert household consumption into 
individual consumption. However, although per capita household consumption is 
a convenient measure of living standards, it ignores household economies of scale 
that arise because some goods and services that are consumed by the household 
have public good characteristics—that is, they generate benefi ts for other household 
members besides the primary consumer. There may also be age- or gender-specifi c 
differences in consumption needs (in particular to refl ect the consumption needs of 
children relative to adults). 

Refl ecting these concerns, equivalence scales can be constructed as some func-
tion of the household size and demographic composition provided estimates are 
available for household economies of scale and the cost of children. A common 
approach is to defi ne the number of adult equivalents (AE) in the household as 

 AE A K= +( )α θ , 

where A is the number of adults in the household, K is the number of children, 
α  is the “cost of children,” and θ  refl ects the degree of economies of scale (Cirto 
and Michael 1995). The challenge is to determine the appropriate values for α  and 
θ . Identifying equivalence scales is notoriously diffi cult (Deaton 1997). Behavioral 
(Deaton and Muellbauer 1986; Deaton and Paxson 1998) and subjective (van Praag 
and Warnaar 1997) approaches have been taken. While recognizing the diffi culty 
of identifying equivalence scales for developing countries, Deaton and Zaidi (2002) 
propose values in the region of 0.3 to 0.5 for α  (higher in developed countries) and 
0.75 to 1.0 for θ , given that food accounts for a large proportion of total consump-
tion, and economies of scale are relatively limited.12

Constructing an asset index 

PRINCIPAL COMPONENTS AND FACTOR ANALYSIS Because asset indices con-
structed from principal components and factor analysis generally are highly corre-
lated, the choice of technique is mainly a matter of convenience.13 In the case of prin-
cipal component analysis, the asset index, Ai, for individual i is defi ned as follows:

 
Ai = fk

(aik − ak )
sk

⎡
⎣
⎢

⎤
⎦
⎥k∑ ,

12The selection of values of α  and θ  is not a strictly technical exercise, but also refl ects value 
judgments. For example, there are no clear technical grounds on which to determine how 
the value of household public goods declines as it is shared across more household mem-
bers. Similarly, although the nutritional requirements of children relative to adults can be 
determined on technical grounds, other child “needs” are more diffi cult to establish. Given 
inherent uncertainty about the parameter values and given that the choice of parameter 
refl ects value judgments, it is advisable to construct several individual consumption aggre-
gates and to test the robustness of fi ndings to different assumptions concerning economies 
of scale and consumption needs. Insofar as fi ndings (e.g., comparisons of inequality over 
time and across countries) vary on the choice of parameters, analysts need to assess not only 
the soundness of chosen parameters on technical grounds, but also whether the choice is 
consistent with the views and values of policy makers and society. 
13For a detailed discussion of how to construct asset indices, see Vyas and Kumaranayake 
(2006).
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where aik is the value of asset k for household i,  ak  is the sample mean, sk is the 
sample standard deviation, and fk are the weights associated with the fi rst principal 
component.

Such an index can be computed fairly easily in many statistical packages. In 
Stata, principal components or factors are computed by the following:

#delimit ;
global assets “elctrcty radio fridge tv bike motor_bike car 
tele water_piped water_pumpwell water_pubwell water_open 
water_other wc latrine fl oor_dirt fl oor_cement fl oor_brick fl oor_
adobe fl oor_parq fl oor_other persroom”;
#delimit cr
factor $assets [aw=weight], pcf

where the list of household assets and characteristics are specifi ed in the global 
macro assets.14 Because the option pcf is specifi ed, this command extracts the 
principal components.15 The default is to perform ordinary factor analysis. An option 
factors() can be added to control the number of factors that are extracted. For 
example, if one is interested only in the fi rst principal component, factors(1) could 
be added. The command displays a table of components, and it is possible to read off 
the proportion of variance in the variables that is accounted for by each component. 

In the construction of living standards indices on the basis of principal compo-
nents analysis, it is generally assumed that the fi rst component is an adequate mea-
sure of welfare. The index is computed with the following:

predict asset_index

This is essentially the sum of the asset variables, weighted by the elements of the 
fi rst eigenvector. If consumption data are available, the correlation with the asset 
index can be examined. In fact, living standard indices based on principal compo-
nents analysis often have a weak relationship with consumption, with correlation 
coeffi cients often in the region of 0.2 to 0.4. In part, this may be due to a poor selec-
tion of asset variables, but there may also be deeper reasons that consumption is 
only weakly related to asset ownership.16

Health variables are often compared across quantiles of some measure of living 
standards—income, consumption, or an assets index. In Stata, a categorical variable 
identifying quantiles can be computed by the following: 

xtile quintile=asset_index [aw = weight], nq(5)

Here, we construct quintiles (nq(5)). Note that weights must be applied if the 
sample is not self-weighted. 

14The command #delimit ; changes the way Stata reads code in a do-fi le. Rather than 
executing line by line, the program now treats semicolons as the end of the commands. This 
means that commands can be spread over several lines to improve readability. The com-
mand #delimit cr returns to the default setting of line-by-line processing. An alterna-
tive way of spreading a command over multiple lines is to end a command line with ///. 
15Alternatively, principal components can be computed in Stata using the command pca.
16Moser (1998) has argued that the choice of asset indicators needs to be tailored to the cir-
cumstances of a particular context.
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USING FACTOR WEIGHTS FROM ANOTHER SURVEY Nationally representative sam-
ples do not provide the detailed data required to answer all questions of interest. For 
example, one might be interested in utilization of a specifi c health service that is not 
separately identifi ed in a national survey. Or, one might be interested in the use of a 
specifi c provider or in health or health service utilization in a particular locality. In 
such cases, a detailed but small-scale and nonrepresentative survey may be under-
taken to extract the required data on the health variable of interest. For example, an 
exit survey could be used to collect data directly from the users of a particular ser-
vice. Given the detailed consideration of health variables in such a study and the lim-
ited time available for enumeration, it will not usually be possible to have detailed 
measurement of income or consumption. Recording assets and housing conditions is 
easier and offers a more feasible way of assessing living standards. Factor or principal 
components analysis could be applied to the assets data from the specifi c survey. But 
one may worry that the weights derived from such a specialized survey may not be 
consistent with those that would be obtained from a nationally representative survey 
and further, one may be interested in where sample observations lie in the national 
distribution of living standards. If there exists a national survey that collects data on 
the same assets as those in the specifi c survey, then the former can be used to compute 
factor weights and these can be applied to the specifi c survey assets data to derive 
assets index scores that can be assessed against the national distribution of the index. 

This is the approach adopted by, for example, Thiede et al. (2005) in their study 
of the use of HIV/AIDS voluntary counseling and testing (VCT) services in South 
Africa. They collected data on assets from users of public clinics in townships 
only and computed a wealth score using the principal component factor loadings 
from an analysis of all urban households in the national demographic and health 
survey (DHS). From the DHS data, the cutoff points for wealth quintiles in South 
Africa’s whole urban population could be calculated and the fraction of township 
residents located in each urban wealth quintile identifi ed. Township residents were 
concentrated in the middle part of the urban wealth distribution—only 14 percent 
of the township population was located in the poorest urban wealth quintile, and 
only 8 percent was in the richest quintile (see table 6.1). The fraction of township 
clinic users could then be compared with the respective population shares in each 
wealth quintile for the entire urban population. For example, although the poorest 
urban quintile accounted for 8 percent of the township population, it accounted for 
36 percent of township VCT users (table 6.1). The richest urban quintile, although 

Table 6.1 Percentage of Township Population and Users of HIV/AIDS Voluntary 
Counseling and Testing Services by Urban Wealth Quintile, South Africa

 Percent of township Percent of users of
Urban quintile population HIV/AIDS VCT services

Poorest 20% 14.0 35.6

2nd 23.7 38.9

3rd 28.8 17.3

4th 25.4 7.2

Richest 20% 8.1 1.0

Source: Thiede et al. 2005. 



80 Chapter 6

accounting for 8 percent of the township population, accounted for just 1 percent of 
township VCT users. 

Does the choice of the measure of living standards matter?

So far, we have focused on the construction of different measures of living stan-
dards. We have noted that there are both conceptual and practical differences 
between different measures. But one could reasonably ask which is the “best” mea-
sure. Unfortunately, there is not a simple answer to this question. Arguably, income 
is an inferior measure, not only because of measurement challenges, but also 
because for most households the fl uctuation in income over time does not imply 
commensurate changes in living standards. In other words, if a household suffers 
a temporary negative income shock due to illness, but is able to maintain consump-
tion through savings or insurance, it may be misleading to rank the household 
based on income or to express out-of-pocket payments as a share of income. 

On normative grounds, most analysts prefer to assess living standards with ref-
erence to some notion of long-term command over resources. This latent variable 
can be proxied by consumption or an asset index. As mentioned above, most econo-
mists prefer consumption because it is rooted in economic theory. Consumption 
data, however, are expensive to collect and may also be more susceptible to meas-
urement error.17 In contrast, asset and housing data are easier to collect and poten-
tially less susceptible to measurement error. 

In practice, the correlation between consumption and asset indices is often low. 
But does the choice between these two measures matter for the analysis of health 
equity? Montgomery et al. (2000) show that although asset indices are often poor 
predictors of consumption, they may still be useful in testing the hypothesis of 
whether consumption is a signifi cant determinant of health outcomes, in particu-
lar in cases in which sample sizes are large and there is a great deal of variation in 
consumption.18 They also fi nd little evidence that the use of asset indices to proxy 
for consumption results in biased coeffi cient estimates on other variables of inter-
est. Focusing specifi cally on health equity, Wagstaff and Watanabe (2003) compare 
measured inequality in wasting and stunting for 19 countries (based on LSMS 
data) and fi nd that for most countries the choice between consumption and the 
asset index as the welfare measure makes little difference to the measured degree 
of socioeconomic inequality in malnutrition. This fi nding offers a degree of confi -
dence to analysts who are concerned about the robustness of their results. 

But robustness is not a consistent fi nding. Results have also been shown to be 
sensitive to the choice of assets and household characteristics that are included in 
the index (Houweling et al. 2003). Moreover, in some contexts, the choice of welfare 
indicator can drive conclusions in important ways. This is the case, for example, 
in Mozambique, where the choice of welfare indicator has a large and signifi cant 
impact on socioeconomic inequalities in service use and on the incidence of public 

17Although measurement error in consumption has been used as an argument for asset 
indices (Filmer and Pritchett 2001; Sahn and Stifel 2003), measurement error can also be an 
important problem in the collection of data on household assets and characteristics. As a 
result, reliability of asset-based measures of SES may also be low (Onwujekwe et al. 2006). 
18See also Bollen et al. (2001), Sahn and Stifel (2003), and McKenzie (2005).
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spending (Lindelow 2006). For most health services, this study found less inequal-
ity in utilization when consumption rather than the assets index was used as the 
living standards measure. For example, although the poorest quintile ranked by 
the assets index received only 9.6 percent of all child immunizations, the poorest 
quintile ranked by consumption received 21.4 percent. For health center visits, ine-
quality moved in the opposite direction—there was inequality favoring the poor 
using the assets index as the living standards measure but inequality favoring the 
rich using consumption.19 Clearly such results suggest that the sensitivity of results 
to the living standards measure should be checked when it is possible to do so.

References

Bartholomew, D., F. Steele, I. Moustkaki, and J. Galbraith. 2002. The Analysis and Interpretation 
of Multivariate Data for Social Scientists. London, England: Chapman and Hall.

Bollen, K. A., J. L. Glanville, and G. Stecklov. 2001. “Socioeconomic Status and Class in 
Studies of Fertility and Health in Developing Countries.” Annual Review of Sociology 27: 
153–85.

Case, A., C. Paxson, and J. Ableidinger. 2004. “Orphans in Africa: Parental Death, Poverty, 
and School Enrollment.” Demography 41(3): 483–508.

Cirto, C., and R. Michael. 1995. Measuring Poverty: A New Approach. Washington, DC: 
National Academy Press.

Coady, D., M. Grosh, and J. Hoddinott. 2004. Targeting of Transfers in Developing Countries: 
Review of Lessons and Experience: Regional and Sectoral Studies. Washington, DC: World 
Bank.

Deaton, A. 1997. The Analysis of Household Surveys: A Microeconometric Approach to Develop-
ment Policy. Baltimore, MD: Published for the World Bank [by] Johns Hopkins University 
Press.

Deaton, A., and M. Grosh. 2000. “Consumption.” In Designing Household Survey Question-
naires for Developing Countries: Lessons from 15 Years of the Living Standards Measurement 
Study, ed. M. Grosh and P. Glewwe. Washington, DC: World Bank.

Deaton, A., and J. Muellbauer. 1986. “On Measuring Child Costs: With Applications to Poor 
Countries.” Journal of Political Economy 4: 720–44.

Deaton, A., and C. H. Paxson. 1998. “Economies of Scale, Household Size, and the Demand 
For Food.” Journal of Political Economy 106: 897–930.

Deaton, A., and S. Zaidi. 2002. “Guidelines for Constructing Consumption Aggregates.” 
LSMS Working Paper No. 135. World Bank, Washington, DC.

Filmer, D., and L. Pritchett. 1999. “The Effect of Household Wealth on Educational Attain-
ment: Evidence from 35 Countries.” Population and Development Review 25(1): 85–120.

Filmer, D., and L. Pritchett. 2001. “Estimating Wealth Effects without Expenditure Data—or 
Tears: An Application to Educational Enrollments in States of India.” Demography 38(1): 
115–133.

Grosh, M., and J. Baker. 1995. “Proxy Means Tests for Targeting Social Programs: Simula-
tions and Speculation.” LSMS Working Paper No. 118. World Bank, Washington DC.

Houweling, T. A., A. E. Kunst, and J. P. Mackenbach. 2003. “Measuring Health Inequality 
among Children in Developing Countries: Does the Choice of the Indicator of Economic 
Status Matter?” Int J Equity Health 2(1): 8.

19See chapter 8 for further discussion of this study.



82 Chapter 6

Lindelow, M. 2006. “Sometimes More Equal Than Others: How Health Inequalities Depend 
on the Choice of Welfare Indicator.” Health Economics 15: 263–79.

McKay, A. 2000. “Should the Survey Measure Total Household Income?” In Designing 
Household Survey Questionnaires for Developing Countries: Lessons from 15 Years of the Living 
Standards Measurement Study, ed. M. Grosh and P. Glewwe. Washington, DC: The World 
Bank.

McKenzie, D. J. 2005. “Measuring Inequality with Asset Indicators.” Journal of Population 
Economics 18(2): 229–60.

Montgomery, M. R., M. Gragnaloti, K. Burke, and E. Paredes. 2000. “Measuring Living Stan-
dards with Proxy Variables.“ Demography 37(2): 155–74.

Morris, S. S., C. Calogero, J. Hoddinot, and L. J. M. Christiaensen. 2000. “Validity of Rapid 
Estimates of Household Wealth and Income for Health Surveys in Rural Africa.” Journal 
of Epidemiology and Community Health 54: 381–87.

Moser, C. 1998. “The Asset Vulnerability Framework: Reassessing Urban Poverty Reduction 
Strategies.” World Development 26(1): 1–19.

Onwujekwe, O., K. Hanson, and J. Fox-Rushby. 2006. “Some Indicators of Socio-economic 
Status May Not Be Reliable and Use of Indices with These Data Could Worsen Equity.” 
Health Economics 15(6): 639–44.

Sahn, D. E., and D. C. Stifel. 2000. “Poverty Comparisons Over Time and Across Countries 
in Africa.” World Development 28(12): 2123–55.

Sahn, D. E., and D. C. Stifel. 2003. “Exploring Alternative Measures of Welfare in the Absence 
of Expenditure Data.” Review of Income and Wealth 49(4): 463–89.

Thiede, M., N. Palmer, and S. Mbatsha. 2005. “South Africa: Who Goes to the Public Sec-
tor for Voluntary HIV/AIDS Counselling and Testing?” In Reaching the Poor with Health, 
Nutrition and Population Services: What Works, What Doesn’t, and Why, ed. D. R. Gwatkin, 
A. Wagstaff, and A. S. Yazbeck. Washington, DC: World Bank.

van Praag, B. M. S., and M. F. Warnaar. 1997. “The Cost of Children and the Use of Demo-
graphic Variables in Consumer Demand.” In Handbook of Population and Family Economics, 
ed. M. Rosenzweig and O. Stark, 241–73. Amsterdam, Netherlands: North-Holland.

Vyas, S., and L. Kumaranayake. 2006. “Constructing Socio-Economic Status Indices: How to 
Use Principal Components Analysis.” Health Policy Plan 21(6): 459–68.

Wagstaff, A., and N. Watanabe. 2003. “What Difference Does the Choice of SES Make in 
Health Inequality Measurement?” Health Economics 12(10): 885–90.



83

7
Concentration Curves

In previous chapters, we assessed health inequality through variation in mean 
health across quintiles of some measure of living standards. Although convenient, 
such a grouped analysis provides only a partial picture of how health varies across 
the full distribution of living standards. A complete picture can be provided using 
a concentration curve, which displays the share of health accounted for by cumula-
tive proportions of individuals in the population ranked from poorest to richest 
(Kakwani 1977; Kakwani et al. 1997; Wagstaff et al. 1991). The concentration curve 
can be used to examine inequality not just in health outcomes but in any health sec-
tor variable of interest. It can also be used to assess differences in health inequality 
across time and countries. For example, it has been used to assess whether subsi-
dies to the health sector are targeted toward the poor and whether the targeting is 
better in some countries than in others (O’Donnell et al. 2007; Sahn and Younger 
2000). It has also been used to assess whether child mortality is more unequally 
distributed to the disadvantage of poor children in one country than in another 
(Wagstaff 2000) and whether inequalities in adult health are more pronounced in 
some countries than in others (van Doorslaer et al. 1997). Many other applications 
are possible. 

In this chapter we explain how to compute a concentration curve. We also 
explain how to test whether a concentration curve departs signifi cantly from an 
equal distribution and whether there is a statistically signifi cant difference between 
two concentration curves that may represent different health services, time peri-
ods, or countries. This requires computation of standard errors of the concentration 
curve ordinates. 

The concentration curve defi ned

The two key variables underlying the concentration curve are the health variable, 
the distribution of which is the subject of interest, and a variable capturing living 
standards against which the distribution is to be assessed. Measurement of key 
health sector variables and of household living standards has been considered in 
earlier chapters. The health variable must be measured in units that can be aggre-
gated across individuals. This is not necessary for the living standards measure, 
which is used only to rank individuals from richest to poorest. 

The data could be at the individual level (e.g., raw household survey data), in 
which case values of both the health variable and the living standards variable are 
available for each observation. Alternatively, the data could be grouped, in which case, 
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for each living-standard group (e.g., income quintile), the mean value of the health 
variable is observed. The ranking of the groups (which group is poorest, which group 
is second poorest, and so on) and the percentage of the sample falling into each group 
are known. In the case of grouped data, the only advantage of the concentration curve 
over a table of group means is that it gives a graphical representation of the data.

The concentration curve plots the cumulative percentage of the health variable (y-
axis) against the cumulative percentage of the population, ranked by living standards, 
beginning with the poorest, and ending with the richest (x-axis). In other words, it 
plots shares of the health variable against quantiles of the living standards variable. 
Examples are given in the fi gure in box 7.1 and in fi gures 7.1 and 7.2. So, for example, 
the concentration curve might show the cumulative percentage of health subsidies 
accruing to the poorest p percent of the population. If everyone, irrespective of his or 
her living standards, has exactly the same value of the health variable, the concentra-
tion curve will be a 45-degree line, running from the bottom left-hand corner to the 
top right-hand corner. This is known as the line of equality. If, by contrast, the health 
sector variable takes higher (lower) values among poorer people, the concentration 
curve will lie above (below) the line of equality. The farther the curve is above the line 
of equality, the more concentrated the health variable is among the poor. 

Concentration curves for the same variable in different countries or time peri-
ods can be plotted on the same graph. Similarly, curves for different health sector 
variables in the same country and time period can be plotted against each other. For 
example, the analyst may wish to assess whether inpatient care is more unequally 
distributed than primary care. If the concentration curve for one country (or time 
period or health service) lies everywhere above that for the other, the fi rst curve is 
said to dominate the second, and the ranking by degree of inequality is unambigu-
ous.1 Alternatively, curves may cross, in which case neither distribution dominates 
the other. It is then still possible to make comparisons of degrees of inequality but 
only by resorting to a summary index of inequality, which inevitably involves the 
imposition of value judgments concerning the relative weight given to inequality 
arising at different points in the distribution (see chapter 8). Rankings by degree of 
inequality can then differ depending on the inequality index chosen. 

Graphing concentration curves—the grouped-data case

In the grouped-data case, the required data and the corresponding charts are easily 
produced in a spreadsheet program such as Microsoft Excel. The table in box 7.1 is 
pasted directly from Excel and contains all the data required to plot the concentra-
tion curve shown in the box. The curve is constructed in Excel using the XY (scatter) 
chart-type with the “scatter with data points connected by smoothed lines” option. 
The fi rst series graphs the line of equality, the x-values and the y-values both being 
the cumulative percentage of the sample. The no-marker option is selected for the 
line of equality. The second series graphs the concentration curve, the x-values being 
the cumulative percentage of the sample, the y-values being the cumulative percent-
age of the health variable. It is important to include a 0 percent in both series. Both the 
x-axis and the y-axis need to be restricted to the range 0 to 100 percent. 

1For an introduction to the concept of dominance, its relation to inequality measurement, 
and the related concept of stochastic dominance, see Deaton (1997).
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Box 7.1 Example of a Concentration Curve Derived from Grouped Data

In this example, the sample comprises births, the living standards measure is the assets 
(wealth) index, and the health variable is deaths of children under fi ve years of age. The 
data are from the demographic and health surveys of India and Mali. The table shows 
the number of births in each wealth index quintile during the period 1982–92 in India. 
Expressing these as percentages of the total number of births and cumulating them 
gives the cumulative percentage of births, ordered by wealth. That is what is plotted on 
the x-axis in the fi gure. Also shown are the under-fi ve mortality rates (U5MR) for each 
of fi ve wealth groups. Multiplying the U5MR by the number of births gives the num-
ber of deaths in each wealth group. Expressing these as a percentage of the total num-
ber of deaths and cumulating them gives the cumulative percentage of deaths. That is 
what is plotted on the y-axis in the fi gure. The concentration curve for India lies above 
(dominates) the line of equality, indicating that child deaths are concentrated among 
the poor. Also shown in the fi gure is the concentration curve for under-fi ve deaths for 
Mali for the period 1985–95. The Mali curve lies everywhere below that of India (i.e., 
the India curve dominates the Mali curve), indicating there is less inequality in under-
fi ve mortality in Mali than in India. 

Under-Five Deaths in India, 1982–92

Wealth No. of Rel % Cumul % U5MR No. of Rel % Cumul % 
group births births births per 1,000 deaths deaths deaths 

   0    0 

Poorest  29,939  23  23 154.7  4,632  30 30

2nd  28,776  22 45 152.9  4,400  29 59

Middle  26,528  20  66 119.5  3,170  21  79 

4th  24,689  19 85  86.9  2,145  14  93 

Richest  19,739  15 100 54.3  1,072  7  100 

Total/average  129,671   118.8 15,419 

Concentration Curves for Under-Five Deaths in India and Mali
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Graphing concentration curves—the microdata case

Graphing concentration curves in Stata can be done using the command glcurve 
(an ado fi le downloadable from the Stata Web site). However, better-looking charts 
can be obtained using the twoway command. 

In the example that follows, we plot concentration curves for child malnutrition 
in Vietnam in 1992/93 and 1997/98, with malnutrition measured by the negative 
of height-for-age, as in Wagstaff et al. (2003). The dataset contains stacked data for 
the two years (year being 0 for 1992/93 and 1 for 1997/98), neghaz and lnpcexp 
being, respectively, the negative of height-for-age and the log of per capita expen-
diture for the year in question. We ignore below-sample weights, but they can be 
incorporated in both of the approaches below, as will be clear from Stata code else-
where in the book. 

The concentration curve can be produced directly using glcurve as follows:

glcurve neghaz, glvar(yord) pvar(rank) sortvar(lnpcexp) 
replace by(year) split lorenz

The rank variable here is the lnpcexp. glcurve generates three new vari-
ables: rank, which is the child’s rank in the expenditure distribution in each year, 
and yord_0 and yord_1, which are respectively the y-ordinates for 1992/93 and 
1997/98. Adding the lorenz option requests that y-ordinates be cumulative pro-
portions of the health variable and not the cumulative means, which is the default. 

Alternatively, these three variables could have been obtained through the fol-
lowing commands:

sort year lnpcexp 
forval i = 0/1 {
 sum neghaz if year==`i’
 scalar nobs`i’ = r(N)
}
ge rank=.
egen tmp = rank(lnpcexp) if year==0
replace rank=tmp/nobs0 if year==0
drop tmp
egen tmp = rank(lnpcexp) if year==1
replace rank=tmp/nobs1 if year==1

forval i = 0/1 {
 sum neghaz if year==`i’
 scalar s_malnut`i’ = r(sum)
}
gen yord_0 = sum(neghaz)/s_malnut0 if year==0
gen yord_1 = sum(neghaz)/s_malnut1 if year==1

Whichever way the x-ordinates and y-ordinates are obtained, the concentration 
curve can be graphed using the full range of the options provided by twoway as 
follows:

ge rank2=rank
lab var yord_0 “1992/93”
lab var yord_1 “1997/98”
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lab var rank “cumul share of children (poorest fi rst)”
lab var rank2 “line of equality”

twoway (line yord_0 rank , sort clwidth(medthin) ///
clpat(solid))(line yord_1 rank, sort clwidth(medthin) ///
clpat(longdash) clcolor(“153 204 0”))(line rank2 rank , ///
sort clwidth(medthin) clcolor(gray)), ///
ytitle(cumulative share of malnutrition, size(medsmall)) ///
yscale(titlegap(5))  xtitle(, size(medsmall)) ///
legend(rows(5)) xscale(titlegap(5)) ///
legend(region(lwidth(none))) plotregion(margin(zero)) ///
ysize(5.75) xsize(5) plotregion(lcolor(none))
graph export “$path0\cc curves 1992 and 1997.emf” , replace

The fi rst line generates a duplicate rank variable that allows the line of equality 
to be plotted and labeled. The colors, pattern, and thickness of the concentration 
curves are controlled in the twoway command using the clcolor, clwidth, and 
clpat options. (The /// in the code simply allows code to be continued over sev-
eral lines.) The last line of code exports the graph in Windows Enhanced Meta For-
mat (emf), which allows easy viewing from within Windows Explorer and easy 
insertion into a Word document or a PowerPoint presentation (using Insert, Picture, 
From File). Figure 7.1 shows the resultant concentration curve chart, which reveals, 

Figure 7.1 Concentration Curve for Child Malnutrition in Vietnam, 1992/93 
and 1997/98
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as indicated in Wagstaff et al. (2003), that inequality in child malnutrition increased 
somewhat in Vietnam between 1992/93 and 1997/98.

Testing concentration curve dominance 

Concentration curves are estimated from survey data and so are subject to sam-
pling variability. Although visual inspection of a concentration curve in compari-
son with the 45-degree line or another concentration curve may give an impres-
sion of whether there is dominance, obviously this inspection is not suffi cient to 
conclude whether or not dominance is statistically signifi cant. To make inferences 
about dominance, the standard errors of the concentration curve ordinates must be 
computed in addition to their point estimates. If the analyst wishes to test domi-
nance of a concentration curve against the Lorenz curve of income/consumption 
or against another concentration curve estimated from the same sample, then the 
standard errors for the differences between curve ordinates must be computed. 
This is complicated by the fact that, in such cases, the curves are dependent. The 
appropriate variance-covariance matrix, allowing for dependence between curves, 
has been derived by Bishop et al. (1994) and Davidson and Duclos (1997). 

One decision rule that has been used in Lorenz (concentration) dominance 
tests has been to reject the null of nondominance in favor of dominance if there 
is at least one signifi cant difference between curves (or a curve and the 45-degree 
line) in one direction and no signifi cant difference in the other. For example, if 
there is at least one quantile point at which curve A lies signifi cantly above curve 
B and there is no quantile point at which curve B lies above curve A, then it is 
concluded that A dominates B. If conventional critical values are used with such 
a decision rule, then there will be overrejection of the null because there is no cor-
rection for the fact that multiple comparisons are being made (Howes 1996). One 
solution is to use the same decision rule but to take multiple testing into account 
by using critical values from the studentized maximum modulus (SMM) distribu-
tion (Beach and Richmond 1985; Bishop et al. 1992; Stoline and Ury 1979). This is 
referred to as the multiple comparison approach (Dardanoni and Forcina 1999). An 
alternative criterion requires signifi cant difference between ordinates at all quan-
tile points to accept dominance (Howes 1996; Sahn and Younger 2000; Sahn et al. 
2000). This is consistent with the intersection union principle (Dardanoni and 
Forcina 1999). Dardanoni and Forcina (1999) present Monte Carlo evidence show-
ing that although this stricter rule reduces the probability of erroneously reject-
ing nondominance, it has greatly reduced the power of detecting dominance when 
true. If there is at least one signifi cant difference between ordinates in each direc-
tion, then it is concluded that curves cross. If there are no signifi cant differences in 
either direction, then, with the multiple comparison approach, null of nondomi-
nance is not rejected.

Besides the decision rule, the analyst must choose the number of quantile points 
at which ordinates are to be compared. If the number of comparison points is too 
restricted, then dominance across the full range of the distribution is not being 
tested. It is diffi cult, however, to fi nd dominance at the extremes of distributions 
(Howes 1996). With reasonably large samples, a popular choice has been to test for 
differences at 19 evenly spaced quantiles from 0.05 to 0.95 (O’Donnell et al. forth-
coming; Sahn and Younger 2000; Sahn et al. 2000).
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The best statistical package for dominance testing is DAD, a specialist package 
for poverty and inequality analysis.2 We have written our own Stata ado fi le for 
dominance testing.3 The command follows the conventional Stata syntax,

dominance varlist [if] [in] [weight] [using fi lename],
 sortvar() [options]

If one variable is included in varlist, dominance of the concentration curve for 
this variable is tested against both the 45-degree line and the Lorenz curve of the 
living standards variable specifi ed in sortvar(), which must be included. The 
default uses the multiple comparison approach decision rule, with comparisons 
at 19 equally spaced quantile points and a 5 percent signifi cance level. The deci-
sion criterion can be changed to that of the intersection union principle with the 
option rule(iup), or results using both decision rules can be requested with 
rule(both). The number of comparison points can be changed with the option 
level(#), with 20 being the maximum value. The signifi cance level can be changed 
from 5 percent to 1 percent with level(1). 

Quintile (or decile) cumulative shares of the health variable and the living stand-
ards variable can be requested by the option shares(quintiles). This will also 
report the p-value for a test of signifi cant differences between the cumulative shares 
of the health and living standards variables at each quintile (decile). Differences 
between the shares of each variable and the population shares are also tested.

To illustrate, we use data from the 1995-6 National Sample Survey to test domi-
nance of the concentration curve for the public health subsidy (totsub) in India 
against both the 45-degree and the Lorenz curve for equivalent household con-
sumption (hhexp_eq) as follows:4

dominance totsub [aw=weight], sortvar(hhexp_eq) 
shares(quintiles)

Results confi rm that the concentration curve is dominated by (lies below) the 45-
degree line, but there is no dominance between the concentration curve of the sub-
sidy and the Lorenz curve of household consumption. The cumulative quintile 
shares for the subsidy reported with the output are as follows:

Cumulative shares of totsub

Quantile Cum. share std. error Diff. from Diff. from
 pop. share income share

 p-value p-value
-------------------------------------------------------------
q20 12.4911% 0.9554 0.0000 0.0366
q40 26.8893% 1.3009 0.0000 0.0979
q60 43.3710% 1.5738 0.0000 0.4922
q80 67.0052% 1.7219 0.0000 0.1175
-------------------------------------------------------------

2The program can be downloaded free from http://132.203.59.36/dad/.
3 The fi le can be downloaded from the Web site for this book. The program calls two other 
ados that need to be downloaded from the Stata Web site, glcurve and locpoly.
4For details of the application see O’Donnell et al (forthcoming).
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The poorest 20 percent of individuals receive only 12.5 percent of the subsidy. The 
p-value in the fourth column confi rms that this subsidy share is signifi cantly less 
than the respective population share, and that is true at all quintiles. The p-values 
in the fi nal column indicate that the subsidy shares are not signifi cantly different 
from the consumption shares for all quintiles. Although there is a signifi cant differ-
ence (at 5 percent) for the fi rst quintile group, that is not inconsistent with the ear-
lier fi nding of nondominance against the Lorenz curve, because in the dominance 
test critical values are adjusted for multiple comparisons.

If two variables are included in varlist, the program tests for dominance 
between the concentration curves of the two variables, allowing for dependence 
between the curves. In this case, the shares() option is not available. 

To illustrate, we examine dominance between the concentration curves for the 
subsidy to nonhospital care (nonhsub) and the subsidy to hospital inpatient care 
(ipsub) in India (see O’Donnell et al. [forthcoming]). From fi gure 7.2, it appears 
that the concentration curve for nonhospital care lies above that for inpatient care. 

Figure 7.2 was produced with the following commands:

#delimit ;
glcurve nonhsub [aw=weight], sortvar(hhexp_eq) lorenz pvar(rank)
 glvar(nonh) nograph;

glcurve ipsub [aw=weight], sortvar(hhexp_eq) lorenz
 plot(line nonh rank, legend(label(2 “non-hospital”))
 line rank rank, legend(label(3 “45 degree”)))
 legend(label(1 “inpatient”)) l1(Cumulative subsidy proportion);

Figure 7.2 Concentration Curves of Public Subsidy to Inpatient Care and Subsidy 
to Nonhospital Care, India, 1995–96
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where the fi rst glcurve command generates the x and y coordinates of the concen-
tration curve for the nonhospital subsidy, and the second command plots this curve 
along with that for inpatient care and the 45-degree line.

We test for statistically signifi cant dominance between the curves with 

dominance nonhsub ipsub [aw=weight], sortvar(hhexp_eq) 

The result confi rms that the subsidy to nonhospital care dominates (is more pro-
poor than) the inpatient subsidy.

The analyst may wish to test dominance between two concentration curves of 
the same variable estimated from independent samples. In this case, dominance 
testing is more straightforward because the ordinates of the respective concentra-
tion curves are independent. An important application is for cross-country compar-
isons of the distribution of a particular health or health care variable. For example, 
is the distribution of the public subsidy to health care less pro-poor in India than it 
is in Vietnam? To answer this question, we use data from the Indian 1995/96 NSS 
and the 1998 Vietnam Living Standards Survey.5 The appropriate test can be car-
ried out using the dominance command. In this case, the using option must be 
specifi ed, and varlist must contain only one variable. Assume that we have the 
Indian data fi le loaded in Stata, that the Vietnam data fi le is named Vietnam, and 
that both fi les contain the variables totsub (total public health subsidy), hhexp_
eq (equivalent household consumption), and weight. The syntax would then be as 
follows:

#delimit ;
dominance totsub [aw=weight] using Vietnam,
 sortvar(hhexp_eq) labels(India Vietnam);

where the labels() option gives labels to the two concentration curves that are 
used in the output. The result is reported as follows:

Test of dominance between concentration curves of totsub for 
India and Vietnam

Data 1 Data 2 Sign. level # points Rule
------------------------------------------------------------

India Vietnam 5% 19 mca

 Vietnam dominates India

This confi rms that the distribution of the public health subsidy is more pro-poor in 
Vietnam than it is in India.

One other thing the analyst might want to do is to check dominance across 
years. For example, is it really the case that the 1997/98 concentration curve in Fig-
ure 7.2 lies everywhere above that of 1992/93? dominance requires the 1992/93 
and 1997/98 data to be in two separate data fi les. The code below fi rst saves the 
data set with the newly constructed rank variable, then saves the 1997/98 cases 
separately in the fi le VN97.dta. The code then loads the original stacked data set 

5See O’Donnell et al. (2007) for details and for more cross-country comparisons of the distri-
bution of public health subsidies in Asia.
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containing the data for 1992/93 and 1997/98, drops the observations for 1997/98, 
and runs the dominance routine, requesting that results using both decision 
rules be reported. 

save “$path0\ch 7.dta”, replace

use “$path0\ch 7.dta”, clear
keep if year==1
save “$path0\VN97.dta”, replace

use “$path0\ch 7.dta”, clear
keep if year==0
dominance neghaz using VN97, sortvar(rank) labels(1993 1997) 
rule(both)

The output from Stata in this case is

Test of dominance between concentration curves of neghaz for 1993 and 1997

Data 1 Data 2 Sign. level # points Rule

1993 1997 5% 19 mca

1997 dominates 1993  

1993 1997 5% 19 iup

nondominance 

In this case, the 1997/98 concentration curve dominates (lies above) that of 1992/93 
according to the less strict mca option, but not according to the stricter iup option. 
This refl ects the fact that the two curves overlap toward the bottom of the income 
distribution. 
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8
The Concentration Index

Concentration curves can be used to identify whether socioeconomic inequality in 
some health sector variable exists and whether it is more pronounced at one point 
in time than another or in one country than another. But a concentration curve does 
not give a measure of the magnitude of inequality that can be compared conve-
niently across many time periods, countries, regions, or whatever may be chosen 
for comparison. The concentration index (Kakwani 1977, 1980), which is directly 
related to the concentration curve, does quantify the degree of socioeconomic-
related inequality in a health variable (Kakwani, Wagstaff, and van Doorslaer 1997; 
Wagstaff, van Doorslaer, and Paci 1989). It has been used, for example, to measure 
and to compare the degree of socioeconomic-related inequality in child mortal-
ity (Wagstaff 2000), child immunization (Gwatkin et al. 2003), child malnutrition 
(Wagstaff, van Doorslaer, and Watanabe 2003), adult health (van Doorslaer et al. 
1997), health subsidies (O’Donnell et al. 2007), and health care utilization (van 
Doorslaer et al. 2006). Many other applications are possible. 

In this chapter we defi ne the concentration index, comment on its properties, 
and identify the required measurement properties of health sector variables to 
which it can be applied. We also describe how to compute the concentration index 
and how to obtain a standard error for it, both for grouped data and for microdata. 

Defi nition and properties

Defi nition

The concentration index is defi ned with reference to the concentration curve, intro-
duced in chapter 7. The concentration index is defi ned as twice the area between 
the concentration curve and the line of equality (the 45-degree line). So, in the case 
in which there is no socioeconomic-related inequality, the concentration index is 
zero. The convention is that the index takes a negative value when the curve lies 
above the line of equality, indicating disproportionate concentration of the health 
variable among the poor, and a positive value when it lies below the line of equality. 
If the health variable is a “bad” such as ill health, a negative value of the concentra-
tion index means ill health is higher among the poor. 

Formally, the concentration index is defi ned as 

(8.1) C=1− 2 Lh p( )dp
0

1

∫ .
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The index is bounded between –1 and 1. For a discrete living standards variable, it 
can be written as 

(8.2) C= 2
Nμ

hiri
i=1

n

∑ − 1− 1
N

,

where hi is the health sector variable, μ  is its mean, and ri = i N  is the fractional 
rank of individual i in the living standards distribution, with i = 1 for the poorest 
and i = N for the richest.1 For computation, a more convenient formula for the con-
centration index defi nes it in terms of the covariance between the health variable 
and the fractional rank in the living standards distribution (Jenkins 1988; Kakwani 
1980; Lerman and Yitzhaki 1989),

(8.3) C h r= ( )2
μ

cov , .

Note that the concentration index depends only on the relationship between 
the health variable and the rank of the living standards variable and not on the 
variation in the living standards variable itself. A change in the degree of income 
inequality need not affect the concentration index measure of income-related health 
inequality.

The concentration index summarizes information from the concentration curve 
and can do so only through the imposition of value judgments about the weight 
given to inequality at different points in the distribution. Alternative weighting 
schemes implying different judgments about attitudes to inequality are considered 
in the next chapter. Inevitably, the concentration index loses some of the information 
that is contained in the concentration curve. The index can be zero either because 
the concentration curve lies everywhere on top of the 45-degree line or because it 
crosses the line and the (weighted) areas above and below the line cancel out. It is 
obviously important to distinguish between such cases, and so the summary index 
should be examined in conjunction with the concentration curve. 

The sign of the concentration index indicates the direction of any relationship 
between the health variable and position in the living standards distribution, and 
its magnitude refl ects both the strength of the relationship and the degree of vari-
ability in the health variable. Although this is valuable information, one may also 
wish to place an intuitive interpretation on the value of the index. Koolman and 
van Doorslaer (2004) have shown that multiplying the value of the concentration 
index by 75 gives the percentage of the health variable that would need to be (lin-
early) redistributed from the richer half to the poorer half of the population (in the 
case that health inequality favors the rich) to arrive at a distribution with an index 
value of zero.

Properties

The properties of the concentration index depend on the measurement character-
istics of the variable of interest. Strictly, the concentration index is an appropri-
ate measure of socioeconomic-related health (care) inequality when health (care) 
is measured on a ratio scale with nonnegative values. The concentration index is 

1For large N, the fi nal term in equation 8.3 approaches zero and it is often omitted.
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invariant to multiplication of the health sector variable of interest by any scalar 
(Kakwani 1980). So, for example, if we are measuring inequality in payments for 
health care, it does not matter whether payments are measured in local currency 
or in dollars; the concentration index will be the same. Similarly, it does not mat-
ter whether health care is analyzed in terms of utilization per month or if monthly 
data are multiplied by 12 to give yearly fi gures. However, the concentration index 
is not invariant to any linear transformation of the variable of interest. Adding a 
constant to the variable will change the value of the concentration index. In many 
applications this does not matter because there is no reason to make an additive 
transformation of the variable of interest. There is one important application in 
which this does represent a limitation, however. We are often interested in inequal-
ity in a health variable that is not measured on a ratio scale. A ratio scale has a true 
zero, allowing statements such as “A has twice as much X as B.” That makes sense 
for dollars or height. But many aspects of health cannot be measured in this way. 
Measurement of health inequality often relies on self-reported indicators of health, 
such as those considered in chapter 5. A concentration index cannot be computed 
directly from such categorical data. Although the ordinal data can be transformed 
into some cardinal measure and a concentration index computed for this (van 
Doorslaer and Jones 2003; Wagstaff and van Doorslaer 1994), the value of the index 
will depend on the transformation chosen (Erreygers 2005).2 In cross-country com-
parisons, even if all countries adopt the same transformation, their ranking by the 
concentration index could be sensitive to differences in the means of health that are 
used in the transformation.

A partial solution to this problem would be to dichotomize the categorical 
health measure. For example, one could examine how the proportion of individuals 
reporting poor health varies with living standards. Unfortunately, this introduces 
another problem. Wagstaff (2005) has demonstrated that the bounds of the concen-
tration index for a dichotomous variable are not –1 and 1 but depend on the mean 
of the variable. For large samples, the lower bound is μ − 1 and the upper bound is 
1− μ . So the feasible interval of the index shrinks as the mean rises. One should be 
cautious, therefore, in using the concentration index to compare inequality in, for 
example, child mortality and immunization rates across countries with substantial 
differences in the means of these variables. An obvious response is to normalize 
the concentration index by dividing through by 1 minus the mean (Wagstaff 2005). 

If the health variable of interest takes negative as well as positive values, then its 
concentration index is not bounded within the range of (–1,1). In the extreme, if the 
mean of the variable were 0, the concentration index would not be defi ned. 

Bleichrodt and van Doorslaer (2006) have derived the conditions that must 
hold for the concentration index (and related measures) to be a measure of socio-
economic-related health inequality consistent with a social welfare function. They 
argue that one condition—the principle of income-related health transfers—is 
rather restrictive. Erreygers (2006) has derived an alternative measure of socioeco-
nomic-related health inequality that is consistent with this condition and three oth-
ers argued to be desirable. 

2Erreygers (2005) suggests a couple of alternatives to the concentration index to deal with 
this problem.
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Estimation and inference for grouped data 

Point estimate of the concentration index

The concentration index for t=1,…,T groups is easily computed in a spreadsheet 
program using the following formula (Fuller and Lury 1977): 

(8.4) C = p1L2 − p2L1( )+ p2L3 − p3L2( )+ ...+ pT −1LT − pT LT −1( )
where pt is the cumulative percentage of the sample ranked by economic status in 
group t, and Lt is the corresponding concentration curve ordinate. To illustrate, con-
sider the distribution of under-fi ve mortality by wealth quintiles in India, 1982–92. 
We drew the concentration curve for these data in chapter 7. Table 8.1 reproduces 
table 7.1 with the terms in brackets in the formula above added to the fi nal column. 
The sum of these terms is –0.1694, which is the concentration index. The negative 
concentration index refl ects the higher mortality rates among poorer children. 

Standard error 

A standard error of the estimator of C in the grouped data case can be computed using 
a formula given in Kakwani, Wagstaff, and van Doorslaer (1997). Let ft be the propor-
tion of the sample in the tth group, and defi ne the fractional rank of group t by 

(8.5) R f ft k t
k

t

= +
=

−

∑ 1
2

1

1

,

which is the cumulative proportion of the population up to the midpoint of each 
group interval. The variance of the estimator of C is given by

 (8.6) var( ˆ )C
n

f a C
n

ft tt

T
t t= − +( )⎡

⎣⎢
⎤
⎦⎥ +

=∑1
1

12 2

1 2
2

μ
σ 22 1 2

1
R Ctt

T − −( )=∑ ,

where n is the sample size, σ t
2 is the variance of the health variable in the tth group,  

μ is its mean, 

 
a R C q qt

t
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=
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1μ
μ ,

which is the ordinate of Lh(p), q0 = 0, and p f Rt k k
k

t

=
=

∑
1

(Kakwani, Wagstaff, and van 
Doorslaer 1997).

Table 8.1 Under-Five Deaths in India, 1982–92

 Wealth  No. of  Rel %  Cumul %  U5MR  No. of  Rel %  Cumul %  Conc. 
 group  births  births  births  per 1,000  deaths  deaths  deaths  index 

Poorest  29,939  23 23 154.7  4,632  30 30  –0.0008 

2nd  28,776  22  45 152.9  4,400  29  59  –0.0267 

Middle  26,528  20 66 119.5  3,170  21  79  –0.0592 

4th  24,689  19 85 86.9  2,145  14  93  –0.0827 

Richest  19,739  15 100  54.3  1,072  7 100  0.0000 

Total/average  129,671    118.8  15,419    –0.1694

Source: Authors. 
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CASE IN WHICH WITHIN-GROUP VARIANCES ARE UNKNOWN In many applica-
tions, the within-group variances will be unknown. For example, the data might 
have been obtained from published tabulations by income quintile. In such cases, 
it must be assumed that there is no within-group variance and the second term in 
equation 8.6 is set to zero. However, in addition, n needs to be replaced by T in the 
denominator of the fi rst term because there are in effect only T observations, not n. 

Table 8.2 gives an example using data on under-fi ve mortality (rates per birth, 
not rates per 1,000 births) from the 1998 Vietnam Living Standards Survey (VLSS). 
The data were computed directly from the survey, with children being grouped 
into household per capita consumption quintiles. The assumption made in table 8.2 
is that the within-group variances in mortality are not known and are set to zero. 
Below, we relax this assumption. The table, which is extracted from an Excel fi le, 
shows the values for each quintile of R, q, a, and fa2 computed by substituting esti-
mates for the parameters in the formula above. Also shown is the sum of fa2 across 
the fi ve quintiles. Substituting Σ f·a2 = 0.680, C = –0.1841, and T = 5 into equation 8.6 
gives 0.0029 for the variance of the estimate of C and hence a standard error equal 
to 0.0537. The t-statistic for C is therefore –3.43. 

CASE IN WHICH WITHIN-GROUP VARIANCES ARE KNOWN In some cases, the 
within-group variances will be known, and this provides us with more informa-
tion. In effect, we move from having information only on the T group means to 
having information on the full sample—albeit with the variation within the groups 
being picked up only by the group standard deviations. One such scenario is the 
case in which we are working with mortality data—the rates are defi ned at the 
group level only, but the within-group standard deviations are reported.3

In such cases, n is used (rather than T) in the denominator of the fi rst term in 
equation 8.6, and the second term needs to be computed as well. Table 8.3 shows the 
standard errors for each quintile’s under-fi ve mortality rate from the Vietnam data. 
The fi nal column shows the value for each quintile of the term in the summation 
operator in the second term of equation 8.6, as well as the sum of these across the 
fi ve quintiles. Dividing this sum through by nμ2 gives 1.511e-6, which is the second 
term of equation 8.6. Dividing Σ fa2 through by n (=5,315) gives 2.717e-6, which is 

Table 8.2 Under-Five Deaths in Vietnam, 1989–98 (within-group variance unknown)

Consumption  No. of  Cumul %    Cumul % 
 group  births  births  R  U5MR  deaths  CI  q  a  f · a2 

Poorest  1,002  19  0.094  0.060  31 –0.024  0.312  0.648  0.079 

2nd   949  37 0.278  0.034  48  –0.013  0.482  0.959  0.164 

Middle  1,002  56 0.461  0.041  69  –0.053  0.695  0.944  0.168 

4th   1,082  76 0.657  0.028  85  –0.095  0.854  0.842  0.144 

Richest  1,280  100 0.880  0.022  100  0.000  1.000  0.719  0.124 

Total/average  5,315    0.036   –0.184    0.680

Source: Authors.

3Or the standard errors of the group means are reported, from which estimates of the vari-
ances can be recovered provided group sizes are known.
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the fi rst term in equation 8.6. The sum of the two terms is the variance, equal in this 
case to 4.228e-6, giving a standard error of the estimate of C equal to 0.0021. This, 
unsurprisingly, is substantially smaller than the standard error obtained assuming 
no within-group variance. 

Estimation and inference for microdata

Point estimate of the concentration index

The concentration index (C) can be computed very easily from microdata by 
using the “convenient covariance” formula (equation 8.3). If the sample is not self-
weighted, weights should be applied in computation of the covariance, the mean of 
the health variable, and the fractional rank. Given the relationship between cova-
riance and ordinary least squares (OLS) regression, an equivalent estimate of the 
concentration index can be obtained from a “convenient regression” of a transfor-
mation of the health variable of interest on the fractional rank in the living stan-
dards distribution (Kakwani, Wagstaff, and van Doorslaer 1997). Specifi cally,
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where σ r
2  is the variance of the fractional rank. The OLS estimate of β is an esti-

mate of the concentration index equivalent to that obtained from equation 8.3. This 
method gives rise to an alternative interpretation of the concentration index as the 
slope of a line passing through the heads of a parade of people, ranked by their liv-
ing standards, with each individual’s height proportional to the value of his or her 
health variable, expressed as a fraction of the mean.

Computation of the concentration index

To illustrate computation, we estimate the concentration index for the public sub-
sidy to hospital outpatient care (subsidy) in Vietnam using data from the 1998 
Vietnam Living Standards Survey (see chapter 14 and O’Donnell et al. [2007]). The 
living standards variable is household consumption per equivalent adult (eqcons), 
and the sample must be weighted (by variable weight). 

By using equation 8.3 or 8.7, an estimate of a concentration index can be com-
puted easily with any statistical package. The only slight complication involves com-

Table 8.3 Under-Five Deaths in Vietnam, 1989–98 (within-group variance known)

Consumption  No. of 
 group  births  R  U5MR  CI  q  a  f · a2  Std Error  f σ2(2R–0.5–0.5C)2 

Poorest  1,002  0.094  0.060  –0.024  0.312  0.648  0.079  0.008  4.631E-06 

2nd  949  0.278  0.034  –0.013  0.482  0.959  0.164  0.006  4.354E-07 

Middle  1,002  0.461  0.041  –0.053  0.695  0.944  0.168  0.007  9.085E-08 

4th  1,082  0.657  0.028  –0.095  0.854  0.842  0.144  0.005  1.423E-06 

Richest  1,280  0.880  0.022  0.000  1.000  0.719  0.124  0.004  3.780E-06 

Total/average  5,315   0.036  –0.184    0.680   1.036E-05

Source: Authors.
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putation of the fractional rank variable in the case that the data must be weighted. 
The weighted fractional rank is defi ned as follows:

(8.8) r w
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where wi is the sample weight scaled to sum to 1, observations are sorting in ascend-
ing order of living standards, and w0 = 0. In Stata, this can be computed as follows:

egen raw_rank=rank(eqcons), unique   
sort raw_rank
quietly sum weight
gen wi=weight/r(sum)
gen cusum=sum(wi)
gen wj=cusum[_n-1]
replace wj=0 if wj==.
gen rank=wj+0.5*wi

where income is the measure of living standards, weight is the original sample 
weight, wi is a scaled version of this that sums to 1, wj is the fi rst term in equation 
8.8, and rank is ri in equation 8.8. Alternatively, the weighted fractional rank can be 
generated using glcurve,4

glcurve eqcons [aw=weight], pvar(rank) nograph

Because weights are applied, the generated variable rank is the weighted fractional 
rank. The rank variables produced by the two procedures will be perfectly cor-
related. The (weighted) mean of the rank produced from the fi rst procedure will 
always be exactly 0.5, and the mean of the rank produced by glcurve will differ 
from 0.5 only at the 4th–5th decimal place.

By using equation 8.3, the concentration index can then be computed using5

qui sum subsidy [fw=weight]
scalar mean=r(mean)
cor subsidy rank [fw=weight], c
sca c=(2/mean)*r(cov_12)
sca list c

By using equation 8.7, the index is computed as follows:

qui sum rank [fw=weight]
sca var_rank=r(Var)
gen lhs=2*var_rank*(subsidy/mean)
regr lhs rank [pw=weight]
sca c=_b[rank]
sca list c

4See chapter 7 for an explanation of glcurve.
5For the corr and sum commands, frequency weights (fw) should be used to get the cor-
rect variance of the weighted rank and its covariance with the health variable of interest. 
The weight variable must be an integer for the frequency weight to be accepted by Stata. If 
the weight variable is a noninteger, analysts will fi rst need to multiply the weight by 10^k, 
where k is the largest number of decimal places in any value of the weight variable. A new 
integer weight variable will then have to be created using the gen new _ weight = int 
(weight). The alternative is to use analytic weights and accept some imprecision.
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Both procedures give an estimate of the concentration index of 0.16700, indicat-
ing that the better-off receive more of the public subsidy to hospital outpatient care 
in Vietnam. 

Standard error

Kakwani, Wagstaff, and van Doorslaer (1997) derived the standard error of a con-
centration estimated from microdata. They did this by noting that the concentration 
index can be written as a nonlinear function of totals, and so the delta method (Rao 
1965) can be applied to obtain the standard error. The resulting formula is essen-
tially a simplifi ed version of equation 8.6 without the second term because at the 
individual level there is no within-group variation. Specifi cally,
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is the ordinate of the concentration curve Lh(p), and q0 = 0. 
Unfortunately, equation 8.9 does not take into account sample weights and other 

sample design features, such as cluster sampling (see chapters 2 and 9), although in 
principle it could be adapted to do so. The formula can be computed easily in Stata. 
We demonstrate this for the Vietnam subsidy example. First, we must recompute 
the concentration index without the application of weights, as follows: 

glcurve subsidy, sortvar(eqcons) pvar(ranku) glvar(ccurve) 
lorenz nograph;
qui sum ranku 
sca var_ranku=r(Var)
qui sum subsidy
sca meanu=r(mean)
gen lhsu=2*var_ranku*(subsidy/meanu)
regr lhsu ranku
sca conindu=_b[rank]

The estimate of the concentration index from the unweighted data is 0.16606. 
Standard errors are then computed using equation 8.9 as follows:

sort ranku
gen cclag = ccurve[_n-1]
replace cclag=0 if cclag==.
gen asqr=((subsidy/meanu)*(2*ranku-1-conindu)+2-cclag-
ccurve)^2
qui sum asqr
sca var=(r(mean)-(1+conindu)^2)/r(N)
sca se=sqrt(var)
sca list conindu se

That gives a standard error of 0.033976, and so a t-ratio of 4.89. 
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The limitation of equation 8.9 is that it cannot be applied directly to data that are 
weighted and/or do not have a simple random sample design. To take such sample 
features into account, one option is simply to use the standard error of the coef-
fi cient on the rank variable in the convenient regression. Because this coeffi cient 
is an estimate of the concentration index, one might expect its standard error to be 
that of the concentration index. This is not quite correct because it takes no account 
of the sampling variability of the estimate of the mean of the health variable that 
enters the transformation giving the left-hand side of the convenient regression. 
Note that the variance of the fractional rank, which is also used in the transfor-
mation, depends only on the sample size and so has no sampling variability.6 It 
can be treated as a constant. One computationally simple way of taking account of 
the sampling variability of the mean is to run the convenient regression without 
transforming the left-hand-side variable but (equivalently) transforming the rank 
coeffi cient instead. A delta method standard error can then be computed for the 
transformed coeffi cient that takes account of the sampling variability of all terms 
used in the transformation. From the regression

(8.10) h r ui i i= + +α β1 1

the estimate of the concentration index is given by
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By using the facts that the least squares predicted value has the same mean 
as the dependent variable and that the mean of the fractional rank variable is 0.5, 
equation 8.11 can be written as
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Because the estimate is now written as a function of the regression coeffi cients, a 
standard error can be obtained by applying the delta method. In Stata, this proce-
dure can be implemented very easily using nlcom. 

regr subsidy rank [pw=weight]
nlcom ((2*var_rank)/(_b[_cons]+0.5*_b[rank]))*_b[rank]

For the Vietnam outpatient subsidy example, that gives a standard error of 0.034016 
for the estimate of the (weighted) concentration index of 0.16700 reported above. 
The standard error of the rank coeffi cient from equation 8.7 is 0.034945, and so it 
appears that taking account of the sampling variability of the mean makes very 
little difference. Experimentation suggests that this is generally the case, and so 
standard errors from the convenient regression equation 8.7 can be used without 
too much concern for inaccuracy.

In Stata, if weights are applied in the regression, then the standard error returned 
will be robust to heteroskedasticity. If there are no weights, heteroskedasticity robust 

6This is due to the nature of the fractional rank variable. Its weighted mean is always 0.5, 
and its variance approaches 1/12 as n goes to infi nity. For given n, the variance of the frac-
tional rank is always the same.
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standard errors can be obtained by adding the option robust to the regression. If 
this is done, then the delta method standard errors computed by a nlcom command 
following the regression will also be robust. If the survey has a cluster sampling 
design, then the standard errors should be corrected for within-cluster correlation. 
This is achieved by adding the option cluster,

regr subsidy rank [pw=wt], cluster(commune)
nlcom ((2*var_rank)/(_b[_cons]+0.5*_b[rank]))*_b[rank]

where commune is the variable denoting the primary sampling unit—communes 
in the VLSS. Allowing for within-cluster correlation raises the standard error in the 
Vietnam subsidy example from 0.034016 to 0.041988. 

Correcting for across-cluster correlation may or may not be necessary, depend-
ing on the sample design, but a form of serial correlation is always likely to be pres-
ent owing to the rank nature of the regressor (Kakwani, Wagstaff, van Doorslaer 
1997). To correct the standard errors for this, one can use the Newey-West (Newey 
and West 1994) variance-covariance matrix, which corrects for autocorrelation, as 
well as heteroscedasticty. In Stata, the command newey produces OLS regression 
coeffi cients with Newey-West standard errors. To use this, the data must be set to 
a time series format with the time variable being, in this case, the living standards 
rank. This must be an integer valued variable, and so the fractional rank created 
above cannot be used. Below, we create the appropriate rank variable (ranki) 
before running the newey command:

egen  ranki=rank(eqcons), unique
tsset ranki
newey subsidy rank [aw=weight], lag(1)
nlcom ((2*var_rank)/(_b[_cons]+0.5*_b[rank]))*_b[rank]

Note that the (weighted) fractional rank and not the integer valued rank is still used 
in the regression. Weights (analytical) are allowed, and the lag(#) option must be 
included to specify the maximum number of lags to be considered in the autocorre-
lation structure. For our example, this estimator gives a standard error of 0.034568, 
slightly larger than if we allow for heteroskedasticity only (0.034016), but smaller 
than if we allow for within-cluster correlation (0.041988).

Demographic standardization of the concentration index

As discussed in chapter 5, we are often interested in measuring socioeconomic-
related inequality in a health variable after controlling for the confounding effect 
of demographics. In chapter 5  we explained how this can be done using both direct 
and indirect methods of standardization. To estimate a standardized concentra-
tion index, one could use either method of standardization to generate a predicted 
health variable purged of the infl uence of demographics across socioeconomic 
groups, as explained in chapter 5, then compute the concentration index for this 
standardized variable. 

In the case that one wishes to standardize for the full correlation with con-
founders, and so there are no control (z) variables (see chapter 5), a shortcut method 
of obtaining an indirectly standardized concentration index is simply to include 
the standardizing variables directly in the convenient regression. This is precisely 
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what is being done in the literature that makes use of the relative index of inequal-
ity (e.g., Mackenbach et al. [1997]). From the regression
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where xj are the confounding variables, for example, age, sex, and so on, the OLS 
estimate β̂2 is an estimate of the indirectly standardized concentration index. Com-
putation requires simply adding the confounding variables to the regression com-
mands discussed above.

Sensitivity of the concentration index to the living standards measure

In chapter 6  we described alternative measures of living standards—consumption, 
expenditure, wealth index—and noted that it is not always possible to establish a 
clear advantage of one measure over others. It is therefore important to consider 
whether the chosen measure of living standards infl uences the measured degree 
of socioeconomic-related inequality in the health variable of interest. When the 
concentration index is used as a summary measure of inequality, the question is 
whether it is sensitive to the living standards measure. 

As noted above, the concentration index refl ects the relationship between the 
health variable and living standards rank. It is not infl uenced by the variance of the 
living standards measure. In some circumstances, this may be considered a disad-
vantage. For example, it means that, for a given relationship between income and 
health, the concentration index cannot discriminate the degree of income-related 
health inequality in one country in which income is distributed very unevenly 
from that in another country in which the income distribution is very equal. On 
the other hand, when one is interested in inequality at a certain place and time, it is 
reassuring that the differing variances of alternative measures of living standards 
will not infl uence the concentration index. However, the concentration index may 
differ if the ranking of individuals is inconsistent across alternative measures.

Wagstaff and Watanabe (2003) demonstrate that the concentration index will 
differ across alternative living standards measures if the health variable is corre-
lated with changes in an individual’s rank on moving from one measure to another. 
The difference between two concentration indices C1 and C2, where the respective 
concentration index is calculated on the basis of a given ranking (r1i and r2i)—for 
example, consumption and a wealth index—can be computed by means of the 
regression 

(8.14) 2 2σ
μ

α γ εΔ
⎛
⎝⎜

⎞
⎠⎟

= + Δ +r
i

i i
h

r ,

where Δri = r1i – r2i is the reranking that results from changing the measure of socio-
economic status, and σ Δr

2  is its variance. The OLS estimate of γ  provides an estimate 
of the difference (C1 – C2). Signifi cance of the difference between indices can be 
tested by using the standard error of γ .7

For 19 countries, Wagstaff and Watanabe (2003) test the sensitivity of the con-
centration index for child malnutrition to the use of household consumption and a 

7This ignores the sampling variability of the left-hand-side estimates.
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wealth index as the living standards ranking variable. Malnutrition is measured by 
a binary indicator of underweight and another for stunting (see chapter 4). For each 
of underweight and stunting, the difference between the concentration indices is 
signifi cant (10%) for 6 of 19 comparisons. This suggests that in the majority of coun-
tries, child nutritional status is not strongly correlated with inconsistencies in the 
ranking of households by consumption and wealth.

But there is some evidence that concentration indices for health service utiliza-
tion are more sensitive to the living standards measure. Table 8.4, reproduced from 
Lindelow (2006), shows substantial and signifi cant differences between the concen-
tration indices (CI) for a variety of health services in Mozambique using consump-
tion and an asset index as the living standards measure. In the case of consump-
tion, the concentration index indicates statistically signifi cant inequality in favor of 
richer households for all services. With households ranked by the asset index rather 
than consumption, the inequality is greater for all services except health center vis-
its, for which the concentration index indicates inequality in utilization in favor of 
poorer households. 

It appears that the choice of welfare indicator can have a large and signifi cant 
impact on measured socioeconomic inequalities in a health variable, but it depends 
on the variable examined. Differences in measured inequality refl ect the fact that 
consumption and the asset index measure different things, or at least are different 
proxies for the same underlying variable of interest. But only in cases in which the 
difference in rankings between the measures is also correlated with the health vari-
able of interest will the choice of indicator have an important impact on the fi nd-
ings. In cases in which both asset and consumption data are available, analysts are 
in a position to qualify any analysis of these issues by reference to parallel analysis 
based on alternative measures. However, data on both consumption and assets are 
often not available. In these cases, the potential sensitivity of the fi ndings should be 
explicitly recognized. 
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9
Extensions to the Concentration Index: Inequality 
Aversion and the Health Achievement Index

The concentration index is a useful tool for measuring inequalities in the health 
sector. It does, however, have limitations. 

First, like the Gini coeffi cient, it has implicit in it a particular set of value judg-
ments about aversion to inequality. This chapter shows how to operationalize Wag-
staff’s (2002) “extended” concentration index, which allows attitudes to inequality 
to be made explicit, and to see how measured inequality changes as the attitude to 
inequality changes. 

The second drawback of the concentration index—and the generalization of it—is 
that it is just a measure of inequality. Although equity is an important goal of health 
policy, it is not the only one. It is not just health inequality that matters; the average level 
of health also matters. Policy makers are likely to be willing to trade one off against the 
other—a little more inequality might be considered acceptable if the average increases 
substantially. This points to a second extension of the concentration index (Wagstaff 
2002): a general measure of health “achievement” that captures inequality in the dis-
tribution of health (or some other health sector variable) as well as its mean. 

The extended concentration index 

The regular concentration index C is equal to (Kakwani, Wagstaff, and van Doors-
laer 1997) 

(9.1) C
n

h Ri ii

n=
⋅

−
=∑2

1
1μ

, 

where n is the sample size, hi is the ill-health indicator for person i, μ is the mean 
level of ill health, and Ri is the fractional rank in the living-standards distribution 
of the ith person. The value judgments implicit in C are seen most easily when C is 
rewritten in an equivalent way as

(9.2) C
n

h Ri ii

n= −
⋅

−( )=∑1
2

1
1μ

.

The quantity hi/nμ is the share of health (or ill health) enjoyed (or suffered) by per-
son i. This is then weighted in the summation by twice the complement of the per-
son’s fractional rank, that is, 2(1 – Ri). So, the poorest person has his or her health 
share weighted by a number close to two. The weights decline in a stepwise fash-
ion, reaching a number close to zero for the richest person. The concentration index 
is simply one minus the sum of these weighted health shares. 
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The extended concentration index can be written as follows:

(9.3) C
n

h Ri ii

n
( ) .ν ν

μ
ν

ν
= −

⋅
−( ) >

=

−( )
∑1 1 1

1

1

In equation 9.3, ν  is the inequality-aversion parameter, which will be explained below. 
The weight attached to the ith person’s health share, hi/nμ, is now equal to ν (1 – Ri)

(ν-1), 
rather than by 2(1 – Ri). When ν  = 2, the weight is the same as in the regular concentra-
tion index; so C(2) is the standard concentration index. By contrast, when ν  = 1, every-
one’s health is weighted equally. This is the case in which the value judgment is that 
inequalities in health do not matter. So, C(1) = 0 however unequally health is distributed 
across the income distribution. As ν  is raised above 1, the weight attached to the health of 
a very poor person rises, and the weight attached to the health of people who are above 
the 55th percentile decreases. For ν  = 6, the weight attached to the health of persons in 
the top two quintiles is virtually zero. When ν  is raised to 8, the weight attached to the 
health of those in the top half of the income distribution is virtually zero (Figure 9.1). 

Computing the extended concentration index on microdata 

Like the regular concentration index, the extended concentration index can be writ-
ten as a covariance (cf. equation 8.3). This is an easy way to compute the extended 
concentration index on microdata. The relevant covariance (Wagstaff 2002) is 

(9.4) C h Ri iν ν
μ

ν( ) = − −( )( )−cov , 1 1 .

This can be computed in a straightforward manner for different values of ν . 
As an example, we compute the extended concentration index for values ν  = 1, 

ν  = 2, ν  = 3, ν  = 4, and ν  = 5 for (the negative of) height-for-age for children in the 
1993 Vietnamese Living Standards Measurement Study. (The negative of the height-
for-age variable captures malnutrition, the rate of which is higher among poorer 
children, so C < 0.) These are the same data used by Wagstaff, van Doorslaer, and 

Figure 9.1 Weighting Scheme for Extended Concentration Index
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Watanabe (2003). We know, of course, that C(1) = 0. We also know from Wagstaff, 
van Doorslaer, and Watanabe (2003) that for the year 1993 C(2) is equal to –0.077 (cf. 
Wagstaff, van Doorslaer, and Watanabe 2003, p. 213). The Stata code to loop through 
ν  = 1, ν  = 2, ν  = 3, ν  = 4, and ν  = 5 is 

sca drop _all
sum neghaz 
scalar mean = r(mean)
forval i = 1/5 {
 ge adjrnk`i’=(1-rank)^(`i’-1)
 corr neghaz adjrnk`i’ , covar
 sca ci`i’ = -`i’*r(cov_12)/mean 
}
sca li _all

Here neghaz is the negative of the height-for-age score (i.e., yi), and rank is the 
fractional rank variable (i.e., Ri). The sum command stores the mean of neghaz in the 
scalar mean. For each of the values of ν , the loop generates an adjusted rank variable, 
computes the required covariance, calculates the concentration index, and stores C(ν ) 
in the scalar ciν . The scalar list command at the end produces the following: 

sca li _all
 ci5 = -.14068989
 ci4 = -.12858764
 ci3 = -.11006521
 ci2 = -.0771886
 ci1 = 0
 mean = 2.0298478

confi rming that C(1) = 0 and C(2) = –0.077 for these data, and that as ν  is raised 
above 2, C(ν ) becomes increasingly negative, refl ecting the increasing weight that 
is being attached to the (ill-) health scores of poorer people. 

Alternatively, the extended concentration index can be computed on microdata 
by means of a convenient regression (cf. equation 8.7). The appropriate convenient 
regression is

(9.5) − −( )⎡
⎣

⎤
⎦ ⋅ [ ]= + ⋅ −( ) +− −ν μ α βν νvar /1 11

1 1
1R y R ui i i ii,

where β1 is the extended concentration index. This is straightforward to set up and 
run once the desired values of ν  have been selected. 

The Stata code to implement the convenient regression and loop through ν  = 1, 
ν  = 2, ν  = 3, ν  = 4, and ν  = 5 is

sum neghaz 
scalar mean = r(mean)
forval i = 1/5 {
 ge adjrnk`i’ = (1-rank)^(`i’-1)
 sum adjrnk`i’ 
 ge lhs`i’ = -`i’*r(Var)*neghaz/mean
 reg lhs`i’ adjrnk`i’ 
 sca ci`i’ =_b[adjrnk`i’]
}
sca li _all
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The scalar list command at the end produces the following:

sca li _all
 ci5 = -.14068989
 ci4 = -.12858764
 ci3 = -.11006521
 ci2 = -.0771886
 ci1 = 0
 mean = 2.0298478

which is identical to that produced by the covariance method. 

Computing the extended concentration index on grouped data

The grouped-data analogue of equation 9.3 (Wagstaff 2002)1 is as follows: 

(9.6) 
C f R f h Rt tt
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where ft is the sample proportion in the tth group, ht is the average level of health 
or ill health of the tth group, and Rt is its fractional rank, defi ned as in chapter 8 as 
follows:

(9.7) R f ft t
t= +

=
−∑ γγ

1
21

1
,

indicating the cumulative proportion of the population up to the midpoint of each 
group interval. 

This is easily implemented in a spreadsheet, as in table 9.1, taken from Wagstaff 
(2002). The example involves the distribution of under-fi ve deaths in Bangladesh. 
The fractional rank variable, R, is derived using the formula above. In this case 
ν  = 4, and the column headed “(1-R)̂ (v-1)” gives the adjusted fractional rank for 
each asset group. The column headed “h” is the under-fi ve mortality rate. The col-
umn headed “product” is the product of f, h, and (1-R)̂ (v-1). The sum of these 
products (34.67) is then multiplied (in a cell not shown) by ν , and divided by μ. The 
complement of this is the extended concentration index, in this case –0.0847, not 
dramatically different from C(2), which is equal in this case to –0.0841. 

Achievement—trading off inequality and the mean 

The measure of “achievement” proposed in Wagstaff (2002) refl ects the average 
level of health and the inequality in health between the poor and the better-off. It is 
defi ned as a weighted average of the health levels of the various people in the sam-
ple, in which higher weights are attached to poorer people than to better-off people. 
Thus achievement might be measured by the index:

(9.8) I
n

h Ri ii

n
( )ν ν

ν
= −( )=

−( )
∑1

1
1

1
, 

1Note that equation A6 in Wagstaff (2002) contains a typo. Equation 9.6 above is the correct 
equation. 
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which is a weighted average of health levels, in which the weights are as graphed 
in Figure 9.1 and average to one. This index can be shown to be equal to (Wagstaff 
2002) the following:

(9.9) I C( ) ( )ν μ ν= −( )1 .

When h is a measure of ill health (so high values of I(ν ) are considered bad) and 
C(ν ) < 0 (ill health is higher among the poor), inequality serves to raise the value 
of I(ν ) above the mean, making achievement worse than it would appear if one 
were to look just at the mean. If ill-health declines monotonically with income, the 
greater the degree of inequality aversion, the greater the wedge between the mean, 
μ, and the value of the index I(ν ). 

Computing the achievement index 

Given equation 9.9, there is nothing complicated about this. The Stata code below is 
the same as the code above for the extended concentration index, except that it adds 
a line to the loop that computes the achievement index for the current value of ν  
and then adds a second loop that prints out a table, showing for each value of ν , the 
values of C(ν ) and I(ν ). This can then be pasted into Excel or Word. 

sum neghaz 
scalar mean = r(mean)
forval i = 1/5 {
 ge adjrnk`i’=(1-rank)^(`i’-1)
 corr neghaz adjrnk`i’ , covar
 sca ci`i’ = -`i’*r(cov_12)/mean 
 sca achiev`i’ = mean*(1-ci`i’) 
}
forval i = 1/5 {
 di `i’ _col(5) %5.3f ci`i’ _col(20) %5.3f achiev`i’ 
_col(30) 
}

For the example of child malnutrition, the last loop produces the following output: 

1  0.000 2.030
2 -0.077 2.187
3 -0.110 2.253
4 -0.129 2.291
5 -0.141 2.315

Table 9.1 Inequality in Under-Five Deaths in Bangladesh

Asset group No. births f R (1-R)^(v-1) h Product

 1 2,950 0.22 0.11 0.71 141.1 21.85

 2 3,191 0.24 0.34 0.29 146.9 10.11

 3 2,695 0.20 0.56 0.09 135.2 2.36

 4 2,581 0.19 0.75 0.02 122.3 0.35

 5 2,029 0.15 0.92 0.00 76.0 0.00 

  13,446    127.9 34.67

Source: Authors.
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The fi rst column is the value of ν , the second is the value of C(ν ), and the third 
is the value of I(ν ). The latter is equal to μ when there is no aversion to inequality 
(i.e., ν  = 1). As ν   increases above 1, measured inequality becomes more and more 
negative (in this example h is a “bad”), and I(ν ) rises further and further above μ, 
meaning that the level of “disachievement” becomes larger and larger. 

The spreadsheet computation of the achievement index is similarly straightfor-
ward, requiring just an extra cell in the spreadsheet above. 
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10
Multivariate Analysis of Health Survey Data

The most basic description of health sector inequality is given by the bivariate 
relationship between a health variable and some indicator of socioeconomic sta-
tus (SES) captured, for example, by the concentration curve and index. For a fi ner 
description, the analyst might want to standardize for demographic factors, such as 
age and gender (see chapters 5 and 15 ). Or, the analyst might want to explain the 
inequality through decomposition into its constituent parts (see chapters 12 and 
13). More ambitiously, the analyst might want to test for the existence of a causal 
relationship between a health variable and SES and to examine the nature of any 
causality. All of these tasks require moving from bivariate to multivariate analysis. 
In this chapter, we discuss some issues that generally deserve consideration when 
undertaking multivariate analysis of survey data for the purpose of learning about 
health sector inequality or inequity. First, we distinguish between descriptive and 
causal analysis and identify the statistical issues that are relevant in each case. Sec-
ond, because health data invariably derive from complex sample surveys, we con-
sider the consequences of sample design for estimation and inference. To illustrate, 
we use a variety of methods to conduct multivariate analysis of child nutritional 
status in Vietnam. In the following chapter, we present some of the estimators most 
commonly used in analysis of health data. 

Descriptive versus causal analysis

Descriptive analysis

As always, the appropriate statistical approach depends on the question to be 
answered. If the analyst is interested in simply describing SES-related inequality 
in health or health care, then statistical modeling issues are irrelevant. The ana-
lyst simply wants to describe how health varies with SES, conditional on other fac-
tors such as age, gender, and so on. Ordinary least squares (OLS) can be used to 
describe how the mean of health varies with SES, conditional on whatever factors 
the analyst wants to control for. The more variables the analyst controls for, the 
fi ner is the description of the relation between health and SES. Issues of omitted 
variable bias and endogeneity are not relevant. Of course, such simplicity comes 
at a price. The analyst cannot place any causal interpretation on the estimates. A 
signifi cant OLS coeffi cient does not mean that SES has an effect on health, even if 
the analyst controls for a multitude of observable covariates. It simply means that 
health is observed to vary as SES varies. There is inequality. 
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The standardization and the decomposition methods covered in chapters 5 
and 15 and in chapters 12 and 13, respectively, are examples of exploratory, or even 
explanatory, but still descriptive analysis. They are used to describe the distribu-
tion, primarily the mean, of health or health care conditional on SES, age, gender, 
and so forth.

Causal models

If the analyst wants to draw causal inferences, then the approach has to move 
from a descriptive one to a modeling approach. Causal relationships can arise 
through a number of pathways. Models and estimators vary in sophistica-
tion with the degree of detail of the causal relationship the analyst is aiming to 
uncover. For example, maternal education can affect child health either directly, 
through knowledge of healthy behavior, or indirectly, through preferences for 
child health. If the analyst is interested simply in whether educating women is 
an effective means of raising child health, irrespective of the mechanism through 
which it works, then the statistical model, and estimator, can be quite simple. A 
reduced form approach (see below) is adequate. However, if the analyst wants 
to establish whether educated mothers are better able to raise healthy children, 
abstracting from preference effects, then the model, as well as the methods, has 
to be more sophisticated. A structural model (see below) must be developed and 
estimated. 

The household production model (Becker 1964, 1965) provides a useful frame-
work for causal analysis of health variations (Grossman 1972a, 1972b; Rosenzweig 
and Schultz 1982, 1983; Schultz 1984; Wagstaff 1986). According to this approach, 
health, which is of intrinsic value, is “produced” by the household through the 
input of time and goods, such as food and medical care. The household selects such 
inputs given its members’ physiological predispositions to good/bad health. These 
health endowments are observable to the household but not to the analyst. As a 
consequence, regressing outcomes, such as health, on inputs, such as medical care, 
will not render unbiased estimates of the causal impact of the latter because both 
the inputs and the outcomes refl ect the values of the health endowments. 

The most popular empirical strategy is to estimate reduced form demand rela-
tions. That is, to regress health outcomes on (exogenous) determinants of health 
inputs, for example, medical care prices. The resulting coeffi cients refl ect both 
“technological” relationships between inputs and outcomes, and household prefer-
ences for health relative to other “goods.” From such a reduced form health func-
tion it is not possible to conclude anything about the technological impact of a vari-
able on health. For example, the relationship between female wage rates and child 
health refl ects both the incentive effects of the wage on household time allocation 
and the effect of time use on child health. Nevertheless, for certain policy ques-
tions, reduced form estimation is appropriate. For example, say the analyst wants 
to know how population health will respond to an increased availability of medical 
care facilities, taking account both of the technological impact of medical care on 
health and the behavioral response with respect to utilization. Then, estimation of 
the reduced form correlation of area variations in medical facilities with individual 
levels of health is adequate. 
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If estimates of the health production technology are desired, then the prob-
lems of omitted variable bias and unobservable heterogeneity must be confronted. 
For example, regressing health on health care use, while omitting education, will 
give a biased estimate of the impact of health care in the likely instance that it is 
correlated with education. Resolution of the problem demands a suffi ciently rich 
data set. The problem of heterogeneity bias arises from the unobservable health 
endowment, which induces correlation between the observable and unobservable 
components of a model of health determination. With cross-section data, correc-
tion of the resulting bias requires the availability of instruments, that is, variables 
that affect the health inputs but, conditional on these, not health itself. Appropri-
ate instruments vary with the specifi c inputs being considered. At a general level, 
instruments used in the estimation of health production functions commonly come 
from geographic variation in market prices, from family endowments, for example, 
land rights, and from characteristics of public health programs at the regional level 
(Rosenzweig and Schultz 1983). 

Instrumental variable (IV) estimation is fraught with danger. It is easy to claim 
that an endogenous regressor has been instrumented. It is somewhat more diffi cult 
to fi nd a valid instrument. IV estimation should therefore be subjected to stringent 
testing (Bound, Jaeger, and Baker 1995; Staiger and Stock 1997). The variables pro-
posed as instruments should be signifi cant in a reduced form for the health input. 
Further, overidentifi cation tests should be used to check whether exclusion of the 
proposed instruments from the health equation is justifi ed. 

Panel data have two important advantages with respect to estimation of health 
production functions. First, with data on the same individuals at different points in 
time, it is easier to account for the effect of unobservable health endowments, which 
generate much of the endogeneity problem. For example, the fi xed effects estima-
tor (see below) eliminates the time invariant unobservable effects and is consistent. 
The second important advantage of panel data is that they allow the time dynamics 
of health relationships to be investigated. The determination of health is essentially 
a dynamic process; health today refl ects experiences of the past. For causal analysis 
of the determination of health, panel data are top priority.

Estimation and inference with complex survey data

Most surveys used for analysis of health sector inequalities in developing coun-
tries have complex sample designs. Typically, there is random sampling at some 
level or levels but there might be separate sampling from population subgroups 
(strata), groups of observations (clusters) may not be sampled independently, and 
there might be oversampling of certain groups. These three basic features of com-
plex sample design—stratifi cation, cluster sampling, and unequal selection prob-
abilities—were introduced in chapter 2, in which we briefl y discussed how the 
sample design should be taken into account in conducting inference with respect 
to population means. We now consider whether and how sample design should be 
taken into account in conducting multivariate analyses. A related issue, which we 
consider, is that of area effects—controlling for all observable determinants, area of 
residence exerts an independent effect on health. Such effects are characteristics of 
the population itself, but their sample importance depends on the sample design.



118 Chapter 10

Stratifi ed sampling

Samples can be stratifi ed in a variety of ways. The design most typically employed 
in household surveys undertaken in developing countries, for example, the Living 
Standards Measurement Surveys, is standard stratifi ed sampling. The population is 
divided into a relatively small number of strata—for example, urban/rural or large 
geographic regions. A random sample, of predetermined size, is selected indepen-
dently from each of these strata. The sample proportions accounted for by each strata 
may or may not correspond to population proportions. In the case that they do not, the 
overall sample is not representative of the population and the issue of sample weights 
arises. This is a separate issue from stratifi cation and is considered as such below.

If population means differ across strata, then predetermination of strata sample 
sizes reduces the sampling variance of estimators of these means. As a result, stan-
dard errors on estimates of population means, and other descriptive statistics, should 
be adjusted downward. In chapter 2, we demonstrated how to do this using the spe-
cial routines for survey data available in Stata. It turns out that adjustment is not nec-
essary in (nondescriptive) regression analysis and a wide variety of other multivariate 
modeling approaches, provided stratifi cation is based on variables that are exogenous 
within the model (Wooldridge 2001, 2002). For example, say a sample stratifi ed by 
urban/rural is used to estimate the determinants of child nutritional status, measured 
by height-for-age z-score. Provided, conditional on the regressors, unobservable deter-
minants of height-for-age and of city dwelling are uncorrelated, the OLS estimator, 
for example, is consistent and effi cient, and the usual standard errors are valid. In the 
likely presence of heteroscedasticity, the analyst would want to make the standard 
errors robust, but that is another issue. If stratifi cation is based on an endogenous vari-
able, however, then standard errors should be adjusted (Wooldridge 2002). 

So, the need to adjust standard errors for stratifi cation is situation specifi c. In 
practice, relative to simple standard errors, adjusting for stratifi cation may infl ate 
the standard errors. But with survey data, standard errors robust to heteroscedas-
ticity, and possibly clustering (see below), will be required. Relative to those adjust-
ments, the magnitude of that for stratifi cation is usually modest and normally 
downward (see box 10.1). So, a conservative strategy is not to make any adjustment. 
If stratifi cation is exogenous, there is no need for adjustment and, if endogenous, 
the adjustment will normally increase statistical signifi cance.

It is often sensible to allow for intercept, and possibly slope, differences with 
respect to factors on which the sample is stratifi ed. But this is in response to differ-
ences that exist in the population itself, not to the stratifi ed design of the sample. 
For example, in many cases it is sensible to include an urban/rural dummy and to 
interact this with other regressors, to allow for differences in both the mean and 
responses between urban and rural locations, irrespective of whether the sample is 
stratifi ed by urban/rural.

COMPUTATION Stata is the best package available for handling survey design 
issues. For the example presented in Box 10.1, OLS estimates with stratifi cation 
adjusted SEs were obtained from the following:

svyset , strata(region)
svy, subpop(child): regr depvar varlist

where strata(region) instructs that the sample be stratifi ed on the variable 
region, depvar denotes the dependent variable (height-for-age z-score [*–100] in 



Box 10.1 Standard Error Adjustment for Stratifi cation Regression Analysis 
of Child Nutritional Status in Vietnam

In the table below we present OLS coeffi cients from a regression of height-for-age z-
scores (see chapter 4 ) using a sample of Vietnamese children under 10 years of age. The 
data are from the 1998 Vietnam Living Standards Survey (VLSS), which was stratifi ed 
by 10 regions. The specifi cation of the regression is based on that used by Wagstaff, 
van Doorslaer, and Watanabe (2003) (see also chapter 13). The dependent variable is 
actually the negative of the z-score (multiplied by 100), such that a positive coeffi cient 
indicates a negative correlation with height.

In addition to the OLS point estimates, we present standard errors (SEs) calculated with 
various degrees of adjustment. Relative to simple OLS SEs (column 2), adjustment for strati-
fi cation alone (column 3) tends to infl ate the SEs appreciably, but not dramatically. In some 
cases, the adjustment is slightly downward. In no case does the adjustment change the level 
of signifi cance of the coeffi cient. In this example, making the SEs robust to heteroscedastic-
ity of general form (column 4) has a very similar effect to that of adjusting for stratifi cation. 
Besides stratifi cation, the VLSS has a cluster sample design. Adjusting SEs for cluster sam-
pling but not stratifi cation (column 5) has a greater impact than stratifi cation adjustment. 
In all cases, as expected, the adjustment is upward and in two cases it actually changes 
the level of signifi cance. Finally, we adjust for both stratifi cation and clustering (column 6). 
Comparing columns 5 and 6, it is apparent, for this example, that given adjustment for clus-
tering, the marginal impact of stratifi cation adjustment is small. In most cases, but not all, 
this marginal adjustment is downward. In no case does adjustment for stratifi cation change 
the level of signifi cance relative to that obtained by adjusting for clustering alone.

For this example, adjusting standard errors for clustering appears to be more 
important than adjustment for stratifi cation. Although care must be taken not to draw 
general conclusions from an example, this is consistent with what is generally found in 
empirical work.

OLS analysis of height-for-age z-scores (*–100), Vietnam 1998 (children <10 years)

 Standard errors

   Strati-   Strat. & 
 Co- Un- fi cation  Hetero.  Cluster  cluster
 effi cient adjusted adjusted  robust  adjusted  adj. 

Child’s age  3.70***  0.1986  0.2466  0.2470  0.2885  0.2872
(months)  

Child’s age  –2.38***  0.1554  0.1755  0.1758  0.1966  0.1957 
squared (/100)

Child is male  12.31***  3.2927  3.2708  3.2792  3.3649  3.2844 

(log) hhold.  –37.85***  3.9843  4.1046  4.1116  5.4035  5.4582
consumption per capita 

Safe drinking water –7.43  4.9533  4.8300  4.8441  9.1538  9.2098 

Satisfactory sanitation –15.53***  5.1009  4.8199  4.8326  6.1202 6.0937

Years of schooling  –0.87*  0.4804  0.4770  0.4786  0.7302 0.7188
of household head

Mother has primary  –2.33  4.0598  4.1309  4.1397  6.1913  6.2438  
school diploma

Sample size  5218

Note: Dependent variable is negative of z-score, multiplied by 100. Bold indicates a change 
in signifi cance level relative to that using unadjusted standard errors. Regression also contains 
region dummies at the level of stratifi cation. ***, ** and * indicate 1%, 5% and 10% signifi cance 
according to unadjusted standard errors. 

Source: Authors.
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the example), varlist is a list of regressors, and subpop(child) requests that the 
model be estimated for children (child=1) only. Restricting the sample to children 
and then estimating the model would not give the correct (stratifi cation-adjusted) 
SEs. Computation for cluster sample adjustment is given below.

Cluster samples

Cluster samples arise from a two-stage (or more) sampling process. In the fi rst 
stage, groups (clusters) of households are randomly sampled from either the popu-
lation or the strata. Typically, these clusters are villages or neighborhoods of towns 
and cities. In the second stage, households are randomly sampled from each of 
the selected clusters. An important distinction from stratifi cation is that strata are 
selected deterministically, whereas clusters are selected randomly. A further dif-
ference is that typically strata are few in number and contain many observations, 
whereas clusters are large in number and contain relatively few observations. 

As a result of this design, observations are not independent within clusters, 
although most probably they are across clusters. There is likely to be more homoge-
neity within clusters than there is across the population as a whole. Within clusters, 
correlation of both observable and unobservable factors across households can be 
expected. Although these correlations exist in the population, the sample design 
increases their sample presence relative to that of a simple random sample. Con-
sequences and remedies depend on the nature of the within-cluster correlation. 
Much of the analysis is analogous to that of unobservable individual effects in a 
panel data setting.

CASE 1: EXOGENOUS CLUSTER EFFECTS Consider the following model: 

(10.1) y E Eic ic c ic ic ic c ic= + + [ ]= [ ]=X Xβ λ ε ε λ ε, | , ,0

where i and c are household (individual) and cluster indicators, respectively; Xic  is a 
vector of regressors; λc  are cluster effects; and εic idiosyncratic disturbances. If we 
assume that the cluster effects are independent of the regressors E Ec ic cλ λ|X[ ]= [ ]( ), 
then so is the composite error uic c ic= +( )λ ε . This is the random effects model. 

Conventional point estimators, for example, OLS, probit, and so on, depending 
on the nature of the dependent variable, are consistent, but ineffi ciency arises from 
the cluster-induced correlation in the composite errors which, in addition, requires 
adjustment of the standard errors. One option is to accept ineffi ciency and simply 
adjust the standard errors. In Stata, this is easily implemented through the option 
cluster(varname), where varname defi nes the clusters. This option, which is 
available for most estimators, will adjust both for within-cluster correlation and for 
heteroscedasticity of unknown form.

An alternative strategy is to pursue effi ciency by estimating the within-cluster 
correlation and taking account of this in estimation of the model parameters. In 
the linear case, for example, the analyst would use generalized least squares (GLS). 
A Lagrange multiplier test can be used to test the null that the cluster effects are 
insignifi cant and OLS is effi cient (Wooldridge 2002). In the case of a binary discrete 
dependent variable, the analyst can estimate the random effects probit. 

CASE 2: ENDOGENOUS CLUSTER EFFECTS The model is equation 10.1, but we 
relax the assumption of independence between the cluster effects and the regres-
sors. That is, we allow E Ec ic cλ λ|X[ ]≠ [ ]( ). This is the fi xed effects model. 

a
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For example, in a regression of individual health on health service utilization, 
we would expect the latter to be correlated with the unobservable cluster-specifi c 
quality of those services. In instances in which there is such dependence, regres-
sors are correlated with the composite error and standard estimators are inconsis-
tent. The analyst must purge the cluster effects from the composite error. In a lin-
ear context, either include cluster dummies or, equivalently, transform the data by 
taking differences from within cluster means (i.e., the within-groups estimator). In 
a binary discrete choice context, the analyst can use the fi xed effects logit estima-
tor (Wooldridge 2002) (see chapter 11). Once the cluster effects have been purged 
from the composite error, there is no need to adjust standard errors for clustering 
(providing the linear specifi cation of the cluster effects is correct). Adjustment for 
heteroscedasticity is likely to be a good idea. 

The analyst can choose between the random and fi xed effects models by refer-
ence to a Hausman test of the null of independence between the cluster effects and 
the regressors (Wooldridge 2002). 

Box 10.2 Taking Cluster Sampling into Account in Regression Analysis 
of Child Nutritional Status in Vietnam

We continue with an examination of height-for-age z-scores of Vietnamese children 
using the 1998 VLSS, which has a cluster sample design. Cluster samples were actually 
drawn at two levels in this survey. At the fi rst level, within each stratum a random sam-
ple of communes was drawn with probability of selection proportional to commune 
population size. Communes therefore represent the primary sampling units. Within 
each of the 194 selected communes, two villages/blocks were randomly selected with 
selection probabilities again proportional to population size. Finally, within each vil-
lage/block a random sample of 20 households was selected. With this sample design, 
clusters could be defi ned at the level of the commune, village/block, or both. For sim-
plicity, we will defi ne clusters at the commune level. 

We take three approaches to the cluster sample issue: OLS with standard errors 
adjusted for within-cluster correlation, random effects, and fi xed effects. In each case, 
standard errors are made robust to heteroscedasticity of general form. The results of 
the respective z-score regressions are given in the table below. 

Comparing the point estimates, it is apparent that the choice of estimator makes 
little difference for regressors that are clearly individual specifi c, but there is greater 
sensitivity in estimates for regressors that can be expected to display stronger within-
commune correlation. So, for example, the point estimates for age and gender are near 
constant across the estimators. The estimate for household consumption is more sensi-
tive, the effect weakening as we move from OLS, which takes no account of commune 
effects in the point estimates, to fi xed effects, which purge the commune effects. This 
pattern is even more pronounced for indicators of safety of drinking water and sanita-
tion, which can be expected to display fairly limited within-commune variation. 

In general, standard errors are smaller for random and fi xed effects. This is expected 
because these methods take into account the cluster effects in the (point) estimation 
and do not have to infl ate the standard errors to allow for these correlated effects. In 
this example, however, the choice of estimator makes very little difference to levels of 
signifi cance, refl ecting the strength of the effect of some of the regressors. 

The Lagrange multiplier test on the random effects model confi rms that commune 
effects are, indeed, important. The Hausman test rejects the assumption of zero correla-
tion between the commune effects and the regressors, indicating the superiority of the 
fi xed effects estimator in this case.
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COMPUTATION Results such as those in box 10.2 can be generated in Stata as 
follows. For OLS with cluster corrected SEs,

svyset commune
svy, subpop(child): regr depvar varlist

where the svyset command instructs that clusters are defi ned by the variable 
commune. If the analysis were not restricted to part of the sample, the appropriate 
cluster corrected standard errors could be obtained from the following:

regr depvar varlist, cluster(commune)

To adjust SEs for both clustering and stratifi cation, simply set the survey param-
eters appropriately,

svyset commune, strata(region)

and then run the svy: regr command as above. This was used to generate the 
SEs in the fi nal column of the table in box 10.1. We do not adjust OLS SEs in the table 
in box 10.2 for stratifi cation because the random and fi xed effects estimators do not 
allow for that. Random effects estimates are obtained most easily from Stata’s lin-
ear panel data estimator, 

xtreg depvar varlist, re i(commune) 

Box 10.2 continued Regression Analysis of Height-for-Age z-Scores (*-100), 
Vietnam 1998 (children <10 years)

 OLS  Random effects  Fixed effects 

  Cluster   Robust   Robust 
 Coeff.  adjusted SE  Coeff.  SE  Coeff.  SE

Child’s age (months) 3.72***  0.2917  3.74***  0.2451  3.78***  0.2430

Child’s age squared (1100) –2.40***  0.1987  –2.40***  0.1742  –2.44***  0.1732

Child is male 12.26***  3.4527  12.19***  3.2394  12.97***  3.2443 

(log) hhold.  –50.93*** 5.1149  –43.17***  4.0778  –30.37***  4.6090
consumption p.c. 

Safe drinking water –12.55 8.6438  –7.93  4.8984  –2.75  5.4247 

Satisfactory sanitation –22.90*** 5.6974  –19.39***  4.8446  –9.77**  4.9364 

Years of schooling  –0.39  0.6628  –0.33  0.4828 –0.55  0.5081 
of HoH

Mother has primary  2.67  5.3187  1.71  4.1140  1.74  4.3186
school diploma 

Intercept  445.00***  44.5600  377.01***  32.1941  276.19***  35.0991

Sample size 5,218 R2  0.1527  B-P LM 485.84 (0.000) 

    Hausman  50.54 (0.000) 

Note: Dependent variable is negative of z-score, multiplied by 100. 
SE = standard error, Robust SE-robust to general heteroskedasticity.
B-P LM = Breusch-Pagan Lagrange Multiplier test of signifi cance of commune effects (p-value).
Hausman = Hausman test of random versus fi xed effects (p-value).
***, ** & * indicate signifi cance at 1%, 5% & 10%, respectively.
Source: Authors.



 Multivariate Analysis of Health Survey Data 123

where i(commune)instructs to allow for common effects within each category of 
the variable commune. The Breusch-Pagan test statistic is obtained by following 
the command above with xttest0. To obtain (heteroskedasticity) robust SEs, as in 
the example, the analyst can implement the random effects (GLS) estimator through 
OLS on transformed data and request robust SEs. First, run the random effects esti-
mator as above, and save the estimates of the variances of the error components,

scalar defi ne sigma_e=e(sigma_e)^2
scalar defi ne sigma_u=e(sigma_u)^2

Next calculate the variable that will be used to transform the data,

sort commune
by commune: gen T=_N 
gen theta=1-sqrt(sigma_e/(sigma_e +(T*sigma_u)))

where the fi rst two command lines generate a variable indicating the number of 
observations within each commune, and the third line gives the transformation 
variable. Now generate the quasi mean deviations (i.e., deviations from the trans-
formed mean) for the dependent variable and each regressor,

local vbls “depvar varlist”
foreach var of local vbls {
 by commune: egen m_`var’=mean(`var’)
 gen t_`var’=`var’-theta*m_`var’
}

Generate the variable from which the intercept will be estimated and run OLS,

gen intercept=1-theta
local vars “t_depvar t_var1 t_var2...  .”
regr `vars’ intercept, noconstant robust

where the local vars contains the names of the transformed dependent variable 
and the regressors, noconstant requests that the regression be estimated without 
a constant, and robust requests heteroscedasticity robust SEs.

Fixed effects estimates can be obtained from the panel data command:

xtreg depvar varlist, fe i(commune) 

Or to obtain the same point estimates but robust SEs, use the following: 

areg depvar varlist, absorb(commune) robust 

which requests OLS on deviations from commune specifi c means, that is, the 
within-groups or fi xed-effects estimator.

The Hausman test statistic can be computed by the following:

xtreg depvar varlist, fe i(commune)
est store fi xed
xtreg depvar varlist, re i(commune)
hausman fi xed

Explaining community effects

The strategies outlined above for dealing with cluster samples are appropriate 
when the analyst is interested exclusively in the determinants of health/health care 
at the individual level. In this case, the cluster sample design is a problem to be 
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overcome. But cluster, or community, effects can be more than nuisance parameters. 
With respect to health inequality, for example, area variations in health, and their 
determinants, are of genuine interest. Not least because implementation of public 
health policies at the community, rather than the individual, level is often more fea-
sible. In this case, a cluster sample design is an advantage rather than a problem. It 
facilitates examination of cross-community differences in health and their determi-
nants, particularly if the household survey is accompanied by a community-level 
survey providing information on characteristics of the community.

Options for the analysis of community effects from individual-level data depend 
on whether the effects are exogenous or endogenous.

CASE 1: EXOGENOUS CLUSTER (COMMUNITY) EFFECTS In this case, the analyst 
can explore the determinants of area variation in health outcomes or utilization by 
including community-level variables, if available, in the model. Defi ne λ γ λc c c= +Z *, 
where Zc  are observable community-level factors, for example, health care facili-
ties and personnel, quality of water provision and sewage, prices, and so forth and 
substitute this defi nition into equation 10.1. The (rewritten) model is as follows:

(10.2) y E Eic ic c c ic ic ic c c= + + + ⎡⎣ ⎤⎦ =X Z X Zβ γ λ ε ε λ ε* *, | , , iic[ ]= 0.

To maintain the assumption of exogenous community effects, and therefore con-
sistency (but not effi ciency) of standard estimators, we now need the unobservable 
community effects (λc

*) to be independent of both the individual- and community-
level regressors (i.e., E X Z Ec ic c c| ,* *λ λ⎡⎣ ⎤⎦ = ⎡⎣ ⎤⎦) (Wooldridge 2002). This is likely to be 
a stronger assumption than that placed on model 10.1 above. Assuming that the 
observable community factors capture all of the community effect, (λc c* ,= ∀0 ) is 
even stronger. Excepting the latter restrictive case, standard errors still have to 
be adjusted (upward) for correlation induced by the (unobservable) community 
effects. However, the effi ciency loss from employing OLS, for example, in this set-
ting may not be large (Deaton 1997).

This random effects model is known as the hierarchical model in some fi elds 
(see, e.g., Rice and Jones [1997]). Although the models are equivalent, the hierar-
chical approach places more emphasis on decomposition of the overall variance 
into that arising at the individual and the community level. This approach is par-
ticularly useful in cases in which the analyst wants to focus on such a distinction 
between individual- and community-level effects. 

CASE 2: ENDOGENOUS CLUSTER (COMMUNITY) EFFECTS In cases in which the 
(unobservable) community effects are correlated with individual-level regressors, 
it is not possible to include community-level variables in a model to be estimated 
from a single cross section. With a dummy variable approach, the community vari-
ables would be perfectly correlated with the community dummies. With a fi xed-
effects approach, community variables would be wiped out of the model along with 
the unobservable community effects. If one has panel data, then these problems are 
avoided provided there is suffi cient across-time variation in the community-level 
variables. With a single cross section, a feasible two-stage approach in a linear con-
text is to estimate a fi xed-effects model, obtain estimates of the community effects, 
and then regress these on community-level variables. In the fi rst stage, the bias aris-
ing from the community effects is removed from the individual-level analysis of, 
say, health determination. In the second stage, sources of community variation in 
health are examined. 
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In box 10.3 we continue with the example of child nutritional status in Vietnam, 
examining the sources of community-level variation, assuming in turn exogenous 
and endogenous community effects.

Box 10.3 Explaining Community-Level Variation in Child Nutritional Status in Vietnam

In box 10.2 we saw that commune effects are an important source of variation in height-
for-age z-scores of Vietnamese children. The VLSS offers the opportunity to uncover 
factors underlying these commune effects through the examination of data from com-
mune-level surveys that accompanied, and can be linked to, the household survey data. 
For demonstration purposes, we limit attention to the characteristics of commune health 
centers (CHCs). The analysis is necessarily restricted to children living in rural areas 
and small towns because the commune surveys were conducted in those areas only.

Again we compare OLS, random effects, and fi xed effects. In the case of OLS and 
random effects, the estimates are obtained from entering the CHC characteristics 
directly into the individual-level regressions. We present, in the table below, the esti-
mates for the CHC regressors only. Estimates for the individual-level regressors are 
similar to those given in the table in box 10.2. For the fi xed-effects model, we take the 
two-stage approach outlined above. In the table, we present results from the second 
stage regression of the estimated commune effects on the CHC characteristics. The fi rst 
stage estimates are similar to those in the table in box 10.2.

The results indicate a lower prevalence of stunting in communes in which the CHC 
has electricity, a sanitary toilet and, at marginal signifi cance, a child growth chart. The 
number of inpatient beds available in a CHC and, at lower signifi cance, the employ-
ment of a doctor is positively correlated with the prevalence of stunting. These latter 
results may refl ect the targeting on resources in the communes of greatest need. 

Analysis of Commune-Level Variation in Height-for-Age z-Scores (*–100), Rural 
Vietnam 1998 (children <10 years)

    2nd-stage
  OLS  Random effects  fi xed effects 

Commune health  Cluster   Robust 
center vbls.  Coeff.  adj. SE  Coeff.  SE  Coeff.  SE 

Vitamin A available  –10.11  6.6530  –6.86143  6.5927  –8.27114  6.7506 
≥ 1/2 time

Has electricity  –38.79***  11.4558  –50.56***  12.1861 –45.34***  10.7991 

Has clean water source  9.57  7.6534  7.2341  8.4061  7.0070  8.7610 

Has sanitary toilet –27.53***  7.0928  –24.50***  7.6694  –24.30***  7.8715 

Has child growth chart  –13.85*  7.2046  –10.2623  7.5879  –11.732  7.6292 

Number of inpatient beds  1.52*  0.8298  2.12**  0.9242  2.09**  0.9744 

Has a doctor  11.39  6.9765  9.6255  7.1834  10.1856  7.5207 

Intercept 371.89***  48.8784  344.71***  41.5639  279.13***  41.6264 

Sample size          4,099       R2   0.1313  B-P LM      248.42

   (0.0000)

Note: Dependent variable is negative of z-score, multiplied by 100. OLS & random effects = 
Coeffi cients on commune-level regressors only are presented. 2nd stage fi xed effects = Estimated 
commune effects from fi xed effects regressed on commune vbls.  

SE = standard error, robust SE = robust to general heteroskedasticity.
B-P LM = Breusch-Pagan Lagrange Multiplier test of signifi cance of community effects (p-value).
***, ** and * indicate signifi cance at 1%, 5% and 10%, respectively.
Source: Authors.
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COMPUTATION OLS and random effects estimates and standard errors can be 
generated exactly as above, with the inclusion of community-level regressors. The 
two-stage fi xed-effects approach can be implemented in Stata by fi rst running the 
linear (fi xed effects) panel estimator and saving the predicted commune effects:

xtreg depvar varlist, fe i(commune)
predict ce, u

where ce is the variable name given to the predicted commune effects, u. OLS 
regression of these commune effects on commune-level variables (varlist2) is 
most easily implemented by using the between-groups panel estimator:

xtreg ce varlist2, be i(commune) 

Sample weights

The probability of observing an individual in a survey may differ from the probabil-
ity that the individual is randomly selected from the population. There are a num-
ber of reasons for this. The survey may be stratifi ed, with strata sample proportions 
differing from respective population proportions. For example, there may be overs-
ampling of the urban population. Besides sample design, differential nonresponse 
will lead to a sample that is not representative of the population. For those reasons, 
survey data typically come with a set of sample weights that, for each observation, 
indicate the (inverse of the) probability of being a sample member. In a standard 
stratifi ed sample with differential sampling by strata, weights or expansion factors 
are given by the ratio of the population size of each stratum to its sample size. 

Sample weights must be applied to obtain unbiased estimates of population 
means, concentration indices, and so forth and correct standard errors for these esti-
mates. Application of the weights allows for the fact that observations with lower 
sample probabilities represent a greater number of (similar) individuals in the pop-
ulation. With respect to multivariate analysis, the case for applying sample weights 
is less clear-cut. In part, the appropriateness of weighting depends on the objective 
of the analysis. As we stressed at the beginning of this chapter, appropriate meth-
ods depend on the purpose of the analysis. If regression is being used simply as a 
descriptive device, and not for estimation of behavioral parameters, then weights 
should be applied (Deaton 1997). The regression function describes the means of 
one variable conditional on others. Application of sample weights will ensure that 
the conditional means estimated are those that would have been estimated from a 
simple random sample of the population. In this case, weights are applied for the 
same reason they are used in univariate analysis. For example, in standardization 
exercises (see chapters 5 and 15), regression is used simply to obtain conditional 
means, and it would be appropriate to apply sample weights.

If the purpose of the analysis is more ambitious—to uncover causal relation-
ships—then the crucial factor determining whether weights need to be applied in 
estimating the model parameters is the source of differences between sample and 
population proportions. If proportions differ because of selection on factors that 
are exogenous within the model under consideration, then there is no need to apply 
weights. Unweighted estimators are consistent and more effi cient than weighted 
counterparts (Wooldridge 2002). Usual or, in the presence of heteroscedasticity, 
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robust standard errors are valid. However, if selection is on endogenous factors, 
then a weighted estimator is required for consistency (Wooldridge 2002). In the case 
of the linear model, for example, weighted least squares could be used with the data 
weighted by the inverse of sample probabilities. If the sample weights derive from 
stratifi cation with differential sampling by strata, then standard errors need to be 
calculated taking account of both the weights and the stratifi cation. Alternatively, 
if there are sample weights but not stratifi cation, then (robust) standard errors are 
calculated by applying the usual formula to the weighted data.

So, as with sample stratifi cation, the need to take account of sample weights in 
estimation is situation specifi c. Consider a model of health determination to be esti-
mated from a survey that oversamples the urban population. If, conditional on all 
regressors, unobservable determinants of health are uncorrelated with city dwell-
ing, then there is no need to apply weights. Conditioning on an urban dummy is suf-
fi cient. In this example, the exogeneity assumption might be considered reasonably 
weak, although its validity would be challenged if migration were strongly infl u-
enced by health status. If, however, there were differential sampling by health itself, 
say the sick were oversampled, then sample weights would need to be applied. 

The discussion above assumes parameter homogeneity across the differentially 
sampled groups. There might be different (conditional) group means, but that is eas-
ily dealt with through the inclusion of dummy variables. A more serious problem is 
differences in slope parameters across groups. Consider the following model:

(10.3) yis is s is= +X β ε

where i and s, respectively, indicate individual and group, for example, urban/rural, 
gender, ethnicity, and so on, and the parameter vector as is indexed on s, indicating 
parameter heterogeneity across groups. If differences in parameters across groups 
are of inherent interest, then the analyst can estimate either a separate model for 
each group or a single model with dummies for each group and their interactions 
with other regressors. The former is more general. In both cases, parameter homo-
geneity can be tested by standard methods.

For various reasons, the analyst might want an estimate of the average effect

across the population. Such an average might be defi ned as follows:
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that is, the weighted average of the group-specifi c parameters with weights pro-

vided by the population group proportions 
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N
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⎞
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(Deaton 1997). If degrees of free-

dom are not a problem, this parameter can be consistently estimated by applying 
OLS to each sector to obtain estimates of the sector-specifi c parameters, âs, and 
taking the population-weighted average of these. For degrees of freedom rea-
sons or otherwise, it is often preferred to estimate the average parameter directly 
from one regression. In the case in which sample group proportions do not cor-
respond to population proportions, it might be anticipated that unweighted OLS 
on the whole sample will not be consistent for the average parameter defi ned. 
That is correct. It is reasonable to ask whether sample weights can solve the prob-
lem. The answer is “no.” Weighted regression will give an estimate that corre-
sponds to that which would be obtained from a simple random sample, but that 
is not consistent for the population average parameter, apart from the extreme 
case in which regressor values are identical across all groups (Deaton 1997).

a a
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The issue here is parameter heterogeneity, which exists in the population, and 
is not simply a feature of sample design. Sample weights cannot be used to address 
an issue that arises from the population itself. 

Sensitivity of estimates and their standard errors to the application of weights is 
examined in box 10.4.

Further reading

Deaton (1997) is a wonderfully useful guide to the analysis of survey data. Woold-
ridge (2002) and Cameron and Trivedi (2005) are both excellent, comprehensive text-
books covering the relevant econometric theory. 

Box 10.4  Applying Sample Weights in Regression Analysis 
of Child Nutritional Status in Vietnam

We reproduce the analysis of box 10.2, but with sample weights applied to all estima-
tors. One other difference is that the OLS standard errors are adjusted for stratifi cation 
because, within a modeling approach, the logic for applying sample weights and for 
adjusting for stratifi cation is the same. That is, selection on an endogenous variable. 

By comparing the estimates presented in the table below with those given in the 
table in box 10.2, it is apparent that the application of sample weights makes very lit-
tle difference to the results. A possible explanation is that the application of sample 
weights is not necessary in this particular example. That is, differential sampling is 
exogenous, and so the unweighted estimators are consistent. 

Weighted Regression Analyses of Height-for-Age z-Scores
Vietnam 1998 (children <10 years)

 OLS  Random effects  Fixed effects 

  Adjusted   Robust   Robust
 Coeff.  SE  Coeff.  SE  Coeff.  SE

Child's age (months)  3.90***  0.3218  3.90***  0.2652  3.91***  0.2642 

Child's age squared (/100)  –2.51***  0.2206  –2.50***  0.1875  –2.51***  0.1875 

Child is male  14.86***  3.5718  14.56***  3.3595  14.89***  3.3731 

(log) hhold. 
consumption p.c.  –50.14***  5.5131  –40.67***  4.3511  –26.05***  5.0196 

Safe drinking water  –12.16  10.2770  –6.92  5.1624  –2.07  5.6079 

Satifactory sanitation  –22.01***  5.9503  –19.81***  5.3653  –10.48*  5.4439 

Years of schooling of HoH  –0.21  0.7355  –0.15  0.5122  –0.42  0.5363 

Mother has primary 
school diploma  3.62  5.6510  3.04  4.2925  2.19  4.4958 

Intercept 428.15***  48.9827  347.47***  34.9686  236.12***  38.5646 

Sample size  5,218 R2  0.1496  R2  0.4320  R2  0.2457

Note: Dependent variable is negative of z-score, multiplied by 100. 
Adjusted SE = standard error adjusted for clustering and stratifi cation and robust to 

heteroskedasticity. 
Robust SE = standard error robust to general heteroskedasticity.
***, ** and * indicate signifi cance at 1%, 5% and 10%, respectively.
Source: Authors.
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11
Nonlinear Models for Health 
and Medical Expenditure Data 

Heath sector variables are seldom continuous and fully observed. For example, 
they can be discrete (e.g., death), censored (e.g., health care expenditure), integer 
counts (e.g., visits to doctor), or durational (e.g., time to death). Multivariate analy-
sis of such dependent variables requires nonlinear estimation. In this chapter, we 
consider the main (parametric) nonlinear estimators that are of relevance to the 
analysis of health sector inequalities. The literature is extensive, and our coverage is 
necessarily rudimentary, with a focus on practicalities rather than theory.

Binary dependent variables 

There are numerous examples of health sector variables that take only two val-
ues—dead/alive, ill/not ill, stunted/not stunted, goes to doctor/doesn’t go to doc-
tor, and so on. In some cases, there are only two possible values of the underlying 
characteristic, for example, dead/alive. In other cases, the underlying characteristic 
is continuous, for example, degrees of illness, but only two categories are observ-
able in the data—ill/not ill. 

Let yi  be the characteristic of interest. Conventionally, yi = 1 indicates that 
observation i possesses the characteristic, for example, illness, and yi = 0  indi-
cates that it does not. In general, a model of binary response can be defi ned by the 
following:

 (11.1) E y y Fi i i i i| Pr |X X X[ ]= =( ) = ( )1 β

where E[ ] and Pr( ) indicate expected value and probability, respectively. Differ-
ent functional forms for F( )  defi ne different specifi c models. For example, in the 
linear case, F i iX Xβ β( ) = , we have the linear probability model (LPM). It is often 
claimed that the LPM can be consistently estimated by ordinary least squares 
(OLS). Horrace and Oaxaca (2006) prove that this is true only in the restrictive case 
that Xiβ  has a zero probability of lying outside the (0,1) range. A related problem is 
that the predicted probability given in equation 11.1 is not constrained to the (0,1) 
range, making results diffi cult to interpret in such circumstances. A further prob-
lem is that the errors are nonnormal and heteroscedastic, and so the estimator is 
not effi cient and conventional standard errors are invalid. That can be (partially) 
fi xed by weighted least squares.

An obvious, and common, response to these problems with OLS is to choose 
some functional form for F( ) that constrains estimated probabilities to lie in the 
(0,1) range. The two most popular choices are the cumulative standard normal 
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distribution, which gives the probit model, and the cumulative standard logistic 
distribution, which gives the logit model. Thinking about binary responses being 
driven by some underlying but unobservable (latent) characteristic helps to motivate 
such models. For example, let yi

* indicate propensity to contract illness. When this 
crosses some threshold, say yi

* > 0 , the individual is ill. Specifying the latent vari-
able to be a linear function of observable and unobservable factors, yi i i

* = +X β ε , and 
choosing a distribution for the error term as either standard normal or logistic gives 
the probit and logit models. Estimation is carried out by maximum likelihood. 

Because the normal and logistic distributions are similar, the choice of a probit 
or logit specifi cation is not important in most cases. Care must be taken not to com-
pare probit and logit coeffi cients directly, however. In both cases, parameters are 
estimable only up to a scaling factor, equal to the unknown standard deviation of 
the error, which is not estimable given the binary nature of the dependent variable. 
Only the relative, not the absolute, effect of explanatory variables are estimable. 
Because variances differ between the normal and logistic distributions, logit coef-
fi cients must be multiplied by 0.625 to be comparable with probit coeffi cients (Ame-
miya 1981). Dividing probit estimates by 2.5 and logit estimates by 4 will make 
them comparable with those from the LPM (Wooldridge 2002). 

Further care must be taken in the interpretation of estimates from latent variable 
models. The (scaled) parameters β  give the (relative) partial effects on the latent 
index yi

* , but these effects are usually not of primary interest. The partial effects on 
the probability of possessing the characteristic are more informative. For example, 
an estimate of how the probability of being sick changes with income is more eas-
ily interpreted than an estimate of how a latent index of sickness propensity var-
ies with income. From equation 11.1, the estimated partial effect of a continuous 
regressor Xk( ) on the (conditional) probability is given by the following:

(11.2) 
∂ ( )

∂
=

∂ ( )
∂

= ( )Pr ˆ ˆ
ˆ ˆX X

X
i

ki

i

ki
i kX

F

X
f

β β
β β , 

where f ( )  denotes the probability density function and is standard normal and 
logistic in the probit and logit cases, respectively. For a dummy regressor XK( ) , the 
estimated partial effects can be calculated as follows:

(11.3) F X X F Xi K iK K i
ˆ ... ˆ ˆ ˆ ... ˆβ β β β β1 1 1 1 1 1+ + +( ) − + +− − KK iKX− −( )1 1 .

It is clear from equations 11.2 and 11.3 that these partial effects are not constants but 
are observation specifi c. There are two options, either calculate equations 11.2 and 
11.3 at interesting values of all regressors, such as means or medians, or calculate 
the partial effect for each observation and take the average of these. The latter is 
preferable, but the former is somewhat more convenient. In large samples, the par-
tial effect at the means should approximate the mean of the partial effects (Greene 
2000). Calculating at medians, rather than means, ensures that values of dummy 
regressors are either 0 or 1 and, for regressors that are nonlinear transformations of 
variables, for example, quadratics and logs, it avoids the problem that the mean of 
the transformation is not the transformation of the mean. However, using medians 
can create problems of interpretation. For example, it may lead to infeasible combi-
nations of the X’s, setting all values to zero for a set of mutually exclusive indicators 
with less than 50 percent of the sample in each category. Such problems are avoided 
by computing the partial effect for each observation and then taking the mean or 
median of these.
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Box 11.1 Example of Binary Response Models—Child Malnutrition in Vietnam, 1998

We compare the linear probability, logit, and probit models in estimating correlates of 
a discrete state of child malnutrition, defi ned as height-for-age more than two standard 
deviations below the average in a well-nourished (U.S.) population (see chapter 4 ). The 
data are for children younger than 10 years of age and are taken from the 1998 Vietnam 
Living Standards Survey (VLSS). This analysis complements that of a continuous mea-
sure of nutritional deprivation presented in the previous chapter. 

In the following table we present estimates of the parameters of the respective models. 
Standard errors are adjusted for the clustered nature of the sample and are robust to gen-
eral heteroscedasticity (see chapter 10 ). No adjustment is made for stratifi cation, and sam-
ple weights are not applied, it being assumed that stratifi cation is on exogenous factors 
(see chapter 10). There is a great deal of consistency across the estimators in the levels of 
signifi cance of the coeffi cients. As suggested above, dividing logit and probit coeffi cients 
by 4 and 2.5, respectively, makes them approximately comparable to the LPM coeffi cients. 
For the coeffi cient on the male dummy, that gives 0.0669 (= 0.2675/4) for logit and 0.0646 
(= 0.1614/2.5) for probit, which are both larger than the LPM coeffi cient of 0.0563. More 

Child's age (months)

Child's age squared 
(/100)

Child is male

(log) hhold. 
consumption per 
capita

Safe drinking water

Satisfactory sanitation

Years of schooling of 
head of household

Mother has primary 
school diploma

Intercept

 0.0079***
 (0.00075)

 –0.0053***
 (0.00058)

 0.0563***
 (0.01281)

 –0.1849***
 (0.01726)

 –0.0447*
 (0.02685)

 –0.057**
 (0.02306)

 0.0013
 (0.00219)

 –0.0041
 (0.02008)

 1.5681***
 (0.13511) 

 0.0403***
 (0.00394)

 –0.0271***
 (0.00293)

 0.2675***
 (0.06072)

 –0.9403***
 (0.09026)

 –0.2017*
 (0.11669)

 –0.3344***
 (0.11838)

 0.0047
 (0.01070)

 –0.0106
 (0.09218)

 5.4812***
 (0.69589) 

 0.0100***
 (0.00100)

 –0.0068***
 (0.00074)

 0.0661***
 (0.01489)

 –0.2347***
 (0.02255)

 –0.0504*
 (0.02906)

 –0.0822***
 (0.02860)

 0.0012
 (0.00267)

 –0.0027
 (0.02301)

 0.0245*** 0.0097***
 (0.00238) (0.00100)

 –0.0165*** –0.0066***
 (0.00177) (0.00071)

 0.1614*** 0.0639***
 (0.03688) (0.01451)

 –0.5639*** –0.2248***
 (0.05301) (0.02116)

 –0.1208* –0.0482*
 (0.07146) (0.02844)

 –0.1982*** –0.0782***
 (0.06990) (0.02728)

 0.0028 0.0011
 (0.00642) (0.00256)

 –0.0079 –0.0031
 (0.05571) (0.02221)

 3.2734***
 (0.41134)

  Sample size  5,218 

 Note: Robust standard errors in parentheses. Adjusted for clustering and heteroskedasticity. 
Partial effects calculated at medians of regressors.

LPM = linear probability model, OLS = ordinary least squares, MLE = maximum likelihood 
estimator.

***, **, and * indicate signifi cance at 1%, 5%, and 10%, respectively. 

Estimates from Binary Response Models of Stunting, Vietnam 1998 (children <10 years)

Dependent variable = 1 if height-for-age z-score less than –2

 LPM (OLS) Logit (MLE) Probit (MLE)

   Partial  Partial
 Coeff. Coeff. effect Coeff. effect 

(continued)
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Computation

Stata, like many packages, has preprogrammed routines for probit and logit:

probit depvar varlist [pw=weight], robust 
logit depvar varlist [pw=weight], robust 

where depvar and varlist represent dependent and independent variables, 
respectively; [pw=weight] is optional to give weighted (on weight) estimates; 
and robust is optional for heteroscedasticity robust standard errors. If the survey 
data are from a cluster sample, standard errors can be corrected for within-cluster 

Box 11.1 continued

directly, we can compare the partial effects of the regressors on the probability that a child 
is stunted. For the LPM, these marginal effects are given by the coeffi cients themselves 
and so are constants. For the logit and probit models, we have calculated the partial effects 
at the median values of the regressors. In general, the estimated partial effects from logit 
and probit are very close and are larger in magnitude than those from the LPM. 

In the next table, we summarize the distributions of the partial effects estimated 
from the probit model. This form of presentation makes it clear that partial effects vary 
across individuals. For example, the mean effect of satisfactory sanitation is to reduce the 
probability of stunting by 0.0689, from an estimated population average probability of 
0.3737. In absolute terms, the strongest partial effect of satisfactory sanitation is a reduc-
tion in the probability by 0.0790, but this is from a predicted baseline probability for that 
individual of 0.5281. The weakest absolute effect is a reduction in the probability of only 
0.0076, but this is large in relation to the respective baseline probability of 0.0118. 

Partial effects can be calculated with respect to variables of inherent interest, rather 
than transformations of these. For example, in the table, we present the partial effect of 
a currency unit increase in household consumption, as well as the effect of a marginal 
increase in the log of consumption. Partial effects of variables entered in quadratic form, 
such as age, can be calculated but are of limited interest. The partial effect of age itself is 
a function of the partial effects of the fi rst and second powers of age (given in the table). 
This function can be calculated but, given the quadratic nature of the function, the par-
tial effect changes sign. It is of more interest to examine a picture of the quadratic func-
tion and locate its turning point (six years and two months, in this example).

Partial Effects on Probability That Child Is Stunted, Vietnam 1998 (children <10 years)

(derived from probit estimates in table above)

 Mean  Std. dev.  Min  Max

Child's age (months)  0.0086  0.00160  0.0008  0.0098 

Child's age squared (/100)  –0.0058  0.00108  –0.0066  –0.0005 

Child is male  0.0568  0.01045  0.0046  0.0643 

(Log) Household consumption p.c.  –0.1982  0.03675  –0.2250  –0.0174 

Household Consumption p.c. (D)  –0.0001  0.00007  –0.0006  –0.0000 

Safe drinking water  –0.0430  0.00743  –0.0482  –0.0043 

Satisfactory sanitation  –0.0689  0.01240  –0.0790  –0.0076 

Years of schooling of head of hhold.  0.0010  0.00018  0.0001  0.0011 

Mother has primary school diploma  –0.0028  0.00051  –0.0031  –0.0002 

Note: Data are weigted. D = Vietnamese dong. 
Source: Authors.
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correlation using the option cluster(psu), where psu is a variable identifying the 
primary sampling units (see chapter 10).1

A special routine is available to give probit partial effects at specifi c regressor 
values: 

dprobit depvar varlist [pw=weight], robust

By default, this calculates partial effects at the means. To obtain the effects at other 
values, such as medians, the following can be used: 

local vars “varlist”
foreach x of local vars {
 qui sum `x’ [aw=weight], d
 sca `x’_md=r(p50)
}
matrix defi ne medians=(var1_md, var2_md,….)
dprobit depvar varlist [pw=wt], robust at(medians) 

where var1, var2 …. are the names of the regressors in varlist. There is no such 
preprogrammed routine for logit partial effects, but Stata’s general routine for par-
tial effects, mfx, can be used. Simply run a logit and afterward 

mfx compute, at(median) 

where at() specifi es the values at which effects are to be calculated; mean, median, 
zero, defi ned values, or a combination of these can be selected. This is much slower 
than dprobit. It can be speeded up by requesting that standard errors not be cal-
culated through the option nose.

To calculate partial effects for each observation, run probit or logit, then 
obtain predictions of the latent index (xb) and probability of a nonzero dependent 
variable (p) for each observation by 

predict xb if e(sample), xb
predict p if e(sample), p

where if e(sample) is optional and restricts the prediction to observations used in 
the estimation. Defi ne two locals containing the names of the continuous variables (e.g., 
cont1, cont2, etc. ) and those of the dummy variables (e.g., dummy1, dummy2, etc.),

local cont “cont1 cont2 ...”
local dummies “dummy1, dummy2, ...”

For continuous regressors, defi ne a variable that will be used to transform the 
coeffi cients

gen t_var=normden(xb)   | for probit
gen t_var=p*(1–p)    | for logit

and, using equation 11.2, obtain the partial effects from

foreach c of local cont {
 gen pe_`c’=t_var*_b[`c’]
}

1If the survey is stratifi ed and the analyst also wishes to take that into account in computa-
tion of the standard errors, Stata’s survey estimators for probit/logit can be used.
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For dummy regressors, use equation 11.3, and obtain the partial effects for pro-
bit from the following:

foreach d of local dummies {
 gen pe_`d’=p-norm(xb–_b[`d’])
 replace pe_`d’=norm(xb+_b[`d’])–p if `d’==0  
}

For logit, use

foreach d of local dummies {
 gen pe_`d’=p–(exp(xb–_b[`d’])/(1+exp(xb–_b[`d’)))
 replace pe_`d’=(exp(xb+_b[`d’])/(1+exp(xb+_b[`d’])))-p 

if `d’==0
}

Finally, obtain summary statistics of the distribution of the following partial 
effects: 

summ `cont’ `dummies’ [fw=weight], detail

where [fw=weight] applies weights and should be included where these exist. 
This procedure will generate, for example, estimates of the population means of 

the partial effects. For inference, standard errors of these estimates would have to 
be generated by the delta method (Wooldridge 2002).

Limited dependent variables

A limited dependent variable is continuous over most of its distribution but has a 
mass of observations at one or more specifi c values, such as zero. The most impor-
tant example in the health sector is medical expenditure, which is zero for many 
individuals over a survey recall period, such as 12 months. For example, in 1998 
the average Vietnamese spent 153,000 Vietnamese dong (D) ($1 = 13,987D) out-of-
pocket on medical care during a 12-month period, but 17 percent spent nothing 
at all. 

There are a multitude of statistical approaches to modeling of a limited depen-
dent variable—for example, the two-part model, the Tobit model, the sample selec-
tion model, hurdle models, and fi nite mixture models. For a comprehensive survey, 
see Wooldridge (2002). Here, we restrict attention to the most popular approaches to 
modeling medical expenditures. For an excellent survey of this literature, see Jones 
(2000). Equity analysis of medical expenditures may focus on their income elastic-
ity, on variation in the price elasticity of health care with household income, on the 
responsiveness of medical expenditure to health shocks, or the extent to which this 
responsiveness is reduced by unequally distributed insurance coverage.

Two-part model

The most straightforward approach is the two-part model (2PM). In its most popu-
lar form, this comprises a probit (or logit) model for the probability that an individ-
ual makes any expenditure on health care and OLS, applied only to the subsample 
with nonzero expenditures, to estimate correlates of the positive level of expendi-
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ture. Given that typically the distribution of medical expenditures is right skewed, 
invariably the log of expenditure is modeled in the second part OLS. 

Application of OLS to only part of the sample raises the possibility of sample 
selection bias. The issue has been the subject of a great deal of discussion (Jones 
2000). In summary, consistency of the 2PM for the model parameters rests on strong 
assumptions. Nonetheless, if the aim is simply to predict conditional means and 
not to make inferences about individual parameters, then the 2PM may perform 
reasonably well (Duan et al. 1983). On that basis, the model will often be adequate 
for analysis of health sector inequalities, where we simply want to predict, for exam-
ple, medical expenditure conditional on income, age, gender, and so on. 

Following Jones (2000), let the probability that medical expenditure yi( )  is posi-
tive be determined by observable X1i( )  and unobservable ε1i( )  factors. Let ln yi( )  
be the log of positive medical expenditure, with covariates X2i , and unobservable 
determinants ε2i . Consistency of the 2PM is predicated on an assumption of condi-
tional mean independence (Jones 2000).

(11.4) E y y E yi i i i i iln | , ln | ,( ) >⎡⎣ ⎤⎦ = ( ) + >0 02 2 1 1 1X Xβ β ε XX X2 2 2 2i iβ β⎡⎣ ⎤⎦ =

In other words, conditional on expenditure being positive, the unobservable deter-
minants of its log have zero mean. To justify the assumption, either unobservable fac-
tors that infl uence the positive level of expenditures ε2i( )  must be independent of 
those governing the probability of a positive expenditure ε1i( ) , or the two error terms 
must have some peculiar joint distribution that gives a conditional distribution cen-
tered around zero. The latter would be an extreme and nontestable assumption (Jones 
2000). The former assumption can possibly be supported under certain decision-
making processes, for example, if the individual decides whether to seek treatment 
without considering how much to spend during the course of treatment. That rules out 
the possibility that the individual decides not to seek care because of the anticipated 
cost of a course of treatment. In support of such a sequential model of decision mak-
ing, it might be claimed that the patient delegates all treatment decisions to the doc-
tor. Empirically, however, such a defense is weak because typically survey data span 
a period of calendar time and not the duration of an illness episode (Deb and Trivedi 
1997). Even if it is accepted that medical care decisions are made in a sequential man-
ner, correlation between unobservables would still arise in cases in which common 
variables are omitted from the two stages of the decision-making process (Jones 2000).

The expected level of medical expenditure is given by the following:

(11.5) E y y E y yi i i i i i i| Pr | | ,X X X[ ]= >( ) >[ ]0 01 2 .

Unfortunately, this value cannot be estimated directly when the second part of 
the model is estimated in logs, as is usually the case. This is known as the retrans-
formation problem; we have to get back from logs to levels. Assumption 11.4 is not 
suffi cient to identify 11.5. For possible solutions to the problem, see Jones (2000) and 
Mullahy (1998). This rather weakens the argument that the 2PM is reasonable when 
one is interested only in estimating the conditional means. 

Tobit model

Whereas the 2PM assumes that two independent decisions lie behind medical 
expenditures, the Tobit model, at the other extreme, assumes a single decision. The 
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individual chooses the level of medical expenditure that maximizes his or her wel-
fare. Positive expenditures correspond to desired expenditures. Zero expenditure 
represents a corner solution, in which income and/or preferences for health are so 
low that spending nothing on health care is best for the individual. The model can 
be described using the concept of a latent, desired level of expenditure:

(11.6) y INi i i i
* , ~ ( , )= +X β ε ε σ0 2 . 

Observed expenditure is assumed to be related to the latent value by the 
following:

(11.7) y
y if y

i
i i=

>⎧
⎨
⎪

⎩⎪

* * 0
0otherwise.

The assumption of a single decision-making process is most probably strong. It 
requires that before making contact with the health services, the individual has full 
information on the costs of alternative courses of treatment. It also rules out the 
possibility that the initial decision to seek treatment is made solely by the individ-
ual, while both the patient and the doctor infl uence the decision about the amount 
of treatment.

The Tobit model is estimated by maximum likelihood (ML). As a rule of thumb, 
Tobit ML estimates may be approximated by the OLS estimates from the 2PM 
divided by the proportion of nonzero observations in the sample (Greene 2000). 
Predicted medical expenditure over the whole sample is still based on equation 
11.5, but the second term in the product is no longer given by equation 11.4 but by 
the following:

(11.8) E y yi i i i i i

i

i
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where φ( )  and Φ( )  are the standard normal probability density and cumulative 
density functions, respectively, and λi  is known as the inverse Mill’s ratio (IMR). 

Sample selection model

The sample selection model (SSM), or generalized Tobit, can be considered, some-
what informally, to lie midway between the extremes of the Tobit and the 2PM. 
Whereas the Tobit assumes a single decision process and the 2PM two independent 
decisions, the SSM allows for two interdependent decisions. The decision to seek 
medical care and the choice of how much to spend can be infl uenced by distinct but 
correlated observable and unobservable factors. In latent variable form, the model 
is given by the following:

(11.9) y jji ji j ji
* , ,= + =X β ε 1 2 

(11.10) y
y if y

i
i i=

>⎧
⎨
⎪

⎩⎪
2 1 0

0

* *

otherwise.

Assuming the two error terms are jointly normally distributed, the model can be 
estimated either by the Heckman two-step procedure or by ML. The former involves 
estimating a probit for the probability of nonzero expenditure, using the results to 
estimate the IMR and then running OLS on the nonzeros with the estimated IMR 
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included to correct for selection bias. That is, in the second stage, the following is 
estimated:

(11.11) y ei i
i

i
i= +

( )
( ) +X
X

X
2 2

1 1

1 1
2β ρσ

φ β

β

ˆ

ˆ ,
Φ

where ρ is the correlation coeffi cient between the errors, and σ2  is the standard 
deviation of ε2i  (σ1 1= ). The t-ratio for the IMR provides a test for selection bias. 
Standard errors must be corrected for the inclusion of the estimated IMR among 
the regressors. Packages programmed for the Heckman estimator will make the 
correction automatically. Effi ciency gains can be realized through ML estimation.

Although the SSM is, in an informal sense, more general, this comes at the cost of 
making greater demands on the data with respect to identifi cation. Given the nonlin-
earity of the IMR, equation 11.11 is identifi ed even if the regressor matrices X1  and 
X2 are identical, but in this case the Mill’s ratio will be closely correlated with the 
other regressors and, consequently, parameters will not be estimated with precision. 
It is therefore preferable to have a variable that infl uences the decision of whether to 
spend anything on health care but, conditional on this, does not infl uence the posi-
tive level of expenditure. Such variables, however, are few and far between. 

The Tobit and 2PM avoid this problem but only by assumption. The bottom line 
is that it is diffi cult to make an a priori case for any one model of medical expendi-
tures. One should probably be most skeptical of the Tobit model and its assumption 
of a single decision process driving both zero and positive expenditures. In choos-
ing between the 2PM and the SSM, it is necessary to consider the purpose of the 
analysis (prediction or parameter estimation), the likely degree of selection bias, 
and the information available to identify it. 

Box 11.2 Example of Limited Dependent Variable Models—
Medical Expenditure in Vietnam, 1998

We examine correlates of annual out-of-pocket expenditures on health care in Vietnam. 
We use data from the 1998 VLSS. Almost one-fi fth (18%) of the observations made no 
expenditures on medical care. In addition to this mass at zero expenditure, the distri-
bution has a long right tail. Given such skewness, one would expect a log transforma-
tion of the dependent variable to be appropriate, and the results confi rm this. We make 
two comparisons, the 2PM with the SSM taking logs of positive expenditures in each 
case and the 2PM with the Tobit leaving the dependent variable in levels (see the table 
below). 

Results from the maximum likelihood estimator of the SSM are given. These do not 
differ substantially from estimates obtained using the Heckman two-step procedure. 
Estimates of the coeffi cients of the selection equation display no substantial differences 
across the estimators. There are no differences in levels of signifi cance. Coeffi cient esti-
mates for the continuous parts of the models do show some differences, with those 
from the SSM generally of greater magnitude. There are some differences in levels of 
signifi cance. 

There is a positive and large degree of correlation between the two equation errors 
(0.847). The null of no correlation, and therefore no selection bias, is fi rmly rejected. In 
the absence of any variable that can plausibly be argued to affect the probability of pos-
itive expenditure but not its level, the correlation parameter is being identifi ed through 
functional form alone. Graphical analysis confi rms that, in this case, the inverse Mill’s 
ratio is suffi ciently nonlinear in its argument to avoid severe collinearity problems.

(continued)
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Box 11.2 continued

Comparison of Two-Part and Sample Selection Model Estimates of Medical Expenditure, Vietnam 1998

Dependent variables: Participation = 1 if medical expenditure positive; Continuous = log of (positive) 
expenditure 

 Two-part model Sample selection model 

 Participation  Continuous Participation Continuous
 (probit)  (OLS)  (MLE)  (MLE) 

 Coeff.  Rob. SE  Coeff.  Rob. SE  Coeff.  Rob. SE  Coeff.  Rob. SE 

body mass  –0.1382*** 0.0332  –0.0800*** 0.0254  –0.1117*** 0.0297  –0.1430*** 0.0283
index 

(body mass 0.2820*** 0.0820  0.1212*  0.0643  0.2265***  0.0728  0.2488***  0.0709
index)2

log(rental value  0.3079*** 0.0434  0.5065***  0.0264  0.3393***  0.0350  0.6262***  0.0378
of house)  

satisfactory  –0.2160*** 0.0775  –0.2362*** 0.0434  –0.2183*** 0.0713  –0.3283*** 0.0605
sanitation 

house not of  0.0900*  0.0528  0.1896***  0.0363  0.0831*  0.0459  0.2279***  0.0428 
solid materials

attended school,  0.0527  0.1110  –0.2522*** 0.0386  0.0173  0.1023 –0.2240*** 0.0638
no diploma 

attended school 0.0985  0.1320  –0.1335*** 0.0482  0.0674  0.1221  –0.0839  0.0774
& diploma 

head of hhold  –0.0563  0.0570  –0.1557*** 0.0391  –0.0684  0.0526  0.1761***  0.0462 
has diploma

head of hhold   –0.0025  0.0078  –0.0112**  0.0049  –0.0029  0.0070  –0.0118**  0.0059 
school grade

      Rho  0.8470  0.0195 

Sample size 27,368  22,645    Wald (Rho=0) 324.6 p=0.0000 

Test slope Wald = 515 p = 0.0000 F = 134.2 p = 0.0000  Wald = 3448 p = 0.0000
parameters 
all zero 

Note: All models also include a 3rd-degree polynomial in age, gender dummy, head of household dummy, quadratic in 
household size and regional dummies. 
MLE = maximum likelihood estimator; Rob. SE = robust to hetero. and clustering standard error; 
Rho = coeffi cient of correlation of errors; Wald (rho = 0) = Wald test of null of rho = 0. 
***, **, and * signifi cant at 1%, 5%, and 10%, respectively. 

Comparison of the 2PM with the Tobit is a little less comforting (see following table). First, it is appar-
ent that estimation in levels is less appropriate. The coeffi cient estimates differ substantially between the 
estimators and the scaling of the OLS coeffi cients, that is, dividing by the proportion of “positives” does not 
get us particularly close to the Tobit estimates. Mean predicted expenditure (over the full sample) from the 
Tobit model, at 374.2, is well above the actual mean of 157.2. 
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Computation

Computation of the 2PM is straightforward. Run a probit for the probability of 
positive expenditure followed by OLS (regr) for the log of expenditure on the 
selected sample. Stata has a preprogrammed routine heckman for the SSM. For the 
(consistent) two-step estimator, use the following: 

heckman depvar varlist, sel(depvar_s = varlist_s) twostep ///
mills(imr)

where depvar is the continuous dependent variable (e.g., expenditures) and 
varlist associated regressors; depvar_s is a binary variable identifying the 
selected sample (those with positive expenditures) and varlist_s associated 
regressors; mills(imr) saves the inverse Mill’s ratio and calls it imr. Omitting the 
twostep option gives the MLE, and with this robust and cluster adjusted stan-
dard errors can be requested.

To examine whether the Mill’s ratio is nonlinear over its sample range, the fol-
lowing can be used:

predict xbsel if depvar_s==1, xbsel 
twoway (scatter xbsel imr if depvar_s==1)

To estimate a Tobit model with censoring at zero, as in the example, use the following:

tobit depvar varlist, ll(0) 

Box 11.2 continued

Comparison of Two-Part and Tobit Model Estimates of Medical Expenditures 
Vietnam 1998

Dependent variable: Level of annual medical expenditure 

 Two-part model (OLS part) Tobit (MLE)

 Coeff. SE Scaled coeff. Coeff. SE 

Body mass index  –19.21  15.94  –23.18  –47.53***  15.11 

(body mass index)2  42.11  41.42  50.81  100.69***  37.64 

Log (rental value of house)  211.66***  24.01  255.43  249.15***  8.86 

Satisfactory sanitation  –73.78***  17.87  –89.04  –111.55***  16.05 

House not of solid materials  37.18***  11.89  44.87  51.34***  12.36 

Attended school, no diploma  –54.36**  22.93  –65.61  –38.04**  19.16 

Attended school & diploma  –31.23  25.35  –37.69  –6.14  23.78 

Head of hhold has diploma  –10.14  27.97  –12.24  –21.09  18.30 

Head of hhold school grade  –9.85**  4.13  –11.88  –9.03***  2.13 

Sample size 22,645   27,335 

Test of all slope parameters zero F = 14.29 p = 0.0000   LR = 1887 p = 0.0000 

Note: All models also include a 3rd degree polynomial in age, gender dummy, head of 
household dummy, quadratic in household size and regional dummies. 

Scaled coeff. = OLS coeffi cient divided by sample proportion with positive expenditure. 
MLE = maximum likelihood estimator; SE = standard error; LR = Likelihood ratio test. 
***, **, and * signifi cant at 1%, 5%, and 10%, respectively. 

Source: Authors.
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Count dependent variables

Many of the variables of interest in the health sector are nonnegative counts of 
events. For example, visits to the doctor, drugs dispensed, days ill, and so on. A 
count is a variable that can take only integer-values. Often, as with most health 
count variables, negative values are not possible. Typically, the distribution of such 
variables tends to be right skewed, often comprising a large proportion of zeros and 
a long right-hand tail. The discrete nature of a nonnegative count dependent vari-
able and the shape of its distribution demand the use of particular estimators. For 
example, least squares would not guarantee that predicted values are nonnegative.

The most basic approach is to assume a Poisson process to describe the prob-
ability of observing a specifi c count of events over a fi xed interval. That is, the prob-
ability of observing a count of yi , conditional on a set of explanatory variables, Xi , 
is assumed to be given by

(11.12) Pr | exp !y y yi i i i i
iX( ) = −( )λ λ

where exp() is the exponential function, yi ! indicates yi factorial, and λi  is the con-
ditional mean of the count and is usually specifi ed as 

(11.13) λ βi i i iE y= [ ]= ( )| expX X .

A peculiarity of the Poisson distribution is that its mean and its variance are 
both equal to its one parameter, λ . This is often restrictive. In health applications, 
for example, the conditional mean is usually less than the conditional variance. In 
jargon, there is overdispersion. One consequence can be underprediction of the num-
ber of observations with zero counts; again, an empirical feature of many health 
care applications. Overdispersion can be allowed for, or rather imposed, through 
alternative distributional assumptions. For example, a negative binomial specifi ca-
tion maintains the Poisson process (equation 11.12) but extends equation 11.13 to 
include an error term, for which a (gamma) distribution is assumed. As a result, the 
(conditional) variance of the count is restricted to be greater than its mean (Cam-
eron and Trivedi 1986). The difference between the variance and mean, that is, the 
dispersion, can be specifi ed as proportional to the mean (NegBin I) or a quadratic 
function of the mean (NegBin II) (Cameron and Trivedi 1986). The model can be 
further generalized by allowing the dispersion to vary across observations with a 
set of regressors. 

Overdispersion is not the only reason a simple Poisson model may underpre-
dict the number of zero counts. There may be a particular process responsible for 
generating zeros that is distinct from that generating other values of the count vari-
able. One possibility, in the context of health care utilization, is a sequential deci-
sion-making process, as discussed in the previous section. This takes us back to 
the 2PM. In a count framework, the 2PM consists of a probit/logit (or Poisson/
NegBin) to model the probability of a nonzero count followed by a count regres-
sion, such as Poisson or NegBin, applied to observations with positive counts only 
and allowing for the truncation at zero (Pohlmeier and Ulrich 1995). Independence 
is assumed between the two processes. Other possibilities are “zero-infl ated” mod-
els and latent class models (Jones 2000, 318–24). 

Unobservable heterogeneity, deriving time-invariant individual effects in a 
panel data context or community effects in a cross section, can be taken into account 
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in estimation of the Poisson model through a random-effects specifi cation. Alter-
natively, with a fi xed-effects specifi cation of the Poisson, individual/community 
effects are eliminated. These are somewhat analogous to the random- and fi xed-
effects specifi cation in a linear context discussed in chapter 10. The random effects 
specifi cation is more effi cient but requires an assumption that individual/commu-
nity effects are independent of the regressors. A fi xed-effects specifi cation relaxes 
the assumption. Apart from taking unobservable heterogeneity into account, these 
methods have the further important advantage of relaxing the equi-dispersion 
restriction of the Poisson model (Wooldridge 2002). 

Box 11.3 Example of Count Data Models—Pharmacy Visits in Vietnam, 1998

Annual visits to a pharmacy or drug peddler in Vietnam provides a good example of 
a distribution suited to the application of count data models. That is, there are a large 
number of zeros and a long right tail. 

 No. of pharmacy visits  Frequency

 0 20865

 1 3980

 2 1899

 3 846

 4 434

 5 197

 6 79

 7 52

 8 25

 9 5

 10+ 124 

It should be acknowledged that we chose this distribution on the basis of its suitability 
for count analysis. With many count variables encountered in health applications, the 
dominance of zero values is much greater than in this example and the best option is 
simply to dichotomize the variable and use probit or logit to model the probability of a 
nonzero count.

Estimates and robust standard errors from a NegBin II model of pharmacy visits are 
given in the fi rst two columns of the following table. NegBin II was chosen over NegBin 
I by comparison of the log-likelihood values. There is strong evidence of overdispersion 
as indicated by the magnitude of the dispersion parameter and the LR test, which deci-
sively rejects the Poisson (equi-dispersion) specifi cation. 

Moving to a 2PM, there is some loss of signifi cance, with signifi cant effects in the 
fi rst stage probit only. Restricting the count regression to positive values is not suffi cient 
to remove overdispersion—a Poisson specifi cation is still strongly rejected. Finally, we 
estimate a fi xed-effects Poisson on all observations. The fi xed effects are those of 194 
communes. Point estimates from the FE Poisson are somewhat similar to those from 
NegBin II on the full sample, but there are large differences in levels of signifi cance for 
some interesting variables. In particular, the household consumption effect becomes 
strongly signifi cant. Apparently, the commune effects had initially confounded this 
(negative) income effect.  (continued)
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Computation

The Stata programmed routine for the Poisson model is poisson. For NegBin 
models it is

nbreg depvar varlist, dispersion(constant) cluster(commune)

where dispersion(constant) is optional and requests NegBin I; the default is 
NegBin II . Here the cluster option is used to correct standard errors for within-
commune correlation. Note that an LR test against Poisson is generated only if the 
options robust or cluster are not specifi ed. For the second part of a 2PM, the 
truncated Poisson or negative binomial can be computed by using the commands 

Box 11.3 continued

Count Models for Annual Pharmacy Visits, Vietnam 1998

   Two-part model    

 NegBin II   Truncated Fixed-effects
 (all observations)  Probit  NegBin II  Poisson 

 Coeff.  Rob. SE  Coeff.  Rob. SE  Coeff.  Rob. SE  Coeff.  Rob. SE 

Log hhold.  –0.0314  0.0648  –0.0451  0.0432  0.0559  0.1303  –0.0710***  0.0221 
consumption 
per capita 

Attended school,  –0.1696**  0.0734  –0.0771  0.0547  –0.1038  0.3238  –0.1422***  0.0263 
no diploma 

Attended school  –0.1486  0.0976  –0.0760  0.0701  –0.0957  0.2928  –0.1171***  0.0327 
& diploma 

Body mass index  –0.1640***  0.0401  –0.1006***  0.0242  –0.0818  0.1015  –0.1462***  0.0207 

Body mass  0.3582***  0.1019  0.2081***  0.0593  0.2117  0.2973  0.3215***  0.0500
index2/100 

Satisfactory  –0.1792**  0.0748  –0.1065**  0.0443  –0.1445  0.1076  –0.1347***  0.0276 
sanitation 

House not built   0.1394***  0.0535  0.0399  0.0365  0.1900  0.1807  0.0786***  0.0221 
of solid materials

Head of household  0.1187**  0.0485  0.0662***  0.0239  0.0850  0.3022  0.1147***  0.0233 

Household size  –0.0401***  0.0119  –0.0352***  0.0080  0.0017  0.0227  –0.0525***  0.0048 

Dispersion   2.6387  0.1547  n.a.   2.5372   n.a.
parameter (alpha) 

LR test of  10,685  p = 0.0000  n.a.   41,656  p = 0.0000  n.a.
equidispersion 

Sample size  27,365   27,368   7,441   27,176 

Log-likelihood  –25,661.4   –15,287.4   –10,176.5   –28,132.8 

Note: All models also include a 3rd-degree polynomial in age and gender dummy. All models except 
FE Poisson include region dummies. Rob. SE = robust to hetero. and clustering standard error; Log-L = log 
likelihood. LR test of equidispersion is NegBin against Poisson (p = p-value). ***, **, and * signifi cant at 1%, 5%, 
and 10%, respectively. 

Source: Authors.
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trnpois0 and trnbin0, respectively, which can be downloaded from the Stata 
Web site. In the latter case, 

trnbin0 depvar varlist if depvar>0, cluster(commune)

Random- and fi xed-effects Poisson models are obtained from the following:

xtpois depvar varlist, fe i(commune) 

where i(commune) specifi es common effects for all observations with the same 
values of the variable commune, and the option fe requests the fi xed-effects model. 
The default is random effects. 

Further reading

For a comprehensive review of econometric analyses of health and health care data, 
see Jones (2000). A more concise review, along with applications, can be found 
in Jones and O’Donnell (2002). For a practical guide to health econometrics con-
taining many worked examples and Stata code, see Jones (2007). More generally, 
Wooldridge (2002) and Cameron and Trivedi (2005) are both excellent microecono-
metrics textbooks. 
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12
Explaining Differences between Groups: 
Oaxaca Decomposition

After inequalities in the health sector are measured, a natural next step is to seek to 
explain them. Why do inequalities in health exist between the poor and better-off 
in many countries despite health systems explicitly aimed at eliminating inequali-
ties in access to health care? Why is inequality in the incidence of health sector sub-
sidies greater in one country than in another? Why has the distribution of health or 
health care changed over time? 

In this chapter and the next, we consider methods of decomposing inequality 
in health or health care into contributing factors. The core idea is to explain the 
distribution of the outcome variable in question by a set of factors that vary sys-
tematically with socioeconomic status. For example, variations in health may 
be explained by variations in education, income, insurance coverage, distance to 
health facilities, and quality of care at local facilities. Even if policy makers have 
managed to eliminate inequalities in some of these dimensions, inequalities 
between the poor and better-off may remain in others. The decomposition meth-
ods reveal how far inequalities in health can be explained by inequalities in, say, 
insurance coverage rather than inequalities in, say, distance to health facilities. The 
decompositions in this chapter and the next are based on regression analysis of the 
relationships between the health variable of interest and its correlates. Such analy-
ses are usually purely descriptive, revealing the associations that characterize the 
health inequality, but if data are suffi cient to allow the estimation of causal effects, 
then it is possible to identify the factors that generate inequality in the variable of 
interest. In cases in which causal effects have not been obtained, the decomposition 
provides an explanation in the statistical sense, and the results will not necessarily 
be a good guide to policy making. For example, the results will not help us predict 
how inequalities in Y would change if policy makers were to reduce inequalities 
in X, or reduce the effect of X and Y (e.g., by expanding facilities serving remote 
populations if X were distance to provider). By contrast, if causal effects have been 
obtained, the decomposition results ought to shed light on such issues. 

The decomposition method outlined in this chapter, known as the Oaxaca 
decomposition (Oaxaca 1973), explains the gap in the means of an outcome vari-
able between two groups (e.g., between the poor and the nonpoor). The gap is 
decomposed into that part that is due to group differences in the magnitudes of the 
determinants of the outcome in question, on the one hand, and group differences in 
the effects of these determinants, on the other. For example, poor children may be 
less healthy not only because they have less access to piped water but also because 
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their parents are less knowledgeable about how to obtain the maximum health ben-
efi ts from piped water (Jalan and Ravallion 2003; Wagstaff and Nguyen 2003). The 
decomposition technique considered in the next chapter does not permit such a dis-
tinction between the contributions of differences in the magnitudes and the effects 
of determinants. In its favor, however, it does allow us to decompose inequalities in 
health or health care across the full distribution of say, income, rather than simply 
between the poor and the better-off.

Oaxaca-type decompositions

Some preliminaries

Suppose we have a variable, y, which is our outcome variable of interest. We have 
two groups, which we shall call the poor and the nonpoor. We assume y is explained 
by a vector of determinants, x, according to a regression model:

(12.1) y
x if poor

x
i

poor
i i

poor

nonpoor
i i

nonpoor
=

+

+

β ε

β ε iif nonpoor

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

where the vectors of β  parameters include intercepts. In the case of a single regres-
sor, drawn in fi gure 12.1, the nonpoor are assumed to have a more advantageous 
regression line than the poor. At each value of x, the outcome, y, is better. In addi-
tion, the nonpoor are assumed to have a higher mean of x. The result is that the 
poor have a lower mean value of y than do the nonpoor.1

1In the case of the poor, we read off the equation for the poor above xpoor, giving a value of 
y equal to ypoor. In the case of the nonpoor, we read off the equation for the nonpoor above 
xnonpoor, giving a value of y equal to ynonpoor. 

Figure 12.1 Oaxaca Decomposition

x

equation for poor

equation for nonpoor

xnonpoorxpoor

ypoor

xpoorβΔ

xβΔ

xnonpoorβΔ

nonpoor

ynonpoor

y

xβΔ poor

Source: Authors.
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The gap between the mean outcomes, ynonpoor and ypoor, is equal to

(12.2) y y x xnonpoor poor nonpoor nonpoor poor poor− = −β β ,

where xnonpoor and xpoor are vectors of explanatory variables evaluated at the means 
for the nonpoor and the poor, respectively.2 For example, if we have just two x’s, x1 
and x2, we can write the following:

(12.3)
   

so that the gap in y between the poor and the nonpoor can be thought of as being 
due in part to (i) differences in the intercepts (G0), (ii) differences in x1 and β1 (G1), 
and (iii) differences in x2 and β2 (G2). For example, G1 might measure the part of the 
gap in mean health status (y) due to differences in educational attainment (x1) and 
the effects of educational attainment (β1), and G2 might measure the part of the gap 
due to the gap in accessibility to health facilities (x2) and differences in the effects of 
accessibility (β2). 

Estimates of the difference in the gap in mean outcomes can be obtained by sub-
stituting sample means of the x’s and estimates of the parameters β’s into equa-
tion 12.2. In the rest, we make such a substitution but do not make it explicit in the 
notation.

Oaxaca’s decomposition

We could stop here. But we might want to go further and ask how much of the 
overall gap or the gap specifi c to any one of the x’s (e.g., G1 or G2) is attributable to 
(i) differences in the x’s (sometimes called the explained component) rather than (ii) 
differences in the β’s (sometimes called the unexplained component). The Oaxaca 
and related decompositions seek to do just that. 

From fi gure 12.1, it is clear that the gap between the two outcomes could be 
expressed in either of two ways:

(12.4) y y x xnonpoor poor poor nonpoor− = +Δ Δβ β

where  xΔx = xnonpoor–xpoor and Δβ  = βnonpoor–βpoor, or as 

(12.5) y y x xnonpoor poor nonpoor poor− = +Δ Δβ β .

As the fi gure makes clear, these decompositions are equally valid. In the fi rst, 
the differences in the x’s are weighted by the coeffi cients of the poor group and the 
differences in the coeffi cients are weighted by the x’s of the nonpoor group, whereas 
in the second, the differences in the x’s are weighted by the coeffi cients of the non-
poor group and the differences in the coeffi cients are weighted by the x’s of the 
poor group. Either way, we have a way of partitioning the gap in outcomes between 

y ynonpoor poor nonpoor poor nonpoor− = −( )+β β β0 0 1 xx x xnonpoor poor poor nonpoor nonpoo
1 1 1 2 2−( )+β β rr poor poorx

G G G

−( )
= + +

β2 2

0 1 2

2Assuming exogeneity, the conditional expectations of the error terms in (12.1) are zero.
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the poor and nonpoor into a part attributable to the fact that the poor have worse 
x’s than the nonpoor, and a part attributable to the fact that ex hypothesi they have 
worse β’s than the nonpoor. 

The decompositions in equations 12.4 and 12.5 can be seen as special cases of a 
more general decomposition:3 

(12.6) y y x x x

E C CE

nonpoor poor poor poor− = + +
= + +

Δ Δ Δ Δβ β β

so that the gap in mean outcomes can be thought of as deriving from a gap in 
endowments (E), a gap in coeffi cients (C), and a gap arising from the interaction 
of endowments and coeffi cients (CE). Equations 12.4 and 12.5 are special cases in 
which

(12.4) y y x x E CE Cnonpoor poor poor nonpoor− = + = + +( )Δ Δβ β

and

(12.5) y y x x E CE Cnonpoor poor nonpoor poor− = + = +( )+Δ Δβ β .

So, in effect, the fi rst decomposition places the interaction in the unexplained 
part, whereas the second places it in the explained part.4

Related decompositions

We can also write Oaxaca’s decomposition as a special case of another decomposition:

(12.7) y y x D I Dnonpoor poor nonpoor poor− = + −( )⎡⎣ ⎤⎦ +Δ Δβ β ββ x I D x Dnonpoor poor−( )+⎡⎣ ⎤⎦ ,

where I is the identity matrix and D a matrix of weights. In the simple case, where x 
is a scalar rather than a vector, I is equal to one, and D is a weight. In this case, D = 0 
in the fi rst decomposition, equation 12.4, and D = 1 in the second, equation 12.5. In 
the case in which x is a vector, we have 

(12.8) D = 0 (Oaxaca) (equation 12.4′)

(12.9) D = I (Oaxaca) (equation 12.5′)

Other formulations have been suggested. Cotton (1988) suggested weighting the 
differences in the x’s by the mean of the coeffi cient vectors, giving us

(12.10) diag(D) = 0.5 (Cotton),

3This notation is from Ben Jann’s help fi le for his Stata decompose routine used later in the 
chapter. 
4The rationale for this is that the decompositions were devised to look at discrimination in 
the labor market. The analog of the nonpoor would be whites or males, and the analog of 
the poor would be blacks or women. In the fi rst decomposition the presumption is that it is 
blacks and women who are paid according to their characteristics, whereas whites and men 
receive unduly generous remuneration. In the second decomposition, the presumption is 
that whites and men are paid according to their characteristics, and it is blacks and women 
who are discriminated against. 
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where diag(D) is the diagonal of D. Reimers (1983) suggested weighting the coef-
fi cient vectors by the proportions in the two groups, so that if fNP is the sample frac-
tion in the nonpoor group, we have

(12.11) diag(D) = fNP (Reimers).

In addition to Oaxaca’s two decompositions and the additional two proposed by 
Cotton and Reimers, there is a fi fth proposed by Neumark (1988), which makes use 
of the coeffi cients obtained from the pooled data regression, β  P:

(12.12)

 y y x x xnonpoor poor P nonpoor nonpoor P− = + −( )+Δ β β β ppoor P poorβ β−( )⎡
⎣

⎤
⎦  (Neumark). 

Illustration: decomposing poor–nonpoor differences 
in child malnutrition in Vietnam

We illustrate the decompositions by means of an example. The setting is Vietnam. 
The aim of the exercise is to explain the difference between the poor and the non-
poor in child malnutrition, measured anthropometrically through height-for-age 
z-scores (see chapter 4). 

We classify (under-10) children as poor if they are below the poverty line of D 
1,790,000 (D = Vietnamese dong), which is the classifi cation developed by the World 
Bank (Glewwe, Gragnolati, and Zaman 2000) and used by the government of Viet-
nam. On this basis, using sample weights, we have 46 percent of under-10 children 
being classifi ed as poor. Figure 12.2 shows that poor children (poor = 1) tend to 
have a height-for-age z-score (HAZ) lower than that of nonpoor children (poor = 
0). The mean HAZ values among the nonpoor and poor are –1.44 and –1.86, respec-
tively. A mean of 0.00 would place the group in question at the 50th centile in the 
U.S. reference sample of well-nourished children (distribution sketched in fi gures), 
so even the average nonpoor child in Vietnam is substantially undernourished by 
U.S. standards. Our focus here is on explaining the gap of 0.42 between the mean 
HAZ of nonpoor and poor children. 

Regression model and its estimation

In our setting, y is the HAZ malnutrition score. As in chapter 13, we use basically 
the same regression model as Wagstaff, van Doorslaer, and Watanabe (2003) and 
include the log of the child’s age in months (lnage), a dummy indicating whether 
the child in question is male (sex), dummies indicating whether the child’s house-
hold has safe drinking water (safewtr) and satisfactory sanitation (oksan), the 
years of schooling of the child’s mother (schmom), and the natural logarithm of 
household per capita consumption (lnpcexp). Our poverty grouping variable is 
poor, which takes a value of 1 if the child’s household is poor. The fi rst step is to 
see whether the regression coeffi cient vector, β , differs systematically between the 
poor and nonpoor. The relevant Stata commands are as follows:

xi: regr haz poor i.poor|lnage i.poor|sex i.poor|safwtr 
 i.poor|oksan i.poor|schmom i.poor|lnpcexp [pw=wt]
 testparm poor _I*
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The fi rst command runs a regression with the poor dummy included alone and 
interacted with all the x’s. The second command tests the hypothesis that the coef-
fi cients on the poor dummy and its interactions are simultaneously equal to zero. 
The F-statistic, with 7 and 5154 degrees of freedom, is 2.03 and has a p-value of 
0.0472. Thus the Oaxaca-type approach, which allows for different regression coef-
fi cients, makes some sense in this context, although rejection of the null of param-
eter homogeneity is somewhat marginal. 

Figure 12.2 Malnutrition Gaps between Poor and Nonpoor Children, Vietnam, 1998

0

fr
ac

ti
on

.081201

2.99
height for age

poor = = 0

–5.81

0

fr
ac

ti
on

.081201

2.99
height for age

poor = = 1

–5.81

0

fr
ac

ti
on

.081201

2.99
height for age

total

–5.81

Source: Authors.



 Explaining Differences between Groups: Oaxaca Decomposition 153

Decomposition

Ben Jann’s Stata routine decompose, which is downloadable from the Stata Web site,5 
allows all the decompositions outlined above to be computed in just one command: 

decompose haz lnage sex safwtr oksan schmom lnpcexp [pw=wt],
 by(poor) detail estimates

The syntax is the same as the regress command, except that after the comma 
the user has to specify the variable defi ning the two groups (in our case poor). The 
fi rst block of output (table 12.1) reports the mean values of y for the two groups, and 
the difference between them. It then shows the contribution attributable to the gaps 
in endowments (E), the coeffi cients (C), and the interaction (CE). In this application, 
the gap in endowments accounts for the great bulk of the gap in outcomes. 

Table 12.1 First Block of Output from decompose

Mean prediction high (H): -1.442

Mean prediction low (L): -1.861

Raw differential (R) {H-L}: 0.419

- due to endowments (E): 0.406

- due to coeffi cients (C): -0.082

- due to interaction (CE): 0.095

Source: Authors.

The second block of output (table 12.2) shows how the explained and unex-
plained portions of the outcome gap vary depending on the decomposition used. 
The fi rst and second columns correspond to the Oaxaca decomposition in equa-
tions 12.4′ and 12.5′, where D = 0 and D = I, respectively. The third and fourth col-
umns correspond to Cotton’s and Reimers’ decompositions, where the diagonal of 
D equals 0.5 and fNP = 0.562 (in our case), respectively. The fi nal column labeled 
“*” is Neumark’s decomposition. Whatever decomposition is used, it is clearly the 
difference in the mean values of the x’s that accounts for the vast majority of the 
difference in malnutrition between poor and nonpoor children in Vietnam. Differ-
ences in the effects of the determinants play a tiny part in explaining malnutrition 
inequalities. 

Table 12.2 Second Block of Output from decompose

 D: 0 1 0.5 0.562 *

Unexplained (U){C+(1-D)CE}: 0.014 -0.082 -0.034 -0.038 -0.032

Explained (V) {E+D*CE}: 0.406 0.501 0.454 0.458 0.451

% unexplained {U/R}: 3.2 -19.5 -8.1 -9.1 -7.5

% explained (V/R): 96.8 119.5 108.1 109.1 107.5

Source: Authors.

5From within Stata, give the command fi ndit decompose and follow the links. Another 
ado fi le—oaxaca—is available for Stata version 8.2 and later. This has all the functions of 
decompose with the important addition of providing standard errors for the contributions.
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The third block of output (table 12.3) allows the user to see how far gaps in indi-
vidual x’s contribute to the overall explained gap. For example, focusing on the fi nal 
column corresponding to Neumark’s decomposition, we see that the gaps in the 
two demographic variables actually favor the poor, whereas the gaps in the remain-
ing variables all disfavor the poor. Of the latter, it is the gap in household consump-
tion that accounts for the bulk of the explained gap. It is not so much the correlates 
of poverty (poor water and sanitation, low educational levels) that account for mal-
nutrition inequalities between poor and nonpoor children in Vietnam—it is pov-
erty itself, in the form of lack of purchasing power. 

Table 12.3 Third Block of Output from decompose

     explained: D =   

Variables E(D=0) C CE 1 0.5 0.543 *

lnage -0.027 0.282 0.005 -0.022 -0.024 -0.024 -0.024

Sex -0.004 0.038 0.002 -0.002 -0.003 -0.003 -0.003

safwtr 0.029 0.005 0.004 0.033 0.031 0.031 0.033

oksan -0.008 0.016 0.056 0.048 0.02 0.022 0.036

schmom 0.029 -0.103 -0.035 -0.006 0.012 0.01 0.009

lnpcexp 0.387 0.551 0.064 0.45 0.419 0.421 0.4

_ cons 0 -0.87 0 0 0 0 0

Total 0.406 -0.082 0.095 0.501 0.454 0.458 0.451

Source: Authors.

The fourth and fi nal block of output (table 12.4) gives the coeffi cient estimates, 
means, and predictions for each x for each group, the “high group” in this case 
being the nonpoor and the “low group” being the poor. 

Table 12.4 Fourth Block of Output from decompose

 High model Low model Pooled

Variables Coef. Mean Pred. Coef. Mean Pred. Coef.

lnage -0.321 4.021 -1.291 -0.392 3.952 -1.551 -0.354

Sex -0.088 0.513 -0.045 -0.166 0.491 -0.081 -0.122

Safwtr 0.165 0.421 0.069 0.144 0.221 0.032 0.164

Oksan 0.195 0.313 0.061 -0.034 0.069 -0.002 0.147

Schmom -0.003 7.696 -0.023 0.015 5.739 0.086 0.005

lnpcexp 0.544 7.99 4.348 0.467 7.162 3.346 0.483

_ cons -4.561 1 -4.561 -3.691 1 -3.691 -3.955

Total   -1.442   -1.861 

Source: Authors.

For the fi rst Oaxaca decomposition (12.4′), columns 2 and 3 of table 12.3 allow us 
to identify how the gap in each of the β’s contributes to the overall unexplained gap. 
For the other decompositions, the contributions of the individual β’s can be found 
by taking the group difference in the variable specifi c predictions given in table 
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12.4 and subtracting the explained part given in table 12.3 from this. A bar chart 
can then be presented, as in fi gure 12.3, showing the contribution of the difference 
in the means of each x and the difference in the coeffi cients on each x. As far as the 
means of the x’s are concerned, fi gure 12.3 tells us simply what we already knew 
from the second block of output: most of the explained part of the malnutrition 
gap is attributable to the gap in per capita consumption. The triangles in the chart, 
which indicate the overall contributions of the x’s and the β’s, also show us some-
thing else we already knew: that the bulk of the gap in malnutrition is from gaps in 
the x’s, not gaps in the β’s. Figure 12.3 makes clear that the unimportance overall 
of the unexplained portion is due to offsetting effects from different β’s. The poor 
have a higher intercept in the HAZ equation, but this is largely offset by the fact 
that the consumption effect is weaker for the poor. 

Extensions

The framework above can be extended in a number of ways. One is to explain 
changes in gaps over time (Makepeace et al. 1999). Wagstaff and Nguyen (2003) use 
this framework to investigate why child survival continued to improve in Vietnam 
during the 1990s for the nonpoor but not for the poor. 

Another extension would be to take selectivity into account. There are, in fact, 
two separate selectivity issues that might be explored. The fi rst concerns sample 
selection. Consider the example of child malnutrition. Because a child’s nutritional 
status infl uences its survival prospects, it also affects the probability that the child 
appears in the sample (Lee, Rosenzweig, and Pitt 1997). The resulting selection bias 
can be dealt with provided data are available to model the selection process. In the 

Figure 12.3 Contributions of Differences in Means and in Coeffi cients to Poor–Nonpoor 
Difference in Mean Height-for-Age z-Scores, Vietnam, 1998
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example given, this would require fertility history data such that the probability of 
a child death before the survey date could be modeled as a function of household 
characteristics. The selection correction term—known as the inverse Mills ratio 
(IMR) (Wooldridge 2002)—can then be used to adjust the group mean difference in 
the outcome variable. In the decompose routine, this can be done with the option 
lambda(varname), where varname would be that given to the IMR. A second 
selection problem concerns the selection into the poor and nonpoor groups—group 
assignment selection. Malnutrition in a child might itself reduce a household’s liv-
ing standards by, for example, keeping the mother at home to look after the child 
and preventing her from working or by reducing the amount of help the child can 
provide on the family farm (Ponce, Gertler, and Glewwe 1998). If this is the case, 
malnutrition may infl uence the selection of a child into poverty. If the sample selec-
tion issue is put aside, the group assignment problem can be dealt with by model-
ing the probability of being in one group rather than the other, and then using the 
selection correction terms to adjust the difference in group means. Again, this can 
be done in the decompose routine with the lambda() option.

A further extension is the case in which the relationship of interest is nonlinear. 
Examples include a probit model or a hazard model in the case of modeling child 
survival. In such cases, one option would be to work with the underlying latent 
variable that is linear in the covariates. Wagstaff and Nguyen (2003), for example, 
do their decomposition in terms of the negative of the log of the hazard rate. 

The methods described above decompose the difference in the mean of an out-
come variable between two groups. Group differences in other parameters of the 
distribution can also be of interest. For example, with respect to the example of child 
malnutrition, the difference in mean HAZ scores is arguably less interesting than 
the difference in the proportion of poor and nonpoor children that are stunted. The 
general Oaxaca approach can be extended to decompose differences in a full dis-
tribution of an outcome into the contribution of differences in the distributions of 
covariates, on the one hand, and differences in the effects of these covariates, on the 
other. For example, this can be done using quantile regression (Machado and Mata 
2005). Apart from decomposing the full distribution, and not simply the mean, this 
approach has the advantage of allowing the effect of covariates to differ over the 
conditional distribution of the outcome. So, for example, one can allow for the pos-
sibility that income has a different marginal effect on the nutritional status of mal-
nourished and well-nourished children. The approach has been used to explain 
the change in the distribution of HAZ scores in Vietnam between 1993 and 1998 
(O’Donnell, López-Nicolás, and van Doorslaer 2005; O’Donnell, van Doorlsaer, and 
Wagstaff 2006). 
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13
Explaining Socioeconomic-Related 
Health Inequality: Decomposition 
of the Concentration Index

In the previous chapter we examined methods to explain the difference between two 
groups in the mean of some outcome variable of interest, which could be health or 
health care. By defi ning groups by socioeconomic status and using the method above, 
we can explain socioeconomic-related inequality in health or health care. But the 
degree of inequality captured is inevitably limited, given that group differences are 
examined. Measurement and explanation of inequality in health or health care across 
the entire distribution of some measure of socioeconomic status would be preferable. 
In chapter 8 we introduced the concentration index as a measure of socioeconomic-
related inequality in health or health care. In this chapter we will explain how such 
inequality can be explained through decomposition of the concentration index.

Decomposition of the concentration index

For ease of exposition, we will refer to any health sector variable, such as health 
or health care use or payments, as “health” and to any (continuous) measure of 
socioeconomic status as “income.” Wagstaff, van Doorslaer, and Watanabe (2003) 
demonstrate that the health concentration index can be decomposed into the con-
tributions of individual factors to income-related health inequality, in which each 
contribution is the product of the sensitivity of heath with respect to that factor 
and the degree of income-related inequality in that factor. For any linear additive 
regression model of health (y), such as 

(13.1) y xk kk
= + +∑α β ε ,

the concentration index for y, C, can be written as follows:

(13.2) C x C GCk k kk
= +∑ ( / ) /β μ με ,

where μ is the mean of y, xk  is the mean of xk, Ck is the concentration index for xk 
(defi ned analogously to C), and GCε  is the generalized concentration index for the 
error term (ε ). Equation 13.2 shows that C is equal to a weighted sum of the con-
centration indices of the k regressors, where the weight for xk is the elasticity of y 

with respect to xk

 

η β
μk k

kx=
⎛
⎝⎜

⎞
⎠⎟

. The residual component—captured by the last term—

refl ects the income-related inequality in health that is not explained by systematic 
variation in the regressors by income, which should approach zero for a well-specifi ed 
model. 
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Wagstaff, van Doorslaer, and Watanabe (2003) use equation 13.2 to decompose 
income-related inequality in child malnutrition in Vietnam in 1993 and 1998. As in 
chapters 10 and 12, malnutrition is measured by the height-for-age z-scores (HAZ) of 
children younger than 10 years of age, and the measure of living standards is house-
hold consumption per capita. The z-scores are multiplied by –1 such that a greater 
value indicates more malnourishment. The specifi cation of the regression model 
(equation 13.1) is very similar to that used in chapters 10 and 12. Here we include 
commune fi xed effects to pick commune-level determinants of nutritional status. A 
summary of the results is presented in table 13.1. The (negative) concentration indi-
ces in the last row show that there was inequality in HAZ to the disadvantage of 
the poor in each year and that this inequality increased over time. The entries in 
each column are derived from equation 13.2 and give, for each year, the elasticity 
of HAZ with respect to each factor, the concentration index for each factor, and the 
total contribution of each factor to the HAZ concentration index. In each year, most 
of the consumption-related inequality in HAZ is explained by the direct effect of 
household consumption and by commune-level correlates of both malnutrition and 
consumption. The large elasticities of HAZ with respect to these factors are respon-
sible for their large contribution to the HAZ concentration index. In contrast, there is 
a great deal of consumption-related inequality in access to both safe drinking water 
and satisfactory sanitation, but there is little sensitivity of HAZ to variation in these 
factors, and so they make little contribution to the HAZ concentration index.

Table 13.1  Decomposition of Concentration Index for Height-for-Age z-Scores of Children 
<10 Years, Vietnam, 1993 and 1998

 1993 1998

  Concentration Contri-  Concentration Contri-
 Elasticities indices butions Elasticities indices butions

Child’s age  1.137 0.020 0.023 1.630 0.018 0.030
(in months)

Child’s age –0.634 0.030 –0.019 –0.880 0.028 –0.025
squared

Child = male 0.022 0.003 0.000 0.045 0.014 0.001

(log)household  –0.936 0.038 –0.035 –1.288 0.040 –0.052
consumption p.c.

Safe drinking –0.003 0.312 –0.001 –0.017 0.256 –0.004
water

Satisfactory –0.009 0.468 –0.004 –0.006 0.508 –0.003
sanitation

Years schooling  –0.017 0.065 –0.001 –0.015 0.094 –0.001
household head

Years schooling –0.037 0.075 –0.003 –0.003 0.108 –0.000
mother

Fixed commune  1.477 –0.024 –0.035 1.534 –0.031 –0.047
effects

“Residual”   –0.002   0.002

Total   –0.077   –0.099

Source: Wagstaff, van Doorslaer, Watanabe (2003, table 2).
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Computation

The decomposition (equation 13.2) can be computed easily in Stata. First create the 
weighted fractional rank variable (rank) and estimate concentration index (CI) 
for the health variable (y) using the code provided in chapter 8. Generate a global X 
that refers to all the regressors in equation 13.1, estimate this regression, and create 
a scalar equal to the (weighted) mean of the health variable. 

global X “varlist”
qui regr y $X [pw=weight]
sum y [aw=weight]
sca m_y=r(mean) 

Then the factor specifi c elasticities, concentration indices, and contributions in 
equation 13.2 can be computed and displayed with the following loop,1

foreach x of global X {
 qui {
  sca b_`x’ = _b[`x’]    
  corr rank `x’ [pw=weight], c
  sca cov_`x’ = r(cov_12)    
  sum `x’ [pw=weight]
  sca elas_`x’ = (b_`x’*r(mean))/m_y  
  sca CI_`x’ = 2*cov_`x’/r(mean)   
  sca con_`x’ = elas_`x’*CI_`x’
  sca prcnt_`x’ = con_`x’/CI  
 }
 di “`x’ elasticity:”, elas_`x’
 di “`x’ concentration index:”, CI_`x’
 di “`x’ contribution:”, con_`x’
 di “`x’ percentage contribution:”, prcnt_`x’
}

The fi nal term in equation 13.2 can be obtained as a residual—the difference 
between the concentration index and the sum of the factor contributions.

Decomposition of change in the concentration index

Wagstaff, van Doorslaer, and Watanabe (2003) also proposed two approaches to 
explaining changes in income-related inequality over time. A fi rst approach is 
to apply an Oaxaca-type decomposition (Oaxaca 1973) (see chapter 12 ). This can 
also be used to examine differences in inequality across cross-sectional units (van 
Doorslaer and Koolman 2004). Applying Oaxaca’s method to equation 13.2 gives 
the following: 

(13.3) Δ ΔC C C C GCkt kt ktk ktk kt kt= −( )+ −( )+− − −∑ ∑η η η ε1 1 1 tt t/μ( ),
where t indicates time period and Δ denotes fi rst differences. As discussed in 
chapter 12, the Oaxaca decomposition is not unique and an alternative to equation 
13.3 would be to weight the difference in concentration indices by the fi rst period 

1We thank Xander Koolman, who originally wrote this code.
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elasticity and weight the difference in elasticities by the second period concentra-
tion index. 

This approach allows one to decompose change in income-related inequality in 
health into changes in inequality in the determinants of health, on the one hand, 
and changes in the elasticities of health with respect to these determinants, on the 
other. But it does not allow one to disentangle changes going on within the elas-
ticities. To address this limitation, Wagstaff, van Doorslaer, and Watanabe (2003) 
consider the total differential of equation 13.2, allowing for changes in turn in the 
regression parameters, the means, and the concentration indices of the regressors. 
The change in the concentration index can be approximated (for small changes) by 
the following:

(13.4) dC
C

d
x

C C d C C dx
xk

k k k
k

k k k
k k= − + −( ) + −( ) +∑ ∑μ

α
μ

β β
μ

β
μμ μ

ε
k kdC d

GC∑ + .

Note that the effect on C of a change in βk , or in xk , depends on whether xk is more 
unequally or less unequally distributed than y. This refl ects two separate chan-
nels of infl uence—the direct effect of the change in βk(or xk) on C and the indirect 
effect operating through μ. An increase in inequality in xk  (i.e., Ck) will increase 
the degree of inequality in y. The impact is an increasing function of βk  and xk  and 
a decreasing function of μ.

Wagstaff, van Doorslaer, and Watanabe (2003) use both equation 13.3 and equa-
tion 13.4 to decompose the change in income-related inequality in HAZ in Viet-
nam between 1993 and 1998. The results are summarized in table 13.2. Estimates 
of the percentage contribution of each determinant to the total change in C (third 
from last and last columns) are broadly similar across the two methods, with some 
important discrepancies. The Oaxaca-type method attributes more of the change to 

Table 13.2  Decomposition of Change in Concentration Index for Height-for-Age z-Scores 
of Children <10 Years, Vietnam, 1993–98

 Decomposition of change in concentration index

  Oaxaca-type
 Total differential approach (13.4) approach (13.3)

 βk’s Means of x’s CIs Total Percent  Total Percent

Child’s age (in months) 0.003 0.011 –0.002 0.012 –57 0.007 –30

Child’s age squared 0.003 –0.010 0.001 –0.006 29 –0.006 26

Child = male 0.001 0.000 0.000 0.001 –5 0.001 –3

Household consumption –0.005 –0.005 –0.002 –0.011 52 –0.016 74

Safe drinking water –0.002 0.000 0.000 –0.003 14 –0.003 16

Satisfactory sanitation 0.003 –0.002 0.000 0.001 –5 0.001 –5

Years schooling hhold. head 0.001 0.000 –0.001 0.000 0 0.000 1

Years schooling mother 0.005 0.000 –0.001 0.004 –19 0.003 –11

Fixed commune effects 0.000 –0.014 –0.010 –0.025 119 –0.012 55

“Residual”    0.005 –24 0.005 –24

Total 0.010 –0.021 –0.016 –0.021 100 –0.022 100

Source: Wagstaff, van Doorslaer, and Watanabe (2003, tables 3 and 4).
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household consumption, whereas the differential approach gives more weight to 
changes occurring at the commune level. From the individual components of the 
total differential method (columns 2–4), we see that whereas changes in the means 
and concentration indices of the determinants of malnutrition have, on balance, 
tended to increase income-related inequality in HAZ, the opposite appears to be 
true of changes in the regression coeffi cients. 

Computation

The components of equation 13.3 could be computed by running the regression 
and loop given in the previous section for each year of data, labeling the scalars to 
distinguish between their values in each year and taking the differences between 
them appropriately weighted, as in equation 13.3. The same general procedure 
could be used for equation 13.4, but differences between the year-specifi c regres-
sion coeffi cients and variables means would also have to be computed. That the 
total differential decomposition holds only for small changes must be kept in mind. 
Extrapolation to actual changes gives just an approximation to the change in the 
concentration index.

Extensions

As discussed in chapter 5, one is often interested in income-related inequality in a 
health sector variable after standardizing for correlates of income, such as age and 
gender. To assess equity in the distribution of health care (see chapter 15), it is also 
necessary to standardize for differences in “need.” The regression decomposition 
method is a convenient way of making such a standardization. One simply needs 
to deduct the contributions of the standardizing variables (included in the regres-
sion along with others) from the total concentration index. Van Doorslaer, Kool-
man, and Jones (2004) have demonstrated that this is equivalent to the two-step 
approach to indirect standardization discussed in chapter 5. Application of this 
approach to the measurement of inequity in health care use is discussed in chap-
ter 15. This approach has been used to measure and decompose age-sex standard-
ized income-related inequalities in self-reported health in Canada (van Doorslaer 
and Jones 2003) and in 13 European countries (van Doorslaer and Koolman 2004); 
to compare England, Wales, and Scotland during the 1979–1995 period (Gravelle 
and Sutton 2003); and to investigate the causes of changes in mental health in Great 
Britain (Wildman 2003). 

Standard errors for the various components of the concentration index decom-
position may be obtained by bootstrapping (van Doorslaer and Koolman 2004). 
Jones and Lopez-Nicolas (2004) extend this decomposition to a longitudinal setting, 
distinguishing between short-term inequality and the covariance between income 
and health through time. 

The decomposition method relies on linearity of the underlying regression 
model. When the model is inherently nonlinear, it may be possible to base the 
decomposition on a linear approximation to the model. Van Doorslaer, Koolman, 
and Jones (2004) have used the “partial effects” representation of nonlinear count 
models to assess the degree of horizontal inequity in health care use in 12 European 
countries. This representation has the advantage of being a linear additive model 
of actual utilization, but it holds only by approximation, and the decomposition is 
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not unique but depends on the values at which partial effects are calculated. The 
approach is presented and discussed in chapter 15. Alternatively, Wan (2004) gener-
alizes the regression-based decomposition method for application to any inequality 
measure with few restrictions on the underlying regression model.
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14
Who Benefi ts from Health Sector Subsidies? 
Benefi t Incidence Analysis 

Subsidization of health care from the public purse is commonplace. Ensuring that 
public spending on health care is pro-poor is a stated goal of international orga-
nizations, such as the World Bank, as well as many national governments. This 
may stem from a desire to ensure the poor have access to health care, considered 
a basic human right. But pro-poor spending on health care can also be pursued for 
its instrumental value in raising the health of the population and so the produc-
tivity of the labor force and, consequently, economic growth. Public subsidization 
of health care may also be motivated, or at least justifi ed, by sector-specifi c equity 
objectives, such as equal treatment for equal need. Public health care can also be 
used as an instrument of broader poverty alleviation and redistribution policy 
when redistribution through cash transfers is severely impeded by information 
and administrative constraints (Besley and Coate 1991). Whether or not such justifi -
cations for public spending on health care are convincing depends on the distribu-
tion of the benefi ts from this spending. Who gains most? Is it the poor? Or does a 
substantial proportion, even a disproportionate proportion, of the spending go to 
the economically better-off? These are the questions addressed by benefi t incidence 
analysis (BIA). 

BIA describes the distribution of public spending across individuals ranked 
by their living standards (Aaron and McGuire 1970; Brennan 1976; Meerman 1979; 
van de Walle and Nead 1995). In its most simplistic form, it is an accounting pro-
cedure that seeks to establish who receives how much of the public spending dol-
lars. Recipients are usually distinguished by their relative economic position, but 
the geographic distribution of spending could also be examined or the distribu-
tion across characteristics such as ethnicity or age. A more ambitious form of BIA 
attempts to estimate the extent to which public spending changes the distribu-
tion of fi nal income, that is, income net of taxes and gross of in-kind transfers. As 
with tax incidence, this requires identifi cation of the behavioral response to public 
spending (van de Walle 2000). For example, to what extent does public spending 
on health care crowd out private spending, and how does this vary with income? 
Or more indirectly, to what extent does public health care change gross incomes by 
affecting labor supply and saving decisions? Answering such questions requires 
detailed econometric analysis to identify the counterfactual distribution of income 
that would exist if there were no public spending on health care. In this chapter, 
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we discuss the more simple form of BIA, which aims to describe the distribution 
of public health spending across an income distribution that is taken as given. We 
also confi ne attention to the distribution of average spending and do not consider 
the benefi t incidence of marginal dollars spent on health care (Lanjouw and Raval-
lion 1999; Younger 2003). 

Living standards need not be measured by income. Any of the measures dis-
cussed in chapter 6 could be used. If an ordinal measure, such as a wealth index, 
is chosen, then it is possible only to determine whether the distribution of public 
health care is pro-poor or pro-rich and not the extent to which, abstracting from 
behavioral responses, public spending changes some cardinal measure of inequal-
ity in living standards. 

Having chosen a measure of living standards, there are three principal steps in 
a nonbehavioral BIA of public health spending. First, the utilization of public health 
services in relation to the measure of living standards must be identifi ed. Second, 
each individual’s utilization of a service must be weighted by the unit value of the 
public subsidy to that service. Finally, the distribution of the subsidy must be evalu-
ated against some target distribution. In this chapter, we discuss each of these three 
steps in turn.

Distribution of public health care utilization

Microdata from a health or multipurpose household survey are required to esti-
mate the distribution of public health care utilization across individuals in relation 
to living standards. Three factors deserve particular consideration in relation to the 
choice of survey. First, it must contain data on both health care use and some mea-
sure of living standards. Second, it should distinguish between public and private 
care. Third, the recall periods for health care utilization should be suffi ciently long 
such that the sample of observed users is not too small but not too long such that 
recall bias is large. For health services that have a higher frequency of utilization, 
such as ambulatory care, the optimal recall period is probably in the range of 2 to 
4 weeks, and most surveys use a period in this range. For inpatient care, the recall 
period should be longer. It is typically 12 months. 

Only health services that are subsidized from the state-controlled budget should 
be considered. Public health programs and services fi nanced from Overseas Devel-
opment Assistance (ODA), user fees, and social insurance are relevant, provided 
the respective revenues are used at the discretion of the state. Diffi culties arise if a 
survey does not distinguish between public and private care. In that case, private 
insurance cover, if available, might be used to distinguish between public and pri-
vate patients. Otherwise, a BIA can be conducted only if the private sector is suffi -
ciently small such that it can be ignored.

Calculation of the public health subsidy

Examination of raw utilization data does not capture variation in the quality of 
health care received and in payments made. Nor does it facilitate aggregation across 
services to determine the distribution of the total health sector subsidy. Both exten-
sions require estimates of unit subsidies.
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Box 14.1 Distribution of Public Health Care Utilization in Vietnam, 1998

Data are from the 1998 Vietnam Living Standards Survey (VLSS). Living standards 
are approximated by household consumption per equivalent adult. Five categories of 
health care are examined: inpatient days, hospital outpatient visits, visits to commune 
health centers, visits to polyclinics, and a residual category (domestic medical visits and 
visits to “other government facilities”). For all categories, except inpatient care, the sur-
vey distinguishes between public and private care. Because there were only 4 private 
hospitals in Vietnam of a total of more than 800 at the time of the survey (World Bank 
2001), we simply assume all inpatient care is public care. Inpatient days are reported for 
a 12-month reference period, the other categories for the previous 4 weeks.

In the table below, we present, for each category of care, the cumulative percentage 
of total utilization accounted for by each quintile of household consumption. Figures in 
bold indicate signifi cant differences from the respective population shares at 5 percent 
or less. Poorer groups receive less than their population share of hospital care at all 
quintiles. This is confi rmed by tests indicating that the 45-degree line dominates both 
concentration curves for hospital care. This pro-rich bias is also indicated by the con-
centration indexes, which are positive and signifi cantly different from zero. In contrast, 
utilization of commune health centers is pro-poor. There is no signifi cant bias in the 
utilization of polyclinics and other public health services.

Distribution of Public Health Care Utilization in Vietnam, 1998

 Hospital care  
Commune

   

Cumulative  Outpatient  Inpatient  health center  Polyclinic Other public 
shares visits  days  visits  visits  health services 

Poorest 20%  8.90% 10.29% 22.65%  22.91%  13.22%
(standard error)  (0.9949)  (1.2141)  (1.8860)  (5.7815)  (2.9644) 

Poorest 40%  23.45% 27.74% 47.83% 32.81%  47.09% 
 (1.6629)  (2.0465)  (2.4084)  (6.2628)  (6.3806) 

Poorest 60%  43.58% 47.66% 77.86% 59.29%  59.00% 
 (2.3987)  (2.4772)  (1.9943)  (6.8524)  (6.0599) 

Poorest 80%  66.07% 70.36% 90.60% 78.24%  79.63% 
 (2.7376)  (2.5702)  (1.4456)  (6.5783)  (4.5689) 

Test of dominance  – – +  
against 45° line     

Concentration 0.2436 0.1784 –0.1567 0.0401  0.0056
index (robust (0.0368)  (0.0370)  (0.0335)  (0.1042)  (0.0777)
standard error) 

Note: For shares, bold indicates signifi cant difference from population share at 5%. For 
concentration indexes, bold indicates signifi cant difference from zero at 5%. Standard errors for 
concentration indexes are robust to heteroskedasticity and within cluster (commune) correlation.
Dominance tests:  – indicates the 45-degree line dominates the concentration curve (pro-rich) 

+ indicates concentration curve dominates 45-degree line (pro-poor) 
Blank indicates nondominance. 

Dominance is rejected if there is at least one signifi cant difference in one direction and no 
signifi cant difference in the other, with comparisons at 19 quantiles and 5% signifi cance level.
Quintile shares and their standard errors were computed, along with the dominance tests, using 
the dominance ado described in chapter 7. Concentration indexes computed as described in 
chapter 8.

Source: Authors.
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Defi nition of public subsidy

The service-specifi c public subsidy received by an individual is as follows:

(14.1) s q c fki ki kj ki= − ,

where qki indicates the quantity of service k utilized by individual i, ckj represents the 
unit cost of providing k in the region j where i resides, and fki represents the amount 
paid for k by i. The total public subsidy received by an individual is as follows:

(14.2) s q c fi k ki kj ki
k

= −∑α ( ),

where kα  are scaling factors that standardize utilization recall periods across 
services. One might standardize on the recall period that applies for the service 
accounting for the greatest share of the subsidy. For example, where this is inpa-
tient care, reported over a one-year period, then kα  = 1 for inpatient care and, for 
example, kα  = 13 for services reported over a 4-week period.

Unit costs

The starting point for the costing component of a BIA is total public recurrent expen-
diture on health care. Ideally, this should be disaggregated down to geographic 
region, then to facility (hospital, health center, etc.) and, fi nally, to service (inpatient/
outpatient, etc.). At this disaggregate level, unit cost is calculated by dividing total 
recurrent expenditure by total units utilized. If accounts are not suffi ciently detailed 
to allow net public expenditure to be identifi ed by region and facility, then all units of 
a given service must be weighted by the same unit subsidy estimated. In such circum-
stances, aggregation across services is the only purpose served by application of unit 
subsidies. Within a particular service, the distribution of the subsidy and the distri-
bution of raw utilization will differ only in their means. Nevertheless, such aggrega-
tion can still be informative, allowing the incidence of the total health sector subsidy 
to be established and this incidence to be decomposed into that arising from differen-
tial use of services and that arising from differential subsidies across services.

Aggregate health accounts data are required to determine total public expen-
diture on health and its disaggregation to regions and facilities. For accuracy 
and consistency, the data should come from a unifi ed system of National Health 
Accounts (NHA). In practice, data limitations mean that this ideal scenario is rarely 
achieved, although see O’Donnell et al. (2007) for BIA studies based on NHA. Mov-
ing from facility-specifi c to service-specifi c expenditures can be diffi cult given the 
joint use of many health resources across a range of services. The detailed infor-
mation necessary to distinguish between expenditures on, for example, outpatient 
and inpatient services might be available only from facility-level cost surveys. Data 
from such surveys can be used to estimate cost functions from which the unit costs 
of services can be recovered. Without NHA, disaggregation of public health expen-
ditures down to the service level is likely to prove diffi cult and require the imposi-
tion of various assumptions and approximations. The robustness of results to these 
approximations should be checked through sensitivity analysis.

Aggregate service utilization fi gures can either be estimated from survey data or 
taken from administrative records. The relative accuracy of these two approaches 
will vary across services and countries. Application of survey utilization rates has 
the advantage of consistency. Unit cost is calculated by dividing aggregate expen-
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diture by the weighted sum utilization reported in the survey data, where weights 
are expansion factors indicating how many individuals in the population are rep-
resented by each sample observation. Expenditure on each (survey) individual is 
quantity multiplied by unit cost. Summing these individual expenditures across 
all observations and applying the population expansion factors, one arrives back at 
total public expenditure on a service. 

User fees

The simplest method of allocating user fees is to divide aggregate user fee reve-
nue reported in offi cial accounts by an estimate of total utilization and to assign 
the resulting average payment to all users. Equivalently, one can apportion public 
expenditure net of offi cial user fee revenue in proportion to utilization. If the net 
public expenditure fi gures are available at a region-facility-service level, then varia-
tion in fee payments across region-facility-service groups is taken into account but 
not variation across individuals within groups. Individual variation in fees paid 
can be taken into account if the survey provides reliable data on payments made 
for public health services. This would be important, for example, if there were fee 
exemptions for the poor. 

Some surveys ask the amount paid for each public health service. In this case, 
the public subsidy can be calculated as in equations 14.1 and 14.2. Alternatively, if 
the survey gives only the total amount paid for all public health services, then mod-
ify equation 14.2 to 

(14.2′) s q c fi k ki kj
k

i= −∑δ ,

where fi is the payment for all public health care and kδ  is a scaling factor that stan-
dardizes the recall periods for the utilization variables on the recall period that 
applies to the total payment variable.

Survey estimates of aggregate user fee revenues may not match the offi cial fi g-
ures. Apart from sampling and nonsampling error, the discrepancy can be explained 
by payments that are kept locally and not remitted to the central administration or 
by unoffi cial payments that are paid not to the facility but to personnel at the facil-
ity. The appropriate treatment of user payments in such cases depends on the objec-
tive of the analysis. If it is simply to identify the distribution of net expenditures 
made by the central government in an accounting fashion, then reported payments 
in excess of offi cial revenue could be ignored. However, if the aim is to identify the 
incidence of net benefi ts from government-supported health services, then one seeks 
an estimate of the difference between the value of services consumed and the pay-
ments made for them by the individual, irrespective of whether all of the payment is 
remitted to the central government. In the instance that payments, offi cial or unof-
fi cial, are made to fi ll the gap between the cost of the care provided and the available 
budget, then, in principle, they should be added to both costs and payments and so 
can be ignored in computation of the subsidy. On the other hand, if the payments 
are rent extracted by providers, then they reduce the real value of the subsidy to the 
individual and should be subtracted in calculation of the real subsidy. Most surveys 
do not distinguish between payments remitted to the center and those kept locally, 
and it is not possible to discern whether payments are used to raise quality or are 
rent extraction. The distribution of offi cial user fee revenue remitted to the center 
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could be estimated by scaling all reported payments by the ratio of total offi cial user 
fee revenue to aggregate payments calculated from survey data. One could test the 
sensitivity of results to this treatment of payments against subtracting all payments 
reported in the survey. Waiting and travel time also reduce the net benefi t from care 
received by the individual and should, in principle, be valued and subtracted in 
computation of the subsidy. Survey data do not, however, usually permit this. 

Box 14.2 Derivation of Unit Subsidies—Vietnam, 1998

National Health Accounts are not available for Vietnam, and so we estimate unit subsidies 
from public spending accounts. Total recurrent public expenditure on health was more 
than 5 trillion Vietnamese dong (D) in 1998 ($1 = D 13,987) (World Bank 2001). That cov-
ers all spending on health programs and services provided by public health facilities and 
fi nanced from the state budget, user charges, social health insurance, and external donors. 
The public accounts do not disaggregate by facilities within regions. We therefore impose 
the same unit costs across all users irrespective of their geographic location. Although 
this is common practice in BIA studies (Castro-Leal et al. 2000), it is regrettable. It means 
that geographic variations in the quality, as opposed to the quantity, of health care are not 
taken into account. Such variations can be substantial (Das and Hammer 2005). 

At the national level, the public accounts disaggregate central and provincial govern-
ment recurrent health spending by facility, that is, hospitals, polyclinics, and commune 
health centers (World Bank 2001). Public spending fi nanced from other sources is not 
disaggregated by facility. Because health insurance fi nances hospital care only, total rev-
enue from health insurance is added to the government expenditure on hospitals (World 
Bank 2001). Offi cially, user fees are charged for hospital and polyclinic care only. For 
baseline estimates, we divide total user fee revenue between hospitals and polyclinics 
in the same proportions as apply for government revenue (World Bank 2001). Finally, 
total public spending fi nanced from ODA (World Bank 2001) is divided between hos-
pitals, polyclinics, and health centers in the same proportions as apply for central and 
provincial government expenditures. By that allocation method, we arrive at the facility-
specifi c public expenditures given in the fi rst column of the table below. The total across 
facilities represents 59 percent of total recurrent public health spending. 

Public Health Expenditure, Unit Costs and Subsidies, Vietnam 1998 

  Total user fees Mean unit subsidy 

 Recurrent  Total      Scaled  Reported
 public exp.  utilization Unit cost Offi cial Reported user feesa user feesb 
 D millions  '000s  D  D m.  D m.  D  D 

Hospital care  2,704,424    429,128 

 Inpatient   52,779 (days)  49,320   2,464,000  42,988  23,800 

 Outpatient   35,388 (visits)  2,865   1,154,000  1,990  1,690 

Comm. health  269,101  43,520 (visits)  6,183   48,762  6,183  5,393
centers 

Regional   34,062  3,973 (visits)  8,572  7,152  17,039  7,916  6,402
polyclinics 

Total allocated  3,007,587    436,280  3,634,960

Source: Authors' calculations from World Bank, SIDA et al. 2001 and VLSS. 
Note:  a. Calculated from user fees reported in VLSS scaled to sum to offi cial user fee revenue. 

b. Calculated from actual user fees reported in VLSS (not scaled). 
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Some individuals may report payments in excess of production costs. If one is 
simply interested in who receives the (positive) subsidies from the health care sys-
tem, then negative values of the subsidy should be set to zero. However, if one is 
interested in how the subsidy is fi nanced and, in particular, the extent to which 
there is cross subsidization, then the distributions of both positive and negative 
subsidies need to be examined.

Evaluating the distribution of the health subsidy 

Once individuals have been categorized by their living standards and the value of 
the health sector subsidy received by each individual has been calculated, the dis-
tribution of the subsidy can be traced in relation to living standards. For example, 
cumulative shares of the subsidy received by living standard quintiles might be 
presented (see table in box 14.3). For a more complete picture of the distribution, 
the health subsidy concentration curve can be graphed as in the fi gure in Box 14.3. 

Box 14.2 (continued)

 As is often the case, the accounts do not distinguish between hospital expenditures 
on inpatient and outpatient services. Cost function estimates from a survey of 80 per-
cent of public hospitals (Weaver and Deolalikar 2004) give the cost of an inpatient day 
at more than 17 times that of an outpatient visit. From that estimate of relative cost, 
plus aggregate public expenditure on hospitals and the total utilization of the respec-
tive services, the unit costs of an inpatient day and outpatient visits are derived (see 
table above, column 3). The unit costs of visits to health centers and to polyclinics are 
calculated by dividing total public expenditures on these facilities by respective total 
utilization fi gures, estimated from the VLSS. The resultant costs seem somewhat high 
in comparison to the estimated unit cost of a hospital outpatient visit. In a full report, 
sensitivity of results to these estimates of unit costs would be checked.

There is a tremendous difference between reported payments for public health 
services and offi cial user fee revenue in Vietnam. The offi cial accounts indicate total 
user fee revenue of D 436 billion in 1998 (World Bank 2001). This is only one-eighth 
of the total amount individuals report paying for care in public hospitals, polyclinics, 
and commune health centers (excluding payments for drugs). In fact, the total amount 
reported in user payments exceeds total recurrent public expenditure on these services 
(see table above). 

Given the difference between offi cial and reported user payments, we experiment 
with two methods of calculating the public subsidy. In each case, we apply equations 
14.1 and 14.2 above, but use different estimates of individual specifi c user payments. 
Under the fi rst method (2nd from fi nal column of the table above), we set user fees in 
commune health centers to zero (offi cially they do not exist) and scale reported user 
fees in hospitals and polyclinics by the ratio of offi cial to reported aggregate user pay-
ments for these services. Under the second method (fi nal column), we use the actual 
user fees reported for all services, not including payments for drugs. Patients are usu-
ally responsible for purchasing their own drugs. In both cases, we set negative values 
of the subsidy to zero.

Each mean unit subsidy given in the table indicates the average, across users, of 
the subsidy per unit of the respective service. So, for example, when user payments are 
scaled to sum to offi cial fee revenue, inpatients receive a subsidy, on average, equal to 
almost D 43,000 per day, or more than 80 percent of the cost. However, the value of this 
subsidy falls by almost 50 percent if it is calculated on the basis of what patients actu-
ally report paying. 
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To evaluate the distribution of the subsidy, the analyst must refer to some target 
distribution and in doing so impose a distributional objective. One alternative is to 
compare the distribution of the subsidy with population shares. Do the poorest 20 
percent of individuals receive more or less than 20 percent of the subsidy? In the 
fi gure in Box 14.3, that amounts to comparing a concentration curve with the 45-
degree line. This is appropriate if the goal is to ensure that the subsidy is pro-poor, 
which requires that the subsidy concentration curve dominate the 45-degree line. 
If the subsidy were considered part of an individual’s fi nal income, then an alterna-
tive distributional objective would be for fi nal income to be more evenly distributed 
than presubsidy income. That is, the subsidy should be inequality-reducing, closing 
the relative gap in welfare between the rich and the poor. This requires that the 
subsidy concentration curve dominate the Lorenz curve, which is obviously much 
less demanding than domination of the 45-degree line. Domination of the Lorenz 
curve may be referred to as progressivity, or weak progressivity, of the subsidy, as 
opposed to absolute or strong progressivity in the case that the concentration curve 
dominates the 45-degree line (Castro-Leal et al. 2000; Sahn and Younger 2000). 

The concentration index (see chapter 8) provides a summary measure of abso-
lute progressivity of the subsidy. The Kakwani index, which is defi ned as twice the 
area between a concentration curve and the Lorenz curve, can be used as a sum-
mary measure of weak progressivity (Kakwani 1977).1 The index is calculated as 
π k = C – G, where C is the concentration index for the subsidy and G is the Gini 
coeffi cient of the living standards measure. The value of π k ranges from –2 to 1. It 
is negative (positive) if the concentration curve dominates (is dominated by) the 
Lorenz curve. In the case in which the concentration lies on top of the Lorenz curve, 
the Kakwani index is zero.2

1The Kakwani index was originally introduced as a measure of tax progressivity (Kakwani 
1977). Its use as a measure of progressivity of health care fi nancing is discussed in chapter 16.
2This is a suffi cient but not a necessary condition for the Kakwani index to be zero, which 
could also arise if the concentration and Lorenz curves cross.

Box 14.3 Distribution of Health Sector Subsidies in Vietnam, 1998

In the table below, we present cumulative quintile shares of the service-specifi c subsi-
dies and for the total subsidy across all services. In computing the service-specifi c quin-
tile shares, we scale all user payments to sum to offi cial user fee revenue (see box 14.2). 
The subsidy shares are broadly consistent with those for raw service utilization given 
in the table in box 14.1. Cumulative quintile shares for the total subsidy are given both 
with and without scaling user payments. Irrespective of the treatment of user payments, 
the poorest quintile’s share of the subsidy is less than 20 percent but greater than its 
share of total consumption. At higher quintiles, the cumulative subsidy shares deviate 
from the respective population share only if reported user payments are scaled. How-
ever, tests indicate that the subsidy concentration curve is dominated by the 45-degree 
line under both treatments of user payments and that it always dominates the Lorenz 
curve. Subsidy concentration curves (with scaled user payments) and the Lorenz curve 
are graphed in the fi gure. The concentration curve for the total subsidy follows that of 
the inpatient subsidy most closely. This refl ects the fact that inpatient care receives by far 
the largest share of public spending in Vietnam (87%—see table below). 
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Box 14.3 (continued)

 With one exception (outpatient), the dominance tests and the Kakwani indices services indicate 
that the subsidies are inequality-reducing or weakly progressive. But only the subsidy to commune 
health centers is pro-poor or strongly progressive. The subsidy to hospital care and the total subsidy 
are pro-rich. It may be concluded that public health care subsidies in Vietnam help close the relative 
gap in welfare between rich and poor but raise the absolute gap.

Distribution of Public Health Care Subsidies in Vietnam, 1998

  Hospital care   Total subsidy 

 Equivalent   Commune  Other public Scaled Reported
Cumulative household  Out-  health   health  user  user 
shares consumption  patient  Inpatient  center  Polyclinic services  fees  fees 

Poorest 20%  8.78% 10.21% 10.98% 22.65%*  23.18%*  13.22% 12.29%* 14.81%*
(standard error)  (0.0429)  (1.3456)  (1.3099)  (1.886)  (5.9155)  (2.9644)  (1.1219)  (1.5426) 

Poorest 40%  21.38% 24.75% 29.44%* 47.83%* 33.48%  47.09%*  31.87%* 37.70%* 
 (0.0880)  (2.1043)  (2.1703)  (2.4084)  (6.3918)  (6.3806)  (1.8559)  (2.4110) 

Poorest 60%  37.19% 45.50%* 50.12%* 77.86%* 59.88%*  59.00%*  53.11%* 60.43%* 
 (0.1360)  (3.0206)  (2.5461)  (1.9943)  (6.8763)  (6.0599)  (2.1498)  (2.5184) 

Poorest 80%  58.17% 67.65%* 73.02%* 90.60%* 78.52%*  79.63%*  74.88%* 81.25%* 
 (0.1793)  (3.2196)  (2.5157)  (1.4456)  (6.6011)  (4.5689)  (2.1076)  (2.0504) 

Test of dominance 

–against 45° line   – – +   – –

–against Lorenz curve   +  +  +  +  +  + 

Concentration 
Indexa (robust 0.3229 0.2160 0.1444 –0.1567 0.0298  0.0056  0.1106 0.0115
standard error)  (0.0083)  (0.0450)  (0.0378)  (0.0335)  (0.1035)  (0.0777)  (0.0319)  (0.0343)

Kakwani Index   –0.1069 –0.1785 –0.4797 –0.2932 –0.3174 –0.2124 –0.3115
(robust standard   (0.0506) (0.0427)  (0.0376)  (0.1031)  (0.0792)  (0.0365)  (0.0379)
error) 

Subsidy shares 
(scaled user fees)   0.0213  0.8688  0.1010  0.0088   1.0000 

Note: For shares, bold indicates signifi cant difference from population share (5%) and * indicates signifi cant 
difference from consumption share (5%). For concentration and Kakwani indexes, bold indicates 
signifi cant difference from zero at 5%. Standard errors for concentration and Kakwani indexes are robust to 
heteroskedasticity and within cluster (commune) correlation.
Dominance tests:   – indicates the 45° line/Lorenz curve dominates the concentration curve 

+ indicates concentration curve dominates 45° line/Lorenz curve
Blank indicates nondominance.

Dominance is rejected if there is at least one signifi cant difference in one direction and no signifi cant difference in 
the other, with comparisons at 19 quantiles and 5% signifi cance level. 
a. Gini index for equivalent household consumption.

(continued)
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Computation

Quintile shares, dominance tests, and concentration indices can be computed as 
described in chapters 7 and 8. Because a Kakwani index is the difference between 
a concentration index and a Gini index, both of which can be computed by the con-
venient regression method (see chapter 8), its value can be computed directly from 
one convenient regression of the following form:

(14.3) 2 2σ
μ μ
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i
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i i
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= + + ,

where si is the health subsidy to individual i, μ̂s  is an estimate of its mean, yi is the 
living standards measure and μ̂y an estimate of its mean, and ri is the weighted 
fractional rank in the living standards distribution and σR

2
 is its variance. The OLS 

estimate of β  is an estimate of the Kakwani index. A standard error for the index 
can be obtained directly from the convenient regression although in this case, it is 
not possible to take into account the sampling variability of the estimated means 
used in the transformation to obtain the left-hand-side variable.

The weighted fractional rank variable (rank) should fi rst be computed as 
explained in chapter 8. Then, in Stata, the appropriate convenient regression would 
be estimated as follows:

qui sum rank [aw=weight]
sca var_rank=r(Var)

Box 14.3 (continued)

Concentration Curves for Health Sector Subsidies and Lorenz Curve of Household 
Consumption, Vietnam 1998  
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qui sum subsidy [aw=weight]
sca m_sub=r(mean)
qui sum y [aw=weight]
sca m_y=r(mean)
gen lhs=2*v_rank*(subsidy/m_sub-y/m_y)
regr lhs r [pw=weight], cluster(commune)

where y is the (cardinal) living standards measure and, in this case, sample weights 
and cluster sampling are taken into account. 
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15
Measuring and Explaining Inequity 
in Health Service Delivery

Equitable distribution of health care is a principle subscribed to in many countries, 
often explicitly in legislation or offi cial policy documents (van Doorslaer, Wagstaff, 
and Rutten 1993). Egalitarian equity goals distinguish between horizontal equity—
equal treatment of equals—and vertical equity—appropriate unequal treatment of 
unequals. In health care, most attention, both in policy and research, has been given 
to the horizontal equity principle, defi ned as “equal treatment for equal medical 
need, irrespective of other characteristics such as income, race, place of residence, 
etc.” (van Doorslaer et al. 2000; Wagstaff and van Doorslaer 2000; Wagstaff, van 
Doorslaer, and Paci 1991). In this chapter, we discuss measurement and explanation 
of horizontal inequity in the delivery of health care. 

In practice, it is not possible to examine the extent to which the horizontal 
equity principle is violated without simultaneously specifying a vertical equity 
norm. Researchers have usually assumed, implicitly or explicitly, that, on average, 
vertical equity is satisfi ed. That is, the observed differential utilization of health 
care resources across individuals in different states of need is appropriate. If that 
is accepted, then the measurement of horizontal inequity in health care use can 
proceed in much the same way as the standardization methods covered in chapter 
5. For example, one seeks to establish whether there is differential utilization of 
health care by income after standardizing for differences in the need for health 
care in relation to income. In empirical analyses, expected utilization, given char-
acteristics such as age, gender, and measures of health status, is used as a proxy for 
“need.” Complications to the regression method of standardization arise because 
measures of health care utilization typically are nonnegative integer counts (e.g., 
numbers of visits, hospital days, etc.) with very skewed distributions. As dis-
cussed in chapter 11, nonlinear methods of estimation are then appropriate. But 
the standardization methods presented in chapter 5 do not immediately carry over 
to nonlinear models. They can be rescued only if relationships can be represented 
linearly. In this chapter, we therefore concentrate on standardization in nonlinear 
settings.

Once health care use has been standardized for need, inequity can be measured 
by the concentration index. Inequity could then be explained by decomposing the 
concentration index, as explained in chapter 13. In fact, with the decomposition 
approach, standardization for need and explanation of inequity can be done in one 
step. We describe this procedure in the fi nal section of the chapter.
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Measuring horizontal inequity

There will typically be inequality in the utilization of health care in relation to 
socioeconomic characteristics, such as income. Typically, in high-income coun-
tries poorer individuals consume more health care resources as a result of their 
lower health status and so greater need for health care. Obviously, such inequality 
in health care use cannot be interpreted as inequity. In low-income countries, the 
lack of health insurance and purchasing power among the poor typically mean that 
their utilization of health care is less than that of the better-off despite their greater 
need (Gwatkin et al. 2003; O’Donnell et al. forthcoming). In this case, the inequality 
in health care use does not fully refl ect the inequity. To measure inequity, inequal-
ity in utilization of health care must be standardized for differences in need. After 
standardization, any residual inequality in utilization, by income for example, is 
interpreted as horizontal inequity, which could be pro-rich or pro-poor. 

Standardization for differences in need could be done using either the direct or indi-
rect method described in chapter 5. Although with demographic standardization the 
appropriate standardizing variables are immediately obvious, that is not true for need 
standardization. Need is a rather elusive concept that has been given a variety of inter-
pretations in relation to the defi nition of equity in health care delivery (Culyer 1995; 
Culyer and Wagstaff 1993). By some defi nitions, measurement of need is not tractable, 
at least in the context of large-scale household surveys. In practice, researchers have 
relied on demographics plus health status and morbidity variables (e.g., self-assessed 
health, presence of chronic conditions, activity limitations, etc.) to proxy need.

Although both direct and indirect methods of standardization could be used, as 
we argued in chapter 5, when microdata are available there is little to commend the 
direct approach. Here, we restrict attention to the indirect method, which gives the 
difference between the actual distribution of use and the distribution that would be 
expected given the distribution of need. The latter is referred to as the need-expected 
distribution of health care. 

When health care use is modelled by linear regression, the standardization pro-
cedure is exactly as presented in equations 5.1 through 5.3 of chapter 5. The need 
variables are included among the x’s. The control, or z, variables should include 
nonneed correlates of health care utilization for which we do not want to standard-
ize but which would bias the coeffi cients on the need variables if omitted from the 
regression (Gravelle 2003; Schokkaert and van de Voorde 2004). For example, sup-
pose that some groups with poor health (an x variable), for example, people who are 
disabled or handicapped, receive more generous insurance coverage (a z variable) 
than the nondisabled. If we were to estimate the standardizing regression exclud-
ing a variable capturing the better coverage, then the coeffi cient on the poor health 
variable would—to some extent—pick up the effect of more generous cover, over 
and above the direct effect of greater need. That would overestimate the “appropri-
ate vertical need difference” as embodied in the coeffi cient of poor health.1

Once need-standardized utilization has been estimated, inequity can be tested 
by determining whether standardized use is unequally distributed by income, for 
example. Inequity could be measured by estimating the concentration index for 
need-standardized utilization, which has been referred to as the health inequity 

1The more generous cover to disabled persons may refl ect society’s concern that these indi-
viduals would receive less care than they need in the absence of such a subsidy. We assume 
here that—holding all other factors such as income and accessibility constant—it is the par-
tial effect of poor health on health care use that, on average, refl ects the appropriate vertical 
need difference between those who are in poor health and those who are not.
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index (HIWV) (Wagstaff and van Doorslaer 2000). Equivalently, this can be obtained 
as the difference between the concentration index for actual utilization and that for 
need-predicted utilization.

This procedure rests on the assumption that once observable need indicators 
have been controlled for, any residual variation in utilization is attributable to non-
need factors. Given that the data available on need indicators typically are limited, 
that is likely to be a strong assumption. It will result in biased measurement of hor-
izontal inequity in the case that unobservable variation in need is correlated with 
income. Schokkaert, Dhaene, and Van de Voorde (1998) discuss this issue in the 
context of the related literature on risk adjustment. 

Indirect standardization with nonlinear models

Measures of health care use are typically nonnegative integer counts, for example, 
number of visits to a doctor or days in a hospital. In a sample, there will typically be 
a large proportion of observations with no utilization and very few observations, 
corresponding to individuals falling severely ill, with utilization very much above 
the mean. Given this, it may be considered appropriate to model the determinants 
of the use/nonuse probability separately from the number of visits conditional on 
any use. Although the least squares regression method of indirect standardization 
could be used with such data, it would not guarantee that the predicted values from 
the standardizing regression (equation 5.2) lie in the permitted range of (0,1) for 
binary variables and at or above zero for nonnegative counts (see chapter 11). This 
can be avoided by using nonlinear estimators. 

Let us write a nonlinear model of the relationship between a health care vari-
able, y, which may be binary or a count, and need (x) and control (z) variables in 
terms of a general functional form G:

(15.1) y G x zi j jij k kik i= + +( )+∑ ∑α β γ ε ,

where G will take particular forms for the probit, logit, Poisson, negative binomial, 
and so on models. If there were no z variables included in equation 15.1, then pre-
dicted values obtained from the model could be interpreted as need-expected uti-
lization. Need-standardized utilization could then be defi ned as actual use minus 
need-expected utilization, as in equation 5.3, only in this case the mean of the pre-
diction should be added, rather than the mean of the actual variable, to ensure that 
the mean of standardized utilization equals that of actual utilization. 

However, as argued above, including z variables in the model is probably desired 
to avoid omitted-variables bias. Doing so in this nonlinear context leads to a prob-
lem because the effect of the z variables on need-standardized use can no longer be 
entirely neutralized by setting them equal to their means or indeed to any other vec-
tor of constants. As a result, the variance of the need-standardized use will depend 
on the values to which the z variables are set in the standardization procedure, and 
that will affect measures of income-related inequality, such as the concentration 
index. Accepting this, the analyst could defi ne standardized use as follows:
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where n is the sample size, and we have chosen to set the z variables to their means 

 
zk( ) in obtaining the predictions. Note that the mean of ŷi

IS  is equal to that of y but 
because G is not linearly additive, its variance would differ if the z variables were 
set to some other vector of values.
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Box 15.1 Distribution of Preventive Health Care Utilization and Need in Jamaica

The table below shows the actual need-expected and need-standardized distributions for 
the probability of reporting at least one preventive visit to a doctor, nurse, or other health 
practitioner, by quintiles of equivalent expenditure in Jamaica derived from the 1989 Sur-
vey of Living Conditions (van Doorslaer and Wagstaff 1998). The indicators used in the 
prediction of needed health care are demographic variables (7 age-sex dummies), self-
assessed health (4 dummies), and functional limitations of activities (7 dummies). It can 
be seen that the actual distribution observed is clearly pro-rich, and the need-expected 
distribution is pro-poor. This is a result of the fact that “need,” as proxied by demographic 
and morbidity characteristics, is more concentrated among the lower-income groups. As 
a result, for the poorest fi fth of Jamaicans, the probability of reporting a preventive care 
contact is 6.5 percent lower than would be expected on average given their need, whereas 
the richest 20 percent of Jamaicans report a probability of such a contact that is 8.2 percent 
higher than expected. It is therefore no surprise that the need-standardized distribution 
shows an even more pro-rich distribution than the actual distribution. After need stan-
dardization, the richest quintile’s contact probability is twice that of the poorest. 

The fi gures reported in the table for need-predicted use and its difference from 
actual use are derived from a probit model including control variables, specifi cally (log) 
equivalent expenditure and health insurance status, which are set equal to their sample 
means to obtain the predictions. Need-standardized use is presented both with and 
without the inclusion of controls in the standardizing model and estimating this by 
both OLS and probit. In this example, results are not sensitive to either variation. It has 
been found elsewhere that concentration indices for standardized health care utiliza-
tion are relatively insensitive to the use of OLS or nonlinear models for standardization 
(van Doorslaer, Masseria, and OECD Health Equity Research Group 2004; van Doors-
laer et al. 2000; Wagstaff and van Doorslaer 2000). That is reassuring given the compli-
cations introduced by nonlinear models noted above. Insensitivity to the inclusion of 
control variables in the standardizing regression may be more specifi c to this example. 
Others have found more substantial differences (Gravelle 2003).

Distributions of Actual Need-Predicted and Need-Standardized Preventive Visits to Doctor, Nurse, 
or Other Health Practitioner, Jamaica 1989

 Probability of using preventive health care in previous 6 months 

 Probit with controls Need-standardized 

    
Difference =

  With controls Without controls

  Need- predicted – 
Quintile Actual predicted actual Probit OLS Probit  OLS 

Poorest 20%  0.1717  0.2363  –0.0646  0.1450  0.1457  0.1483  0.1481 

2nd poorest 20%  0.2003  0.2158  –0.0155  0.1942  0.1943  0.1952  0.1950 

Middle  0.2052  0.2119  –0.0067  0.2029  0.2030  0.2029  0.2029 

2nd richest 20%  0.2157  0.1954  0.0203  0.2300  0.2297  0.2282  0.2285 

Richest 20%  0.2706  0.1888  0.0817  0.2914  0.2908  0.2889  0.2891 

Mean  0.2127  0.2097  0.0030  0.2127  0.2127  0.2127  0.2127 

Concentration  0.0928  –0.0452   0.1374  0.1362  0.1318  0.1322
index/HIWV  

Standard error  0.0122  0.0039   0.0117  0.0117  0.0117  0.0117 

t-ratio  7.6249  –11.4721   11.7162  11.6182  11.2663  11.2968

Source: Authors. 
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Computation

Stata computation for standardization by linear regression is provided in chapter 5. 
The general procedure is the same in the case of nonlinear models, with the replace-
ment of the OLS command regr with the chosen estimator. So, in the case of a 
probit model, the need-predicted (yhat) and need-standardized (yst) probability 
of health care utilization would be generated as follows: 

qui probit y $X $Z [pw=weight]
foreach z of global Z {
 gen copy_`z’=`z’
 qui sum `z’ [aw=weight]
 replace `z’ = r(mean)
}
predict yhat 
foreach z of global Z {
 replace `z’ = copy_`z’
 drop copy_`z’
}
sum m_yhat [aw=weight]
gen yst = y-yhat + r(mean)

where X and Z are globals containing lists of need and control variables, respec-
tively. Note that the mean of predicted use and not the mean of actual use is added 
in generating standardized use. Obviously if control variables were not included, 
the predictions would be obtained immediately after the model is estimated and 
neither loop is required.

Quintile means can be estimated using tabstat and concentration indices 
computed as explained in chapter 8.

Explaining horizontal inequity

In chapter 13, we noted that if a health variable is specifi ed as a linear function of 
determinants, then its concentration index can be decomposed into the contribu-
tion of each determinant, computed as the product of the health variable’s elasticity 
with respect to the determinant and the latter’s concentration index. This makes 
it possible to explain socioeconomic-related inequality in health care utilization. 
In fact, the decomposition method allows horizontal inequity in utilization to be 
both measured and explained in a very convenient way. The concentration index 
for need-standardized utilization is exactly equal to that which is obtained by sub-
tracting the contributions of all need variables from the unstandardized concen-
tration index (van Doorslaer, Koolman, and Jones 2004). Besides convenience, the 
advantage of this approach is that it allows the analyst to duck the potentially con-
tentious division of determinants into need (x) and control (z) variables and so the 
determination of “justifi ed” and “unjustifi ed,” or inequitable, inequality in health 
care utilization. The full decomposition results can be presented, and the user can 
choose which factors to treat as x variables and which to treat as z variables.

The decomposition result holds for a linear model of health care. If a nonlinear 
model is used, then the decomposition is possible only if some linear approximation 
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to the nonlinear model is made. One possibility is to use estimates of the partial effects 
evaluated at the means (van Doorslaer, Koolman, and Jones 2004). That is, a linear 
approximation to equation 15.1 is given by

(15.3) y x z ui
m

j
m

jij k
m

kik i= + + +∑ ∑α β γ ,

where the β j
m  and γ k

m  are the partial effects, dy dxj and dy dzk, of each variable 
treated as fi xed parameters and evaluated at sample means; and ui is the implied 
error term, which includes approximation errors. Because equation 15.3 is linearly 
additive, the decomposition result (Wagstaff, van Doorslaer, and Watanabe 2003) 
can be applied, such that the concentration index for y can be written as

(15.4) C x C z C GCj
m

j jj k
m

k kk u= + +∑ ∑( / ) ( / ) /β μ γ μ μ.

Because the partial effects are evaluated at particular values of the variables, for 
example, the means, this decomposition is not unique. This is the inevitable price to 
be paid for the linear approximation. Also, unlike the truly linear case, the index of 
horizontal inequity, HIWV , obtained by subtracting the need contributions in equa-
tion 15.4 from the unstandardized concentration index will not equal the concen-
tration index for need-standardized utilization calculated from the estimates of the 
nonlinear model parameters, as described in the previous section. 

Note that equation 15.3 could itself be used to estimate need-standardized utili-
zation and, unlike equation 15.2, its distribution would not depend on the values to 
which the control variables were set. Need-predicted utilization could be defi ned as 

(15.5) ˆ ˆ ˆ ˆy x zi
X m

j
m

j
ji k

m

k
k= + +∑ ∑α β γ .

Then indirectly standardized use would be given by the following:

(15.6) �yi
IS = yi − ŷi

X + ŷ ,

where ŷ  is the mean of the predictions from equation 15.3 with all variables at 
actual values. Because equation 15.3 is linearly additive, the z variables cancel in the 
fi nal two terms of equation 15.6, and the variance of   �yi

IS, unlike that of ŷi
IS, does not 

depend on the values to which those variables are set in the need-prediction equa-
tion, 15.5. However, �yi

IS will depend on the values of both the x and z variables at 
which the partial effects are evaluated. There is no escaping the nonuniqueness of 
the standardization in the context of a nonlinear model including control variables.

Computation

Stata code for the concentration index decomposition based on linear regression is 
provided in chapter 13. For nonlinear estimators, the partial effects must be calcu-
lated from the parameter estimates and then the contributions calculated using these 
partial effects, as in equation 15.4. For the probit model, Stata has a programmed 
routine called dprobit that provides partial effects directly (see chapter 11): 

dprobit y $X $Z [pw=weight]
matrix dfdx=e(dfdx)

The matrix command saves the partial effects into a matrix named dfdx. By 
default, partial effects are calculated at the sample means. They can be computed at 
another vector of values using the at(matname) option (see chapter 11). For other 
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Box 15.2 Decomposition of Inequality in Utilization of Preventive Care in Jamaica, 1989

We decompose the concentration index for any use of preventive health care in Jamaica. 
The probability of making any use of preventive care is estimated both by least squares, 
in which the decomposition is exactly as presented in chapter 13, and by probit, in which 
case we make a linear approximation to the model using the partial effects evaluated at 
sample means, as in equation 15.3, and then use the decomposition given by equation 
15.4. Need and nonneed variables are as described in box 15.1, although, as pointed out 
above, the decomposition approach allows the user to choose which factors to consider 
as need proxies. We do not present the full decomposition results but provide, in the 
table below, the absolute and percentage contributions to the unstandardized concen-
tration index for groups of “need” factors (age-sex dummies, self-assessed health dum-
mies, and functional limitation dummies) and for the two “nonneed” factors. Results 
are not particularly sensitive to the estimation method. The residual difference between 
the unstandardized concentration index and the sum of the contributions of all need 
and nonneed factors is larger for the partial effects probit approach, largely because 
this gives a slightly larger estimate of the contribution of household expenditure. 

The contribution of all need factors is negative, indicating that if utilization were 
determined by need alone, it would be pro-poor. The aggregate contribution of all 
need factors is about 47 percent of the unstandardized index. Self-assessed health and 
functional limitations each contribute roughly twice as much as the age-sex groups. 
Although the distribution of need pushes utilization in a pro-poor direction, this is more 
than offset by the direct effect of household expenditure and of insurance coverage. If 
need were distributed equally, the direct effect of household expenditure on utilization 
would produce a concentration index 29 to 34 percent greater than that observed. There 
is also an indirect effect of household expenditure on utilization through health insur-
ance coverage that raises the concentration index by 24 percent of its observed value. 

The horizontal inequity index is positive, indicating that for given need, the better-
off make greater use of preventive care in Jamaica. The index is not particularly sensi-
tive to the estimation method.

Decomposition of Concentration Index for Access to Preventive Health Care 
in Jamaica, 1989

 Contributions to concentration index for any preventive care

 OLS  Probit partial effects 

 Absolute  Percentage  Absolute  Percentage 

Need factors  

Age-sex groups  –0.0083  –8.9 –0.0110  –11.9

Self-assessed health  –0.0169  –18.2  –0.0163  –17.5

Functional limitations  –0.0182  –19.6 –0.0170  –18.3

Subtotal –0.0434 –46.7 –0.0443 –47.7

Nonneed factors 

Log household expenditure  0.1196  128.8 0.1249  134.5

Health insurance cover  0.0218  23.5 0.0221  23.8

Subtotal 0.1414 152.3 0.1470 158.3

Residual –0.0052 –5.6 –0.0099 –10.6

Total 0.0928  0.0928 

Horizontal inequity index 0.1362  0.1371

Source: Authors.
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nonlinear models, the partial effects can be calculated using the mfx command 
after running the model (see chapter 11).

The contributions of need factors can then be computed with the following 
loop:

sca need=0
foreach x of global X {
 qui {
  mat b_`x’ = dfdx[1,”`x’“]
  sca b_`x’ = b_`x’[1,1] 
  corr r `x’ [aw=weight], c
  sca cov_`x’ = r(cov_12)    
  sum `x’ [aw=weight]
  sca m_`x’ = r(mean)    
  sca elas_`x’ = (b_`x’*m_`x’)/m_y
  sca CI_`x’ = 2*cov_`x’/m_`x’     
  sca con_`x’ = elas_`x’*CI_`x’   
  sca prcnt_`x’ = con_`x’/CI   
  sca need=need+con_`x’
 }
 di “`x’ elasticity:”, elas_`x’
 di “`x’ concentration index:”, CI_`x’
 di “`x’ contribution:”, con_`x’
 di “`x’ percentage contribution:”, prcnt_`x’
}

where CI is a scalar equal to the unstandardized concentration index computed 
as in chapter 8. The scalar need will contain the sum of the contributions of all the 
need factors. The contributions of the nonneed factors can be computed by running 
the same loop over the global Z containing the nonneed factors and renaming the 
scalar need to nonneed. The total contributions of all need factors and of nonneed 
factors and the horizontal inequity index (HIWV) can then be displayed as follows:

di “Inequality due to need factors:”, need 
di “Inequality due to non-need factors:”, nonneed
sca HI = CI - need
di “Horizontal Inequity Index:”, HI

Further reading

Detailed discussion of the issues touched on in this chapter can be found in Wag-
staff and van Doorslaer (2000); Gravelle (2003); Schokkaert and van de Voorde 
(2004); and van Doorslaer, Koolman, and Jones (2004). Standard errors for the con-
tributions to the concentration index decomposition can be obtained by bootstrap-
ping (van Doorslaer, Koolman, and Jones 2004). Gravelle, Morris, and Sutton (2006) 
make a valuable contribution in placing the empirical study of equity in health care 
in the context of a social welfare maximization model. That helps to make explicit 
the links between normative and positive analysis of the distribution of health care, 
a point that has also been emphasized by Schokkaert and van de Voorde (2004). It 
also helps clarify the conditions required for the identifi cation of horizontal and 
vertical equity and to distinguish between the two. 
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16
Who Pays for Health Care? 
Progressivity of Health Finance 

Who pays for health care? To what extent are payments toward health care related 
to ability to pay? Is the relationship proportional? Or is it progressive—do health 
care payments account for an increasing proportion of ability to pay (ATP) as the 
latter rises? Or, is there a regressive relationship, in the sense that payments com-
prise a decreasing share of ATP? The preferred relationship between health care 
payments and ATP will vary across individuals with their conceptions of fairness. 
But identifi cation of the nature of the empirical relationship and quantifi cation of 
the degree of any progressivity or regressivity is of interest, not only from a wide 
range of equity perspectives, but also for macroeconomic and political analyses of 
the health care system.

This chapter provides practical advice on methods for assessing and measur-
ing progressivity in health care fi nance. Throughout, we measure progressivity 
through departures from proportionality in the relationship between payments 
toward the provision of health care and ATP. There are other approaches to the 
measurement of progressivity (Lambert 1993). The relationship between progres-
sivity and the redistributive impact of health care payments is considered in the 
next chapter. 

Defi nition and measurement of variables

There are two distinct stages to an analysis of progressivity. First, establish the 
progressivity of each source of fi nance. Second, establish the overall progressiv-
ity of the system by weighting the progressivity of the separate sources. Two types 
of data are required: survey data to establish the distribution of payments across 
households and aggregate data to determine the macroweights to be assigned to 
each fi nance source. The most suitable source of survey data is a household income 
and expenditure survey, which should contain good data on the two central vari-
ables: payments toward health care and ability to pay. 

Ability to pay

In a developing country context, given the lack of organized labor markets and 
the high variability of incomes over time, household consumption, or even expen-
diture, is generally considered to be a better measure of welfare and ATP, than is 
income (see chapter 6). In principle, ATP should indicate welfare before payments 
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for health care, and so measurement of ATP by consumption requires an assump-
tion, most probably a strong one, that the means of fi nancing health care does not 
affect saving decisions. Household consumption net of expenditures assumed 
nondiscretionary, such as those on food, is often used as a measure of welfare 
(World Health Organization 2000). For the purpose of assessing progressivity, such 
a measure of ATP can be problematic, depending on the objective, if the nondis-
cretionary expenditures are, in fact, sensitive to the system of health fi nance. For 
example, the relative tax rate imposed on food would be expected to differentially 
infl uence household decisions with respect to food spending. Then the distribu-
tion of household consumption net of food expenditure is itself a product of the 
health fi nance system and does not provide a benchmark against which to assess 
the distributional impact of that system. But if the objective is simply to assess the 
degree of proportionality between health payments and some measure of living 
standards, then household expenditures gross or net of those on food can be used, 
as preferred.

If one wishes to make  an inference about the distributional impact of health 
fi nance (World Health Organization 2000), then the measure of ATP should be 
gross of all health care, tax, and social insurance payments. Out-of-pocket pay-
ments for health care should already be included in measures of household 
consumption/expenditure, but it will be necessary to add direct tax payments, 
social insurance contributions that contribute to health fi nancing and, possibly, pri-
vate health insurance premiums. If household income is used to proxy ATP, then 
it must be gross of tax and social insurance contributions, and one examines the 
impact of health fi nancing on this benchmark distribution of income. 

Adjustment should be made for the size and age structure of the household 
through application of an equivalence scale (see chapter 6). 

Health care payments

Evaluation of progressivity in health care fi nance requires examination of all 
sources of health sector funding and not simply those payments that are made 
exclusively for health care. So, in addition to out-of-pocket (OOP) payments, health 
insurance contributions, and earmarked health taxes, the distributional burden of 
all direct and indirect taxes is relevant in cases in which, as is commonly true, some 
health care is fi nanced from general government revenues. Social insurance con-
tributions should also be considered. One source of revenue, foreign aid, is not rel-
evant because the purpose is to evaluate the distributional impact on the domestic 
population. Assuming tax parameters have been set for foreign loan repayment, 
the distributional burden on the current generation of foreign debt fi nancing will 
be captured through evaluation of the tax distribution. 

In summary, there are fi ve main sources of health care fi nance to be considered: 
direct taxes, indirect taxes, social insurance, private insurance, and OOP payments. 

Progressivity analyses usually seek to determine the distribution of the real 
economic burden of health fi nance and not simply the distribution of nominal pay-
ments. So, the incidence of payments—who incurs their real cost—must be estab-
lished, or assumed (Atkinson and Stiglitz 1980). For example, the result of employer 
contributions to health insurance is most likely lower wages received by employees. 
The extent to which this is true will depend on labor market conditions, in particu-
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lar, the elasticities of labor demand and supply. Given that incidence depends on 
market conditions, it cannot be determined through application of universal rules. 
However, a fairly conventional set of assumptions follows (Wagstaff et al. 1999):

Payment toward health care Incidence

Personal income and property taxes legal taxpayer

Corporate taxes shareholder (or labor)

Sales and excise taxes consumer

Employer social and private insurance contributions employee

Employee social insurance contributions employee

Individual private insurance premiums consumer

Survey data are unlikely to provide complete information on household tax and 
insurance payments. For example, income tax payments or social insurance contri-
butions may not be explicitly identifi ed, and payments through sales taxes almost 
certainly will not be reported. Various approximation strategies are necessary. For 
example, tax and social insurance schedules can be applied to gross incomes/earn-
ings. The distribution of the sales tax burden can be estimated by applying product-
specifi c tax rates to disaggregated data on the pattern of household expenditure. 

Estimates of OOP payments from survey data are potentially subject to both 
recall bias and small sample bias owing to the infrequency with which some health 
care payments are made. Survey estimates of aggregate payments tend to show 
substantial discrepancies from production-side estimates, in cases in which the 
latter are available. Whether estimates of the distribution, as opposed to the level, 
of OOP payments are biased depends on whether reporting of OOP payments is 
related systematically to ATP. Under the possibly strong assumption of no system-
atic misreporting, survey data can be used to retrieve the distribution of payments, 
and mismeasurement of the aggregate level can be dealt with through application 
of a macroweight that gives the best indication of the relative contribution of OOP 
to total revenues. 

Assessing progressivity

The most direct means of assessing progressivity of health payments is to exam-
ine their share of ATP as the latter varies. In fi gure 16.1, for Egypt we show OOP 
payments for health care as a percentage of total household expenditure by quin-
tile groups of equivalent household expenditure. On average, OOP payments claim 
about 2 percent of household expenditures, and there is a tendency for this share to 
rise with total expenditure, indicating some progressivity.

A less direct means of assessing progressivity, defi ned in relation to departure 
from proportionality, is to compare shares of health payments contributed by pro-
portions of the population ranked by ATP with their share of ATP. That is, to com-
pare the concentration curve for health payments, LH(p), with the Lorenz curve 
for ATP, L(p) (see chapter 7). If payments toward health care always account for 
the same proportion of ATP, then the share of health payments contributed by any 
group must correspond to its share of ATP. The concentration curve lies on top of 
the Lorenz curve. Under a progressive system, the share of health payments contrib-



Box 16.1 Progressivity of Health Care Finance in Egypt, 1997 

Health care in Egypt is fi nanced from a number of sources. As is common for develop-
ing countries, OOP payments contribute the greatest share of revenue, 52 percent in this 
case. The next biggest contribution—one-third—is from general government revenues. 
Social and private health insurance contribute 7 percent and 5.5 percent, respectively, 
and an earmarked health tax on cigarette sales makes up the remaining 3 percent of 
revenues going toward the provision of health care.

We assess the progressivity of this system of health fi nance using data from the 1997 
Egypt Integrated Household Survey. In instances in which it is feasible, the incidence 
assumptions stated above are applied. Payment variables recorded in the survey are as 
follows: (i) direct personal taxes (income, land, housing, and property taxes), (ii) OOP 
medical expenses, and (iii) private health insurance premiums. Payment variables esti-
mated from other survey information were (i) sales and cigarette taxes approximated 
by applying rates to the corresponding expenditures and (ii) social health insurance 
contributions estimated by applying contribution rates to earnings/incomes of covered 
workers/pensioners. ATP is approximated by equivalent household expenditure; cal-
culated as total household expenditure, plus direct tax and social insurance contribu-
tions, divided by the square root of household size. 

In the fi gures we present the concentration curves for each source of fi nance, as well 
as the Lorenz curve for household expenditure. In the fi rst fi gure (a) the concentration 
curves for direct and indirect taxes appear to lie outside the Lorenz curve, suggesting 
that these are progressive sources of fi nance. The formal tests reported in the table con-
fi rm that the Lorenz curve dominates both of these concentration curves. The table also 
reveals that the cumulative shares of direct and indirect taxes paid at each of the fi rst 
four quintiles are always signifi cantly less the respective shares of ATP. Again, con-
fi rming progressivity. The curve for the earmarked cigarette tax appears to lie inside 
the Lorenz curve at lower ATP but outside it at higher ATP. The test does not reject the 
null of nondominance, and therefore proportionality, in this case. Apparently, the dif-
ference between the two curves never reaches statistical signifi cance at any point. 

Figure 16.1 Out-of-Pocket Payments as a Percentage of Total Household Expenditure—
Average by Expenditure Quintile, Egypt, 1997
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Box 16.1 (continued)

Concentration Curves for Health Payments and Lorenz Curve for Household Expenditure, 
Egypt 1997

b.  Social Insurance Contributions, Private Insurance Premiums, and Out-of-Pocket 
Payments

a. Direct, Indirect, and Cigarette Taxes
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Box 16.1 (continued)

In the second fi gure (b), we present the concentration curves for social insurance contri-
butions, private insurance premiums, and OOP payments. The latter concentration curve 
appears to lie outside the Lorenz curve, and the test reported in the table confi rms that 
there is dominance. However, unlike for direct and indirect taxes, the cumulative share of 
OOP payments is not signifi cantly different from the share of ATP at any of the quintiles.1 
Although the concentration curve for private insurance premiums appears to lie below 
the Lorenz curve at lower ATP, the opposite is true at higher ATP. In fact, the test does 
not reject nondominance (/proportionality). The concentration curve for social insurance 
contributions is almost exactly on top of the Lorenz curve (indicating proportionality) up 
to the middle of the ATP distribution but lies inside the Lorenz curve for the top half of the 
distribution. This pattern in the top of the distribution leads to the test fi nding dominance 
of the concentration curve over the Lorenz curve and so regressivity. The quintile shares 
confi rm that the signifi cant differences are at the higher quintiles.

In summary, there is evidence that direct and indirect taxes plus OOP payments are 
progressive means of fi nancing health care in Egypt. There is no evidence that the ear-
marked cigarette tax and private insurance premiums depart signifi cantly from propor-
tionality. Social insurance premiums are regressive but only at the top of the distribution. 

1Despite this, the test fi nds dominance because we use the multiple comparison approach deci-
sion rule, which requires only one signifi cant difference from, in this case, 19 quantile comparison 
points (see chapter 7).

Distributional Incidence of Sources of Health Finance in Egypt, 1997

 Nonearmarked taxes  Earmarked taxes 

 Equivalent Direct   Social Private
Equivalent household household personal Indirect Cigarette insurance insurance OOP
expenditure quintile expenditure taxes taxes tax contrbns. premiums payments

Poorest 20%  7.85% 2.35%* 4.96%* 10.90%* 8.17% 6.36% 7.11%
(standard error)  (0.1481) (0.7609) (0.2276) (1.5543) (0.6241) (1.4012) (0.8350)

Poorest 40%  20.23% 8.70%* 13.86%* 23.54% 21.13%  16.78% 17.56%
 (0.3051) (1.9313) (0.5304) (3.1339) (1.0234) (2.4107) (1.6167)

Poorest 60%  36.46% 17.12%* 27.00%* 38.92% 40.91%* 33.18% 32.45%
 (0.4761) (3.0182) (0.9359) (5.0465) (1.5111)  (3.2497) (2.7124)

Poorest 80%  58.24%  35.60%* 46.15%* 56.14%  64.36%* 64.83% 53.44%
 (0.6415) (5.4012) (1.4279) (7.1683)  (1.5481)  (3.6676)  (4.1572)

Test of dominance 

– Against 45° line  – – – – – – –

– Against Lorenz curve   – –  +  –

Concentration indexa  0.3345 0.5846 0.4780 0.3283 0.2812  0.3334  0.3988
(robust standard error)  (0.0098) (0.0395) (0.0279) (0.0977) (0.0202) (0.0448) (0.0528)
(p-value)  (0.000) (0.000) (0.000) (0.001) (0.000)  (0.000)  (0.000)  

Kakwani index   0.2501 0.1435 –0.0061 –0.0532  –0.0011  0.0644
(robust standard error)   (0.1311) (0.0460) (0.1407) (0.0270)  (0.0748)  (0.0848)
(p-value)  (0.059)  (0.002)  (0.965) (0.051)  (0.988)  (0.449)

Note: For shares:  bold indicates signifi cant difference from population share (5%) 
* indicates signifi cant difference from expenditure share (5%). 

Standard errors for concentration and Kakwani indexes are robust to heteroskedasticity and within cluster correlation.
Dominance tests:  – indicates the 45-degree line/Lorenz curve dominates the concentration curve 

+ indicates concentration curve dominates 45-degree line/Lorenz curve 
Blank indicates nondominance. 

Dominance is rejected if there is at least one signifi cant difference in one direction and no signifi cant difference in 
the other, with comparisons at 19 quantiles and 5% signifi cance level. 

a. Gini index for equivalent household expenditure.
Source: Authors.
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uted by the poor will be less than their share of ATP. The Lorenz curve dominates 
(lies above) the concentration curve. The opposite is true for a regressive system. 

Measuring progressivity

Lorenz dominance analysis is the most general way of detecting departures from 
proportionality and identifying their location in the ATP distribution. But it does 
not provide a measure of the magnitude of progressivity, which may be useful 
when making comparisons across time or countries. Summary indices of progres-
sivity meet this defi ciency but require the imposition of value judgments about the 
weight given to departures from proportionality at different points in the distribu-
tion (Lambert 1989). The Kakwani index (Kakwani 1977) is the most widely used 
summary measure of progressivity in both the tax and the health fi nance litera-
tures (O’Donnell et al. forthcoming; Wagstaff et al. 1992; Wagstaff et al. 1999).

We gave the defi nition of the Kakwani index in chapter 14. It is twice the area 
between a payment concentration curve and the Lorenz curve and is calculated as 
πK = C – G, where C is the concentration index for health payments and G is the 
Gini coeffi cient of the ATP variable. The value of πK ranges from –2 to 1. A negative 
number indicates regressivity; LH(p) lies inside L(p). A positive number indicates 
progressivity; LH(p) lies outside L(p). In the case of proportionality, the concentra-
tion lies on top of the Lorenz curve and the index is zero. But note that the index 
could also be zero if the curves were to cross and positive and negative differences 
between them cancel. Given this, it is important to use the Kakwani index, or any 
summary measure of progressivity, as a supplement to, and not a replacement of, 
the more general graphical analysis.

In a generalized Kakwani index, the judgment about the weight given to depar-
tures from proportionality along the ATP distribution is made explicit through the 
choice of a parameter (Lambert 1989). An alternative to the simple Kakwani is the 
Suits index, which gives greater weight to departures from proportionality that 
occur among households higher up the ATP distribution (Suits 1977).

Progressivity of overall health fi nancing

The progressivity of health fi nancing in total can be measured by a weighted aver-
age of the Kakwani indices for the sources of fi nance, where weights are equal to 
the proportion of total payments accounted for by each source. Thus, overall pro-
gressivity depends both on the progressivity of the different sources of fi nance and 
on the proportion of revenue collected from each of these sources. 

Ideally, the macroweights should come from National Health Accounts (NHA). 
It is unlikely, however, that all sources of fi nance that are identifi ed at the aggregate 
level can be allocated down to the household level from the survey data. Assump-
tions must be made about the distribution of sources of fi nance that cannot be esti-
mated. Their distributional burden may be assumed to resemble that of some other 
payment source. For example, corporate taxes may be assumed to be distributed as 
income taxes. In this case, we say that the missing payment distribution has been 
allocated. Alternatively, we may simply assume that the missing payment is dis-
tributed as the weighted average of all the revenues that have been identifi ed. We 
refer to this as ventilation. Best practice is to make such assumptions explicit and to 
conduct extensive sensitivity analysis.



Box 16.2 Measurement of Progressivity of Health Financing in Egypt

Concentration and Kakwani indices by source of health fi nancing in Egypt are given 
in the bottom part of the table in box 16.1. All concentration indices are signifi cantly 
positive confi rming, as was clear from the concentration curves and dominance tests, 
that the better-off contribute absolutely more to the fi nancing of health care than do 
the poor. The index is largest for direct payments and smallest for social insurance 
contributions, suggesting that direct taxes are most progressive and social insurance 
contributions the least so. The Kakwani indices for both direct and indirect tax are sta-
tistically signifi cantly positive, marginally so in the case of direct taxes (10 percent), 
indicating progressivity. For the cigarette tax, private insurance, and OOP payments, 
the Kakwani indices are not signifi cantly different from zero. In the latter case, this 
seems inconsistent with the result of the dominance test, which indicates that the OOP 
concentration curve is dominated by the Lorenz curve. The explanation would appear 
to be that the curves differ in the top half of the ATP distribution but are near coinci-
dent in the bottom half, where the Kakwani index places more weight. The Kakwani 
index for social insurance contributions is signifi cantly negative at just above the 5 per-
cent signifi cance level. Again, the magnitude of the index is reduced by the near pro-
portionality in the bottom half of the ATP distribution. 

We can formally test for the relative progressivity of different sources of fi nance 
using dominance methods. The results, which are reported in the table, indicate that 
the concentration curve for direct taxes is dominated by all the others, and so we can 
conclude that direct taxes are the most progressive source of fi nance. Next come indi-
rect taxes, the concentration curve for which is dominated by all the others but for OOP 
payments. There are no signifi cant differences between the concentration curves for 
social insurance, private insurance, cigarette taxes, and OOP payments. These sources 
cannot be ranked in relation to progressivity.

Tests of Dominance between Concentration Curves for Different Sources 
of Health Finance, Egypt 1997

 Cigarette Private  Indirect Direct
 tax  insurance  Out-of-pocket  taxes  taxes 

Social insurance  non-D  non-D  non-D  D  D 

Cigarette tax   non-D  non-D  D  D 

Private insurance    non-D  D  D 

Out-of-pocket     non-D  D 

Indirect taxes      D 

Note: D indicates that concentration curve of row source dominates (is more progressive than) 
that of column source. Dominance is rejected if there is at least one signifi cant difference in one 
direction and no signifi cant difference in the other, with comparisons at 19 quantiles and 5% 
signifi cance level. Non-D indicates that nondominance between the concentration curves cannot 
be rejected. 

Source: Authors.

Box 16.3 Derivation of Macroweights and Kakwani Index for Total Health Finance, 
Egypt, 1997

The NHA shares of total health revenues in Egypt (1994–5) from various fi nance sources 
are given in the table. The table also shows which of the various fi nance sources can be 
allocated, either directly or through estimation, from the survey data. In this example, 
as in most others, the main diffi culty concerns the allocation of the 33 percent of all 
health care fi nance that fl ows from general government revenues. Only direct personal 
and sales taxes, which account for only one-sixth of government revenues, can be allo-
cated down to households. Nonetheless, it is possible to allocate to households, rev-
enues that account for 72 percent of all health care fi nance. 
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Share of  Method of  Kakwani 

 Macroweights 

Finance source  total fi nance allocation by source  Case 1  Case 2  Case 3 

General government revenues  32.98% 

Taxes

a. Income, capital gains, and property  0.78  reported  0.2501  0.0469  0.0552  0.0108

b. Corporate  4.83  ventilated
  allocated / 

c. Other income, profi t, and capital gains  0.62  ventilated

d. Domestic sales of goods and services  4.72  estimated  0.1435  0.2829  0.2825 0.0649
  allocated / 

e. Import duties  3.64  ventilated

f. Other  3.22  ventilated

Nontax revenue 15.16  ventilated

Earmarked cigarette tax 3.00  estimated  –0.0061  0.0300  0.0300  0.0425

Social insurance  6.67  estimated  –0.0532  0.0667  0.0667  0.0919

Private insurance  5.57  reported  –0.0011  0.0557  0.0557  0.0768

Out-of-pocket payments 51.77  reported  0.0644  0.5177  0.5177  0.7132 

Total  100%    1.0000  1.0000  1.0000 

% revenues allocated  72.51%    

 Kakwani for total health fi nance  0.0819  0.0839  0.0527

Derivation of macroweights:

Case 1—Unallocated revenues distributed as the weighted average of allocated taxes.

Case 2— Taxes c. distributed as taxes a. Taxes e. distributed as d. Remainder of unallocated revenues 
distributed as weighted average of allocated taxes. 

Case 3—Unallocated revenues distributed as weighted average of all allocated payments. 

Sources: Government of Egypt 1995; Rannan–Eliya 1998.

Box 16.3 (continued)

 We consider three sets of assumptions about the distribution of unallocated revenues. 
In case 1, it is assumed that unallocated general government revenues are distributed as the 
weighted average of those taxes that can be allocated. Essentially, this involves infl ating the 
weight given to the taxes that can be allocated. For example, the weight on domestic sales 
taxes is infl ated from its actual value of 0.0472 of all health fi nance to a value of 0.2829 (= 
[4.72/5.5]*0.3298) to refl ect the distribution of unallocated revenues. In case 2, we assume 
that “other income, profi ts, and capital gains taxes” are distributed as direct personal taxes 
and that import duties are distributed as sales taxes. It is assumed that the rest of the unal-
located revenues are distributed as the weighted average of the allocated taxes. Finally, in 
case 3, we assume that unallocated revenues are distributed as the weighted average of all 
allocated payments (and not just allocated taxes). Another interpretation of this case is that 
the Kakwani index is informative of the overall progressivity of only those health payments 
that can be allocated to households. 

The relative emphasis given to such alternative scenarios should depend on evidence as to 
the relative validity of the underlying assumptions. In the example, the various assumptions 
about the distributions of the unallocated revenues makes little difference to the conclusion 
about the overall progressivity of the health fi nance system. In every case, the Kakwani index 
for total payments is only very slightly positive, indicating near proportionality.

Source: Authors.
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Computation

Quintile shares, dominance tests, and concentration indices can be computed as 
described in chapters 7 and 8. Computation for the Kakwani index is provided in 
chapter 14. 
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17
Redistributive Effect of Health Finance

Contributions toward the fi nance of health care may redistribute disposable 
income. This redistribution may be intended or unintended. Even in the latter case, 
policy makers may be interested in the degree to which it occurs because of conse-
quences for the distribution of goods and services other than health care and, ulti-
mately, for welfare. Redistribution can occur when payments toward the fi nancing 
of health care are compulsory and independent of utilization, most obviously when 
health care is partly fi nanced from government tax revenues. If tax liabilities rise 
disproportionately with gross incomes, then the posttax distribution of income will 
be more equal than the pretax distribution. When health care payments are made 
voluntarily, they do not have a redistributive effect on economic welfare. Payments 
are made directly in return for a product—health care. It would not make sense 
to consider the welfare-reducing effect of the payments made while ignoring the 
welfare-increasing effect of the health care consumption deriving from those pay-
ments. This begs the question of the extent to which out-of-pocket payments for 
health care should be considered voluntary. It might be argued that the moral com-
pulsion to purchase vital health care for a relative is no less strong than the legal 
compulsion to pay taxes. But in most instances, there is discretion in the purchase 
of health care in response to health problems.

Redistribution can be vertical and horizontal. The former occurs when payments 
are disproportionately related to ability to pay. The extent of vertical redistribution 
can be inferred from measures of progressivity discussed in the previous chapter. 
Horizontal redistribution occurs when persons with equal ability to pay contrib-
ute unequally to health care payments. In this chapter, we describe how the total 
redistributive effect of compulsory health payments can be measured and how this 
redistribution can be decomposed into its vertical and horizontal components.

Decomposing the redistributive effect

One way of measuring the redistributive effect of any compulsory payment on 
the distribution of incomes is to compare inequality in prepayment incomes—as 
measured by, for instance, the Gini coeffi cient—with inequality in postpayment 
incomes (Lambert 1989). The redistributive impact can be defi ned as the reduction 
in the Gini coeffi cient caused by the payment. Thus, 

(17.1) RE = GX −GX − P ,

where GX
 and GX − P are the prepayment and postpayment Gini coeffi cients, respec-

tively, where X denotes prepayment income, or more generally some measure of 
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ability to pay, and P denotes the payment. Aronson, Johnson, and Lambert (1994) 
have shown that this difference can be written as 

(17.2)  RE = V − H − R ,

where V is vertical redistribution, H is horizontal inequity, and R is the degree of 
reranking. Because there are few households in any sample with exactly the same pre-
payment income, one needs to artifi cially create groups of prepayment equals, within 
intervals of prepayment income, to distinguish and compute the components of equa-
tion 17.2. The vertical redistribution component, which represents the redistribution 
that would arise if there were horizontal equity in payments, can then by defi ned as 

(17.3)   V =GX −G0 ,

where G0 is the between-groups Gini coeffi cient for postpayment income. This can 
be computed by replacing all postpayment incomes with their group means. V itself 
can be decomposed into a payment rate effect and a progressivity effect,

(17.4) 
  
V =

g
1− g

⎛
⎝⎜

⎞
⎠⎟

KE ,

where g is the sample average payment rate (as a proportion of income) and KE is 
the Kakwani index of payments that would arise if there were horizontal equity in 
health care payments. It is computed as the difference between the between-groups 
concentration index for payments and GX . In effect, the vertical redistribution gen-
erated by a given level of progressivity is “scaled” by the average rate g.

Horizontal inequity H is measured by the weighted sum of the group (j) specifi c 
postpayment Gini coeffi cients, 

 
Gj

X − P , where weights are given by the product of the 
group’s population share and its postpayment income share, α j . 

(17.5) H Gj j
X P

j

= −∑α . 

Note that because the Gini coeffi cient for each group of prepayment equals is non-
negative, H is also nonnegative. Because it is subtracted in equation 17.2, horizontal 
inequity H can only reduce redistribution, not increase it. This simply implies that 
any horizontal inequity will always make a postpayment distribution of incomes 
more unequal than it would have been in its absence. 

Finally, R captures the extent of reranking of households that occurs in the move 
from the prepayment to the postpayment distribution of income. It is measured by 

(17.6)  R = GX − P − CX − P ,

where  C
X − P  is a postpayment income concentration index that is obtained by fi rst 

ranking households by their prepayment incomes and then, within each group of 
prepayment “equals,” by their postpayment income. Note again that R cannot be 
negative, because the concentration curve of postpayment income cannot lie below 
the Lorenz curve of postpayment income. The two curves coincide (and the two 
indices are equal) if no reranking occurs. 

All in all, the total redistributive effect can be decomposed into four compo-
nents: an average rate effect (g), the departure-from-proportionality or progressiv-
ity effect ( KE ), a horizontal inequity effect H, and a reranking effect R. Practical 
execution of this decomposition requires an arbitrary choice of income intervals 
to defi ne “equals.” Although this choice will not affect the total H+R, it will affect 
the relative magnitudes of H and R. In general, the larger are the income intervals, 
the greater will be the estimate of horizontal inequity and the smaller will be the 
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estimate of reranking (Aronson, Johnson, and Lambert 1994). That makes the dis-
tinction between H and R rather uninteresting in applications.1 More interesting is 
the quantifi cation of the vertical redistribution V, both in absolute magnitude and 
relative to the total redistributive effect, and its separation into the average rate and 
progressivity effects. Van Doorslaer et al. (1999) make this decomposition of the 
redistributive effect of health fi nance for 12 OECD countries. 

1See Duclos, Jalbert, and Araar (2003) for an alternative approach that avoids this limitation.

Box 17.1 Redistributive Effect of Public Finance of Health Care in the Netherlands, 
the United Kingdom, and the United States

To illustrate the redistributive effect of health fi nance and its decomposition, we pres-
ent results for three countries—the Netherlands, the United Kingdom, and the United 
States—taken from van Doorslaer et al. (1999). For each country, we show the redistribu-
tive effect of compulsory payments toward publicly fi nanced health care. Public fi nance 
predominates in the fi nance of health care in both the Netherlands and the United King-
dom, but the source differs. The Netherlands relies mainly on social insurance, whereas 
most fi nance in the United Kingdom comes from general taxation. Although the major-
ity of health care fi nance is private in the United States, there is a substantial contribu-
tion from public funds, with two-thirds of this from general taxation.

The fi gures in the fi rst row of the table indicate that public fi nance of health care brings 
about redistribution from rich to poor in the United Kingdom and the United States but 
from poor to rich in the Netherlands. In both the United Kingdom and the United States, 
vertical redistribution is very large in comparison with the total redistribution. If there 
were no horizontal inequity, redistribution from rich to poor would be only 2.4 percent 
and 5 percent greater than its actual magnitude in the United Kingdom and United 
States, respectively. In the Netherlands, vertical redistribution is from poor to rich, and 
horizontal inequity and reranking adds a further 6.6 percent of the redistribution in that 
direction. In absolute value, the redistribution is largest in the Netherlands because pub-
lic payments for health care are larger relative to income—8.2 percent of income, com-
pared with only 3.6 percent in the United Kingdom and 6 percent in the United States. It 
is interesting that the United States spends relatively more public dollars on health care 
than does the United Kingdom, despite the United Kingdom being a predominantly pub-
licly funded system. This difference in the scale of public spending is responsible for the 
greater redistributive effect in the United States. Public fi nance is more progressive in the 
United Kingdom, indicated by the Kakwani index, but there is less of it. 

Source: Authors.

Decomposition of Redistributive Effect of Public Finance of Health Care 
in the Netherlands, the United Kingdom, and the United States

   United United
  Netherlands Kingdom States 
  (1992) (1992) (1987) 

Redistributive effect  RE = GX – GX–P  –0.0096  0.0044  0.0063 

Vertical redistribution effect  V = [g/(1–g)]*KE  –0.0089  0.0045  0.0066 

Vertical redistribution as % of RE  (V/RE)*100  93.40  102.40  105.00 

Total payment as fraction  g  0.0821  0.0361  0.0604 
of income 

Kakwani index assuming  KE  –0.0999  0.1221  0.0979
horizontal equity  

Source: van Doorslaer et al. 1999.
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Computation

Let y be prepayment income and wt be the sample weight variable. Create the 
weighted fractional rank (r), and estimate the Gini coeffi cient (gini) for prepay-
ment income using, for example, the covariance approach (see chapter 8), 

egen  rank1 = rank(y), unique
sort rank1
qui sum wt
gen wi=wt/r(sum)
gen cusum=sum(wi)
gen wj=cusum[_n-1]
replace wj=0 if wj==.
gen r=wj+0.5*wi

qui sum y [aw=wt]
sca m_y=r(mean)
qui cor r y [aw=wt], c
sca gini=2*r(cov_12)/m_y

Let X be a global containing all the compulsory health payments variables for 
which the decomposition is to be undertaken. For taxes, we wish to identify the 
redistributive effect only of that part of taxation that is used to fund health care. So, 
all tax payments must be scaled by tax-funded expenditure on health care as a pro-
portion of aggregate general government expenditure on all goods and services. 
Generate a variable representing postpayment income for each payment, and esti-
mate the Gini coeffi cient for that variable. Finally, compute the redistributive effect 
for each payment as the difference between the pre- and postpayment Gini indices. 
This can all be done in the following loop:

foreach x of global X {
 qui { 
  gen ypost_`x’=y-`x’
  sum ypost_`x’ [aw=wt]
  sca my_`x’=r(mean)
  egen  rank_`x’ = rank(ypost_`x’), unique   
  sort rank_`x’
  gen cusum_`x’=sum(wi)
  gen wj_`x’=cusum_`x’[_n-1]
  replace wj_`x’=0 if wj_`x’==.
  gen r_`x’=wj_`x’+0.5*wi
  corr r_`x’ ypost_`x’ [aw=wt], c
  sca gini_`x’=2*r(cov_12)/my_`x’
  sca re_`x’=gini-gini_`x’
 }
}

For the decomposition of the redistributive effect, households must be grouped 
into prepayment “equals.” To do this, create a variable that categorizes households 
according to prepayment income intervals of fi xed width. For example, to break the 
sample into 100 groups, each spanning an interval of income of fi xed width, the fol-
lowing may be used:
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qui sum y
local max=r(max)
kdensity y [aw=wt], n(100) nograph
local width=r(scale)
egen ygroup=cut(y), at(0(`width’)`max’) icodes
recode ygroup .=99

where the kdensity command is used simply to create the width of the income 
intervals and the egen command creates the categorical variable, ygroup.

To compute the concentration index of postpayment income, which is subtracted 
from the Gini coeffi cient for prepayment income in calculation of the reranking 
term (equation 17.6), we need to rank the groups by prepayment income and then 
rank households within the groups by postpayment income. With households 
ranked in this way, the appropriate weighted fractional rank must be computed. 
The concentration index can then be estimated by the covariance method and the 
reranking term computed. This is all done in the following loop: 

foreach x of global X {
 qui { 
  drop cusum_`x’ wj_`x’ r_`x’
  sort ygroup rank_`x’
  gen cusum_`x’=sum(wi)
  gen wj_`x’=cusum_`x’[_n-1]
  replace wj_`x’=0 if wj_`x’==.
  gen r_`x’=wj_`x’+0.5*wi
  corr r_`x’ ypost_`x’ [aw=wt], c
  sca ci_`x’=2*r(cov_12)/my_`x’
  sca rr_`x’=gini_`x’ - ci_`x’
 }
}

To compute the Kakwani index in equation 17.4, the data can be collapsed to 
(weighted) group means and the between-groups concentration index for pay-
ments estimated at that level. First, create a constant (grpsize) that will indicate 
the group sizes when the data are collapsed, and preserve before collapsing the 
data so that they can be restored later to the household level.

gen grpsize=1
preserve
collapse (mean) y $X (sum) grpsize [aw=wt], by(ygroup)

At this level, the group sizes are the appropriate weights for computations at the 
level of group means. For these weights, create the weighted fractional rank to be 
used in estimation of the concentration index.

egen  rank1 = rank(y), unique   
sort rank1
qui sum grpsize
gen wi=grpsize/r(sum)
gen cusum=sum(wi)
gen wj=cusum[_n-1]
replace wj=0 if wj==.
gen r=wj+0.5*wi
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Now the between-groups concentration index can be estimated and the Kakwani 
index computed as the difference between this and the Gini coeffi cient for prepay-
ment income.

foreach x of global X {
 qui { 
  sum `x’ [aw=grpsize]
  sca m_`x’=r(mean)
  corr r `x’ [aw=grpsize], c
  sca ci2_`x’=2*r(cov_12)/m_`x’
  sca k_`x’=ci2_`x’ - gini
 }
}

The household-level data can then be restored with the restore command. 
The vertical redistribution effect (equation 17.4) can now be computed and this 
expressed as a percentage of the total redistribution effect.

foreach x of global X {
  qui sum `x’ [aw=wt]
  sca g_`x’=r(mean)/m_y
  sca v_`x’=(g_`x’/(1-g_`x’))*k_`x’
  sca v100_`x’=(v_`x’/re_`x’)*100
}

The results of the decomposition can then be displayed.

foreach x of global X {
 di “Decomposition of redistributive effect of `x’ 
  payments”
 di “Redistributive effect:”, re_`x’
 di “Vertical redistribution:”, v_`x’
 di “Vertical redistribution as % total redist. effect”,  
  v100_`x’
 di “Payments as a fraction of total income, g”, g_`x’
 di “Horizontal inequity”, v_`x’-rr_`x’-re_`x’
 di “Reranking”, rr_`x’
}
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18
Catastrophic Payments for Health Care

Health care fi nance in low-income countries is still characterized by the domi-
nance of out-of-pocket payments and the relative lack of prepayment mechanisms, 
such as tax and health insurance. Households without full health insurance cover-
age face a risk of incurring large medical care expenditures should they fall ill. 
This uninsured risk reduces welfare. Further, should a household member fall 
ill, the out-of-pocket purchase of medical care would disrupt the material living 
standards of the household. If the health care expenses are large relative to the 
resources available to the household, this disruption to living standards may be 
considered catastrophic. One conception of fairness in health fi nance is that house-
holds should be protected against such catastrophic medical expenses (World 
Health Organization 2000). 

Ideally, longitudinal data would be used to estimate the extent to which liv-
ing standards are seriously disrupted by the purchase of medical care in response 
to illness shocks. That would allow one to identify how spending on nonmedical 
goods and services changes following some health shock (Gertler and Gruber 2002; 
Wagstaff 2006). But often only cross-section data are available. Some approximation 
to the disruptive effect of health expenditures on material living standards must 
then be made. A popular approach has been to defi ne medical spending as “cata-
strophic” if it exceeds some fraction of household income or total expenditure in a 
given period, usually one year (Berki 1986; Russell 2004; Wagstaff and van Door-
slaer 2003; Wyszewianski 1986; Xu et al. 2003). The idea is that spending a large 
fraction of the household budget on health care must be at the expense of the con-
sumption of other goods and services. This opportunity cost may be incurred in 
the short term if health care is fi nanced by cutting back on current consumption 
or in the long term if it is fi nanced through savings, the sale of assets, or credit. 
With cross-section data, it is diffi cult to distinguish between the two. Besides this, 
there are other limitations of the approach. First, it identifi es only the households 
that incur catastrophic medical expenditures and ignores those that cannot meet 
these expenses and so forgo treatment. Through the subsequent deterioration of 
health, such households probably suffer a greater welfare loss than those incurring 
catastrophic payments. Recognizing this, Pradhan and Prescott (2002) estimate 
exposure to, rather than incurrence of, catastrophic payments. Second, in addi-
tion to medical spending, illness shocks have catastrophic economic consequences 
through lost earnings. Gertler and Gruber (2002) fi nd that in Indonesia earnings 
losses are more important than medical spending in disrupting household living 
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standards following a health shock. Notwithstanding these limitations, medical 
spending in excess of a substantial fraction of the household budget is informative 
of at least part of the catastrophic economic consequences of illness, without fully 
identifying the welfare loss from lack of fi nancing protection against health shocks. 
In this chapter, we describe measures of catastrophic health payments based on 
this approach.

Catastrophic payments—a defi nition

The two key variables underlying the approach are total household out-of-pocket 
(OOP) payments for health care and a measure of household resources. Income, 
expenditure, or consumption could be used for the latter. Of these, only income 
is not directly responsive to medical spending. That may be considered an advan-
tage. However, the health payments-to-income ratio is not responsive to the means 
of fi nancing health care, and that may be considered a disadvantage. Consider two 
households with the same income and health payments. Say one household has 
savings and fi nances health care from their savings, whereas the other has no sav-
ings and must cut back on current consumption to pay for health care. This differ-
ence is not refl ected in the ratio of health payments to income, which is the same 
for both households. But the ratio of health payments to total household expendi-
ture will be larger for the household without savings. Assuming that the opportu-
nity cost of current consumption is greater, the “catastrophic impact” is greater for 
the household without savings and, to an extent, this will be refl ected if expendi-
ture, but not if income, is used as the denominator in the defi nition of catastrophic 
payments. 

If total household expenditure is used as the denominator, the catastrophic pay-
ments are defi ned in relation to the health payments budget share. A potential prob-
lem is that this budget share may be low for poor households in low-income coun-
tries. The severity of the budget constraint means that most resources are absorbed 
by items essential to sustenance, such as food, leaving little to spend on health 
care. This derives from the fi rst limitation of the catastrophic payments approach 
identifi ed above. Households that cannot afford to meet catastrophic payments are 
ignored. A partial solution is to defi ne catastrophic payments not with respect to 
the health payments budget share but with respect to health payments as a share 
of expenditure net of spending on basic necessities. The latter has been referred to 
as “nondiscretionary expenditure” (Wagstaff and van Doorslaer 2003) or “capac-
ity to pay” (Xu et al. 2003). The diffi culty lies in the defi nition of expenditure that 
is nondiscretionary. A common approach is to use household expenditure net of 
food spending as an indicator of living standards. Of course, not all food purchases 
are nondiscretionary. But nonfood expenditure may better distinguish between the 
rich and the poor than does total expenditure. 

Let T be OOP payments for health care, x be total household expenditure, and 
f(x) be food expenditure, or nondiscretionary expenditure more generally. Then, 
a household is said to have incurred catastrophic payments if T/x, or T/[x-f(x)], 
exceeds a specifi ed threshold, z. The value of z represents the point at which the 
absorption of household resources by spending on health care is considered to 
impose a severe disruption to living standards. That is obviously a matter of judg-
ment. Researchers should not impose their own judgment but rather should pres-
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ent results for a range of values of z and let the reader choose where to give more 
weight. The value of z will depend on whether the denominator is total expendi-
ture or nondiscretionary expenditure. Spending 10 percent of total expenditure on 
health care might be considered catastrophic, but 10 percent of nondiscretionary 
expenditure probably would not. In the literature, when total expenditure is used 
as the denominator, the most common threshold that has been used is 10 percent 
(Pradhan and Prescott 2002; Ranson 2002; Wagstaff and van Doorslaer 2003), with 
the rationale that this represents an approximate threshold at which the household 
is forced to sacrifi ce other basic needs, sell productive assets, incur debt, or become 
impoverished (Russell 2004). World Health Organization researchers have used 40 
percent (Xu et al. 2003) when “capacity to pay” (roughly, nonfood expenditure) is 
used as the denominator.

Measuring incidence and intensity of catastrophic payments

Measures of the incidence and intensity of catastrophic payments can be defi ned 
analogous to those for poverty. The incidence of catastrophic payments can be esti-
mated from the fraction of a sample with health care costs as a share of total (or 
nonfood) expenditure exceeding the chosen threshold. The horizontal axis in fi g-
ure 18.1 shows the cumulative fraction of households ordered by the ratio T/x from 
largest to smallest.1 Reading off this graph at the threshold z, one obtains the frac-
tion H of households with health care budget shares that exceed the threshold z. 
This is the catastrophic payment head count. Defi ne an indicator, E, which equals 1 
if Ti/xi > z and zero otherwise. Then an estimate of the head count is given by 

(18.1) H = 1
N

Eii=1

N∑ , 

where N is the sample size. 
This measure does not refl ect the amount by which households exceed the 

threshold. Another measure, the catastrophic payment overshoot, captures the 
average degree by which payments (as a proportion of total expenditure) exceed 
the threshold z. Defi ne the household overshoot as Oi = Ei ((Ti /xi )− z) . Then the 
overshoot is simply the average:

(18.2) 
  
O = 1

N
Oii=1

N∑ .

In fi gure 18.1, O is indicated by the area under the payment share curve but 
above the threshold level. It is clear that although H captures only the incidence 
of any catastrophes occurring, O captures the intensity of the occurrence as well. 
They are related through the mean positive overshoot, which is defi ned as follows: 

(18.3) 
 
MPO = O

H
.

Because this implies that O = H × MPO, it means that the catastrophic over-
shoot equals the fraction with catastrophic payments times the mean positive over-
shoot—the incidence times the intensity. Obviously, all of the measures above can 
also be defi ned with x-f(x) as denominator. 

1The fi gure is basically the cumulative density function for the reciprocal of the health pay-
ments budget share with the axes reversed. 
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Box 18.1 Catastrophic Health Care Payments in Vietnam, 1993

The table below presents measures of the incidence and intensity of catastrophic pay-
ments for health care in Vietnam estimated from the 1998 Vietnam Living Standards 
Survey. Catastrophic payments are defi ned for health payments as a share of both total 
household expenditure and nonfood expenditure, using various threshold budget 
shares. As the threshold is raised from 5 percent to 25 percent of total expenditure, the 
estimate of the incidence of catastrophic payments (H) falls from 33.8 percent to 2.9 per-
cent, and the mean overshoot drops from 2.5 percent of expenditure to only 0.3 percent. 
Standard errors are small relative to the point estimates, which is to be expected for a 
reasonable sample size (5,999 in this case). Unlike the head count and the overshoot, 
the mean overshoot among those exceeding the threshold (MPO) need not decline as 
the threshold is raised. Those spending more than 5 percent of total expenditure on 
health care, on average spent 12.5 percent (5% + 7.48%). Those spending more than 25 
percent of the household budget on health care, on average spent 35.5 percent. 

For a given threshold, both the head count and the overshoot are higher, as they 
must be, when catastrophic payments are defi ned with respect to health payment rela-
tive to nonfood expenditure. This is also illustrated graphically in the fi gure, which 
shows the health budget share curves for both defi nitions. For any budget share, the 
OOP/[nonfood exp.] curve is always to the right of the OOP/[total exp.] curve. For 
instance, for more than 15 percent of households, health spending was at least a quar-
ter of nonfood expenditure, but health spending was a quarter of total expenditure for 
only 3 percent of households. 

Estimates of the incidence and intensity of catastrophic payments in 14 Asian coun-
ties are given by van Doorslaer et al. (forthcoming).

Figure 18.1  Health Payments Budget Share against Cumulative Percent of Households 
Ranked by Decreasing Budget Share
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Box 18.1 (continued)

Incidence and Intensity of Catastrophic Health Payments, Vietnam 1998 
Defi ned with Respect to Total and Nonfood Expenditure, Various Thresholds

Catastrophic payments measures  Threshold budget share, z 

Out-of-pocket health spending
as share of total expenditure  5%  10%  15%  25%  40% 

Head count (H)  33.77%  15.11%  8.47%  2.89%  —

standard error  0.61%  0.46%  0.36%  0.22%  

Overshoot (O)  2.53%  1.39%  0.81%  0.30%  —

standard error  0.08%  0.06%  0.05%  0.03%  

Mean positive overshoot (MPO)  7.48%  9.18%  9.58%  10.46%  —

As share of nonfood expenditure 

Head count (H)  — — 29.37%  15.10%  5.97% 

standard error    0.59%  0.46%  0.31% 

Overshoot (O)  — — 4.35%  2.24%  0.76% 

standard error    0.13%  0.09%  0.05% 

Mean positive overshoot (MPO)  — — 14.81%  14.83%  12.66% 

Health Payments Total and Nonfood Budget Share against Cumulative Percentage 
of Households Ranked by Decreasing Budget Share, Vietnam 1998
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Distribution-sensitive measures of catastrophic payments

As noted above, if health spending is income elastic, nonfood expenditure may 
be preferred for the denominator of the budget share to better detect catastrophic 
payments among the poor. But the measures introduced in the previous section 
are insensitive to the distribution of catastrophic payments. In the head count, all 
households exceeding the threshold are counted equally. The overshoot counts 
all dollars spent on health care in excess of the threshold equally, irrespective of 
whether they are made by the poor or by the rich. If there is diminishing mar-
ginal utility of income, the opportunity cost of health spending by the poor will be 
greater than that by the rich. If one wishes to place a social welfare interpretation 
on measures of catastrophic payments, then it might be argued that they should be 
weighted to refl ect this differential opportunity cost.

The distribution of catastrophic payments in relation to income could be meas-
ured by concentration indices for Ei and Oi. Label these indices CE and CO. A posi-
tive value of CE indicates a greater tendency for the better-off to exceed the payment 
threshold; a negative value indicates that the worse-off are more likely to exceed 
the threshold. Similarly, a positive value of CO indicates that the overshoot tends to 
be greater among the better-off. One way of adjusting the head count and overshoot 
measures of catastrophic payments to take into account the distribution of the pay-
ments is to multiply each measure by the complement of the respective concentra-
tion index (Wagstaff and van Doorslaer 2003). That is, the following weighted head 
count and overshoot measures are computed:

(18.4) HW = H ⋅ 1− CE( )  and

(18.5) OW = O ⋅ 1− CO( ) . 

The measures imply value judgments about how catastrophic payments incurred 
by the poor are weighted relative to those incurred by the better-off. The imposition 
of value judgments is unavoidable in producing any distribution-sensitive measure. 
In fact, it could be argued that a distribution-insensitive measure itself imposes a 
value judgment—catastrophic payments are weighed equally irrespective of who 
incurs them. The particular weighting scheme imposed by equation 18.4 is that the 
household with the lowest income receives a weight of two, and the weight declines 
linearly with rank in the income distributions so that the richest household receives 
a weight of zero. So, if the poorest household incurs catastrophic payments, it is 
counted twice in the construction of HW; whereas if the richest household incurs 
catastrophic payments, it is not counted at all. A similar interpretation holds for 
equation 18.5. Obviously, different weighting schemes could be proposed to con-
struct alternatives to these rank-dependent weighted head count and overshoot 
indices. 

If those who exceed the catastrophic payments threshold tend to be poorer, 
the concentration index CE will be negative, and this will make HW greater than H. 
From a social welfare perspective and given the distributional judgments imposed, 
the catastrophic payment problem is worse than it appears simply by looking at the 
fraction of the population exceeding the threshold because it overlooks the fact that 
it tends to be the poor who exceed the threshold. However, if it is the better-off indi-
viduals who tend to exceed the threshold, CE will be positive, and H will overstate 
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the problem of the catastrophic payments as measured by HW. A similar interpreta-
tion holds for comparisons between O and OW. 

Computation

Computation of the catastrophic payments measures introduced above is straight-
forward with standard statistical packages such as Stata or SPSS. Here we present 
the appropriate Stata code. Let oop be the household OOP health payments vari-
able. The total household expenditure variable is x and nonfood expenditure, or 
some other defi nition of nondiscretionary expenditure, xnf. Besides variables indi-
cating the sample design parameters where they exist, these are the only variables 
required for the analysis. 

Box 18.2  Distribution-Sensitive Measures of Catastrophic Payments in Vietnam, 1998 

In the table below we present the concentration indices and the rank-weighted head 
count and overshoot measures for the same example of Vietnam. The distribution of 
catastrophic payments clearly depends on whether health payments are expressed as a 
share of total expenditure or of nonfood expenditure. In the former case, catastrophic 
payments rise with total expenditure, with the exception only of the head count at the 
5 percent threshold. This refl ects the fact that the OOP health payments budget share 
tends to rise with total household resources in low-income countries (van Doorslaer 
et al. 2007). As a result, the rank-weighted head count and overshoot are smaller than 
the unweighted indices given in the table in box 18.1. But when health payments are 
assessed relative to nonfood expenditure, the concentration indices are negative, with 
one exception, indicating that the households with low nonfood expenditures are 
more likely to incur catastrophic payments defi ned in this way. As a consequence, the 
weighted indices are larger than the unweighted indices in the table in box 18.1. The 
difference between the total and nonfood expenditure results is due to the income 
inelasticity of food expenditures. 

Distribution-Sensitive Catastrophic Payments Measures, Vietnam 1998

 Threshold budget share, z 

Out-of-pocket health spending 
as share of total expenditure 5%  10%  15%  25%  40%

Concentration index, CE  –0.0315  0.0270  0.0971  0.2955  —

Rank-weighted head count, HW  34.84%  14.70%  7.65%  2.03%  —

Concentration index, CO  0.0960  0.1845  0.2821  0.4594  —

Rank-weighted overshoot, OW  2.28%  1.13%  0.58%  0.16%  —

As share of nonfood expenditure   

Concentration index, CE  — — –0.1299  –0.1020  –0.0116 

Rank-weighted head count, HW  — — 33.19%  16.64%  6.04% 

Concentration index, CO  — — –0.0681  –0.0197  0.0809 

Rank-weighted overshoot, OW  — — 4.65%  2.28%  0.69% 

Source: Authors.
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Create a variable for the health payments budget share (oopshare) and sub-
sequently the indicator of catastrophic payments, Ei (count#), and the overshoot, 
Oi  (over#), for each of the desired threshold values, z, 

gen oopshare=oop/x
forvalues i = 5 10 to 25 {
 gen count`i’=(oopshare>(`i’/100))
 gen over`i’=count`i’*(oopshare-(`i’/100))
}

The head count, H, and the mean overshoot, O, are simply the means of count# and 
over#. In the case that the sample has a complex design, the appropriate estimates of 
the population means and their standard errors would be obtained from the following: 

svyset psu [pw=wt], strata(strata)
svy: mean count* over*

where psu is the variable indicating the primary sampling unit, wt is the sample 
weight, and strata is the variable indicating the characteristic on which the sam-
ple is stratifi ed (see chapter 2). The mean positive overshoot (MPO) is obtained 
from the following: 

forvalues i = 5 10 to 25 {
  svy, subpop(count`i’): mean over`i’
}

Measures of catastrophic payments defi ned with respect to nonfood expenditure 
can easily be obtained by simply replacing x with xnf in the denominator of the 
OOP budget share. One may also want to change the threshold values in this case.

Concentration indices for the variables count# and over# can be computed by 
the convenient regression or covariance methods presented in chapter 8. To facili-
tate computation of the rank-weighted head count, HW, and mean overshoot, OW, 
one may store the concentration indices for the various threshold values in matri-
ces. For example, a matrix of concentration indices (ci) for the count variables could 
be produced as follows:

sum r [aw=wt] 
sca v_rank=r(Var)

foreach var of varlist count* {   
 sum `var’ [aw=wt]
 sca m_`var’=r(mean)
 gen d_`var’=(2*v_rank)*(`var’/m_`var’) 
 quietly {
  regr d_`var’ rank    
  matrix coefs=get(_b)   
  gen ci_`var’=coefs[1,1]   
  if “`var’”==“count5” {
   matrix ci=coefs[1,1]  
  }
  if “`var’”~=“count5” {
   matrix ci=(ci, coefs[1,1])  
  }
 }
}
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where the variable r is the weighted fractional rank computed as in chapter 8. A 
matrix of concentration indices for the overshoot variable at various thresholds 
could be produced by repeating the loop with count* replaced by over* follow-
ing varlist and count5 replaced by over5.

A matrix containing the weighted head counts (wh) could then be created with 
the following:

qui svy: mean count*
matrix h=e(b) 
matrix wh=(h[1,1]*(1-ci[1,1]),h[1,2]*(1-ci[1,2]), h[1,3]*
 (1-ci[1,3]),h[1,4]*(1-ci[1,4]),h[1,5]*(1-ci[1,5]))
The unweighted head counts, concentration indices, and weighted head counts can 
then be displayed.

matrix list h
matrix colnames ci = ci5 ci10 ci15 ci20 ci25
matrix list ci
matrix colnames wh = wh5 wh10 wh15 wh20 wh25
matrix list wh

To produce a graph such as that in box 18.1, create the complement of the OOP bud-
get share (compshare), then use this as the sortvar() in a glcurve command 
to generate the weighted fractional rank (p) for households sorted in decreasing 
order of the OOP budget share. Then do a connected scatter plot of the budget share 
against this rank. This can be done for both the share of total and nonfood expendi-
ture as follows:

gen compshare = 1-oopshare
glcurve oopshare [aw=wt], pvar(p) sortvar(compshare) nograph 
label variable p “OOP/total exp.” 
gen compshare1 = 1-oopshare1  
glcurve oopshare1 [aw=wt], pvar(p1) sortvar(compshare1) 
nograph  
label variable p1 “OOP/non-food exp.”
#delimit ;
twoway (connected p oopshare, sort msize(tiny)) (connected p1 
   oopshare1, sort msize(tiny)), 
 ytitle(health payments budget share) 
 xtitle(cumulative proportion of population ranked by 
 decreasing health payments budget share) ;

Further reading

Going beyond measurement, one would want to know what characteristics make a 
household vulnerable to incurring catastrophic payments. An analysis of the cor-
relates of catastrophic payments in six Asian countries is presented in O’Donnell 
(2005). 
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19
Health Care Payments and Poverty

In the previous chapter we examined the issue of catastrophic payments for health 
care—the disruption to material living standards due to large out-of-pocket (OOP) 
payments for health care in the absence of adequate health insurance coverage. In 
the extreme, OOP payments could lead to poverty. This is not refl ected in standard 
methods of measuring poverty, which compare total household expenditure with a 
poverty line that is not sensitive to highly variable health care needs. A household 
that at times of illness diverts expenditure to health care to an extent that its spend-
ing on basic necessities falls below the poverty threshold will not be counted as 
poor. Nor will a household that lives below the poverty threshold but borrows to 
cover health care expenses such that its total expenditure is raised above the pov-
erty threshold. It has been estimated that 78 million people in Asia are not currently 
counted as poor despite the fact that their per capita household expenditure net of 
spending on health care expenditure falls below the extreme poverty threshold of 
$1 per day (van Doorslaer et al. 2006).

In this chapter we describe and illustrate methods to adjust measures of poverty 
to take into account spending on health care. In essence, this involves the measure-
ment of poverty on the basis of household expenditure net of OOP spending on 
health care. The justifi cation of this approach is that spending on health care is a 
response to a basic need that is not adequately refl ected in the poverty line. The 
stochastic nature of health care needs means that they cannot be captured by a con-
stant poverty line. Admittedly, not all spending on health care is for essential treat-
ment. To the extent that it is not, the subtraction of all health spending from house-
hold resources before assessing poverty will result in an overestimate of poverty. 
But ignoring all health spending will result in an underestimate. Some households 
are classifi ed as nonpoor simply because high expenses of vital health care raise 
total spending above the poverty line, while spending on food, clothing, and shel-
ter is below the subsistence level. 

Under two conditions, the difference between poverty estimates derived from 
household resources gross and net of OOP payments for health care may be inter-
preted as a rough approximation of the impoverishing effect of such payments 
(Wagstaff and Van Doorslaer 2003). These conditions are (i) OOP payments are 
completely nondiscretionary and (ii) total household resources are fi xed. Under 
these conditions, the difference between the two estimates would correspond to 
poverty due to health payments. Neither of the two conditions holds perfectly. 
A household that chooses to spend excessively on health care is not pushed into 
poverty by OOP payments. A household may borrow, sell assets, or receive transfers 
from friends or relatives to cover health care expenses. Then, household expendi-
ture gross of OOP payments does not correspond to the consumption that would 
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be realized in the absence of those payments. For those and other reasons, a simple 
comparison between poverty estimates that do and do not take into account OOP 
health payments cannot be interpreted as the change in poverty that would arise 
from some policy reform that eliminated those payments. Nonetheless, such a com-
parison is indicative of the scale of the impoverishing effect of health payments.

Health payments–adjusted poverty measures

Let T be per capita household OOP spending on health care, and let x be the per 
capita living standards proxy that is used in the standard assessment of poverty—
household expenditure, consumption, or income. For convenience, we will refer to 
the latter as household expenditure. Figure 19.1 provides a simple framework for 
examining the impact of OOP payments on the two basic measures of poverty—
the head count and the poverty gap. The fi gure is a variant on Jan Pen’s “parade of 
dwarfs and a few giants” (see, e.g., Cowell 1995). The two parades plot household 
expenditure gross and net of OOP payments on the y-axis against the cumulative 
proportion of individuals ranked by expenditure on the x-axis. For this stylized 
version of the graph, we assume that households keep the same rank in the gross 
and net of OOP expenditure distribution. Obviously, in reality rerankings will 
occur (see below). The point on the x-axis at which a curve crosses the poverty line 
(PL) gives the fraction of people living in poverty. This is the poverty head count 
ratio (H). This measure does not capture the “depth” of poverty, that is, the amount 
by which the poor households fall short of reaching the poverty line. A measure 
that does take that into account is the poverty gap (G), defi ned as the area below the 
poverty line but above the parade.

Figure 19.1 Pen’s Parade for Household Expenditure Gross and Net of OOP Health 
Payments

cumulative proportion of
population ranked by
household expenditure
per capita

HnetHgross

gross of OOP payment parade
net of OOP payment parade

C

B
A

household
expenditure

per capita

poverty line (PL)

Source: Authors. 
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Using household expenditure gross of OOP payments for health care, the pov-
erty head count is H gross  and the poverty gap is equal to the area A. If OOP pay-
ments are subtracted from household expenditure before poverty is assessed, 
then the head count and gap must both rise—to H net  and A+B+C, respectively. So 
H net − H gross  is the fraction of individuals that are not counted as poor despite their 
household resources net of spending on health care lying below the poverty line. 
The respective underestimate of the poverty gap is B+C. The poverty gap increases 
both because those already counted as poor appear even poorer once health pay-
ments are netted out of household resources (area B) and because some who were 
not counted as poor on the basis of gross expenditures are assessed as poor after 
OOP payments (area C) are taken into account.

Let xi be the per capita total expenditure of household i. An estimate of the gross 
of health payments poverty head count ratio is

(19.1) H gross =
si pi

gross

i=1

N∑
sii=1

N∑
, 

where pi
gross = 1 if xi <PL  and is 0 otherwise, si  is the size of the household, and N 

is the number of households in the sample. Defi ne the gross of health payments 
individual-level poverty gap by gi

gross = pi
gross PL− xi( ) , then the mean of this gap in 

currency units is

(19.2) Ggross =
si gi

gross

i=1

N∑
sii=1

N∑
.

The net of health payments head count is given by replacing pi
gross  with 

pi
net = 1 if xi −Ti( )< PL  (and 0 otherwise) in equation 19.1. In the next section, we dis-

cuss whether the poverty line should be adjusted downward when assessing poverty 
on the basis of expenditure net of health payments. The net of health payments pov-
erty gap is given by replacing gi

gross  in equation 19.2 with gi
net = pi

net PL− xi −Ti( )( ) .
When making comparisons across countries with different poverty lines and 

currency units, it is convenient to normalize the poverty gap on the poverty line as 
follows: 

(19.3) NGgross =
Ggross

PL
.

The net of payments normalized gap is defi ned analogously. The intensity of 
poverty alone is measured by the mean positive poverty gap,

(19.4) 
 
MPGgross = Ggross H gross .

In other words, the poverty gap (G) is equal to the fraction of the population who 
are poor (H) multiplied by the average defi cit of the poor from the poverty line 
(MPG). The mean positive poverty gap can also be normalized on the poverty line.

Defi ning the poverty line

To compute poverty counts and gaps, a poverty line needs to be established. 
Poverty lines are either absolute or relative (Ravallion 1998). An absolute pov-
erty line defi nes poverty in relation to an absolute amount of household expen-
diture per capita. An extreme absolute poverty line indicates the cost of reach-
ing subsistence nutritional requirements (e.g., 2,100 calories a day) only. More 
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generous poverty lines make some allowance for nonfood needs. A relative pov-
erty line is defi ned as some fraction of mean or median household expenditure. 
If such a poverty line were used in the present context, basically the analysis 
would amount to consideration of how health payments affect the distribution 
of expenditure. This may be of some interest, but it is likely that primary interest 
lies in how taking health payments into account affects poverty assessed against 
an absolute standard.

It might be argued that if poverty is to be assessed on the basis of household 
expenditure net of OOP payments for health care, then the poverty line should 
also be adjusted downward. This would be correct if the poverty line allowed for 
resources required to cover health care needs. Poverty lines that indicate resources 
required to cover only subsistence food needs clearly do not. Higher poverty lines 
may make some indirect allowance for expected health care needs, but they can 
never fully refl ect these needs, which are inherently highly variable, both across 
individuals and across time. A common procedure for constructing a poverty line 
involves calculating expenditure required to meet subsistence nutrition require-
ments and the addition of an allowance for nonfood needs (Deaton 1997). More 
directly, the mean total expenditure of households just satisfying their nutritional 
requirements may be used as the poverty line. Implicitly, this takes into account the 
expected spending on health care of those in the region of food poverty. But there 
will be tremendous variation across households in health status and therefore in 
their health care needs, which will not be refl ected in the poverty line. This may be 
less of a problem in high-income countries, in which explicit income transfers exist 
to cover the living costs of disability. But such transfers seldom exist in low-income 
countries. Further, the health care needs of a given household are stochastic over 
time. A person falling seriously ill faces health care expenses well above the aver-
age. Meeting these expenses can easily force spending on other goods and services 
below the poverty threshold level.

So, there is no reason to adjust a subsistence food poverty line, but higher pov-
erty lines may make some implicit allowance for expected health care needs and, in 
this case, it would make sense to adjust the poverty line downward when assessing 
poverty on expenditure net of health payments. One option is to adjust the poverty 
line downward by the mean health spending of households with total expenditure 
in the region of the poverty line (Wagstaff and van Doorslaer 2003). If that practice 

Box 19.1 Health Payments–Adjusted Poverty Measures in Vietnam, 1998

A demonstration of the sensitivity of poverty measures in Vietnam to the treatment 
of health payments is presented in the table below. The estimates are derived from 
the 1998 Vietnam Living Standards Survey and are taken from a study of the effect of 
health payments on the measurement of poverty in 11 Asian countries (van Doorslaer 
et al. 2006). Estimates are presented for the $1.08 and $2.15 per person per day pov-
erty lines used by the World Bank for international poverty comparisons. The fi rst of 
these is the poverty threshold used in the defi nition of the Millennium Development 
Goal with respect to extreme poverty. At the 1993 purchasing power parity exchange 
rate, the thresholds convert to 941,772 and 1,883,546 Vietnamese dong per year in 1998 
prices. The living standards measure used is per capita household consumption. We do 
not adjust either poverty line when assessing poverty on the basis of household con-
sumption net of health payments. The lower poverty line is suffi ciently strict such that it 
would not cover even expected health care costs. The higher poverty line is not adjusted
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Box 19.1 (continued)

because the analysis was part of an international comparison and, as explained above, 
adjustment would have created perverse results across countries.

 When assessed on the basis of total household consumption, 3.6 percent of the pop-
ulation of Vietnam is estimated to be in extreme poverty (<$1.08). If OOP payments 
for health care are netted out of household consumption, this percentage rises to 4.68 
percent. So about 1 percent of the Vietnamese population is not counted as living in 
extreme poverty but would be considered poor if spending on health care is discounted 
from household resources. This represents a substantial rise of 30 percent in the esti-
mate of extreme poverty. The estimate of the poverty gap also rises by almost 30 per-
cent, from 5,549 dong to 7,159 dong. Expressed as a percentage of the poverty line, the 
poverty gap increases from 0.59 percent of the $1.08 line to 0.76 percent when health 
payments are netted out of household consumption. The mean positive poverty does 
not increase. It falls slightly. This suggests that the rise in the poverty gap is due to 
more households being brought into poverty (area C in fi gure 19.1) and not because of a 
deepening of the poverty of the already poor (area B in fi gure 19.1). 

At the $2.15 per day poverty line, the pattern of results is the same, but the relative 
difference in poverty is less and the intensity of poverty, as measured by MPG, no lon-
ger falls when poverty is assessed on consumption net of health care costs.

Standard errors are small relative to the point estimates, and for all measures the 
difference in the estimate of poverty based on household consumption gross and 
net of health payments is statistically signifi cantly different from zero at 5 percent or 
less.

Measures of Poverty Based on Consumption Gross and Net of Spending 
on Health Care, Vietnam 1998

  
Gross of health Net of health

 Difference

  payments payments Absolute  Relative
  (1)  (2)  (3)=(2)–(1) [(3)/(1)]*100

$1.08 per day poverty line     

Poverty head count  3.60%  4.68%  1.08%  30.06% 
standard error  0.58  0.69 0.23 

Poverty gap ('000 dong)  5.549  7.159  1.610  29.02% 
standard error  1.258  1.374  0.260  

Normalized poverty gap  0.59%  0.76%  0.17%  29.99% 
standard error  0.13  0.15 0.03 

Normalized mean positive gap  16.38%  16.25%  –0.13%  -0.80% 
standard error  1.80  1.49   

$2.15 per day poverty line     

Poverty head count  36.91%  41.35%  4.45%  12.05% 
standard error  1.65  1.62  0.33  

Poverty gap ('000 dong)  174.646  206.934  32.288  18.49% 
standard error  12.806  13.634  1.827  

Normalized poverty gap  9.27%  10.99%  1.71%  18.28% 
standard error  0.68 0.72  0.10  

Normalized mean positive gap  25.12%  26.57%  1.44%  5.74% 
standard error  0.92  0.91 

Source: Authors.
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is adopted, then obviously some households who spend less on health care than 
this average can be drawn out of poverty when it is assessed on expenditure net of 
health care payments. That practice is not advisable if comparisons are being made 
across countries or time and the standard poverty line has not been adjusted to 
refl ect differences in mean health payments in the region of food poverty. For exam-
ple, the World Bank poverty lines of $1 or $2 per day clearly do not refl ect differ-
ences across countries in poor households’ exposure to health payments. Subtract-
ing country-specifi c means of health spending from these amounts would result 

food PL = 1,286,833 dong p.a.
pre-OOP HH consumption
post-OOP HH consumption
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Box 19.2 Illustration of the Effect of Health Payments on Pen’s Parade, Vietnam, 1998

Figure 19.1 is a stylized version of the Pen Parade representation of the income distribution. 
When health payments produce reranking in the income distribution, it is still possible to 
visualize the effect of health care payments on the parade using what we refer to as a “paint 
drop” chart (Wagstaff and Van Doorslaer 2003). An example is given in the fi gure below 
for Vietnam in 1998. The graph shows the Pen Parade for household consumption gross 
of health payments. Household consumption is expressed here as multiples of a national 
extreme poverty line (PL) based on minimum food requirements, which is above the $1.08 
threshold. For each household, the vertical bar, or “paint drip,” shows the extent to which 
the subtraction of health payments reduces consumption. If a bar crosses the poverty line, 
then a household is not counted as poor on the basis of gross consumption but is poor on the 
basis of net consumption. 

The graph shows that health payments are largest at higher values of total consumption, 
but it is households in the middle and lower half of the distribution that are brought below 
the poverty line by health payments. 

Effect of Health Payments on Pen’s Parade of the Household Consumption Distribution, 
Vietnam 1998

Source: Authors. 
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in lower poverty lines, and so less poverty, in countries that protect low-income 
households the least from the cost of health care.

Computation

Computation of the poverty head count and gap measures is straightforward and 
very similar to that of the corresponding catastrophic payments measures pre-
sented in the previous chapter. We describe computation in Stata, but it could eas-
ily be done in any statistical package. Assume that the data set is at the household 
level. Poverty is assessed on household resources on a per capita or per equivalent 
adult basis if an equivalence scale is applied. Let x be total household consump-
tion (/expenditure/income) per capita, and pcoop be household OOP payments 
for health care per capita. Defi ne a scalar for the poverty line value (PL) and gener-
ate household-level variables indicating gross of health payments poverty status 
(gross _ h), poverty gap (gross _ g), and normalized gap (gross _ ng):

sca PL = ###
gen gross_h = (x < PL)   
gen gross_g = gross_h*(PL - x)  
gen gross_ng = gross_g/PL   

If the goal is to estimate poverty at more than one poverty line, another scalar can 
simply be created for the poverty line value and respective poverty indicator and 
gap variables. Now a variable can be created equal to per capita household con-
sumption less OOP payments for health care, and the poverty indicator and gap 
variables can be generated on the basis of this variable: 

gen net_x = x - pcoop
gen net_h = (net_x < PL)
gen net_g = net_h*(PL - net_x)
gen net_ng = net_g/PL

Differences between the two sets of poverty variables can then be computed:

gen diff_h = net_h - gross_h
gen diff_g = net_g - gross_g
gen diff_ng = net_ng - gross_ng

Sample means of the generated variables give estimates of the poverty head count 
and gap before and after taking into account health payments and the difference 
between the two. Stata’s survey estimator can be used to obtain the standard errors 
of these point estimates. 

svyset psu [pw=wt], strata(strata) || _n
svy: mean gross_h net_h diff_h gross_g net_g diff_g gross_ng 
 net_ng diff_ng1 

where psu is the variable indicating the primary sampling unit (if cluster sampling 
is used) and, in the case that the sample is stratifi ed, strata identifi es stratifying 
characteristic. By convention, poverty estimates are made for numbers of individu-
als and not for households. If the data set is at the household level, the sample weight 
variable should be multiplied by the household size. Application of this weight (wt)  
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will then give estimates for numbers of individuals. If the sample is self-weighting, 
then the household size should be used as the weight in computation. 

The mean positive gap can be estimated by taking the mean gap over all house-
holds below the poverty line:

svy, subpop(gross_h): mean gross_g gross_ng 
svy, subpop(net_h): mean net_g net_ng 

There exists an ado fi le, sepov, which can be downloaded from the Stata Web site, 
that estimates the poverty head count and gap with standard errors without having 
to generate indicator and gap variables as was done above. The syntax is

sepov x [pw=wt], p(PL1) strata(strata) psu(psu) 
sepov net_x [pw=wt], p(PL1) strata(strata) psu(psu) 

This will not, however, provide a standard error for the difference in the estimates.
A fi gure such as that in box 19.2 can be generated most conveniently in a spread-

sheet program such as Excel. It requires fi rst sorting all households in the sample 
by gross of health payment total expenditure and copying both the gross and net 
of health payment household expenditure variables into an Excel worksheet. This 
is easily done simply by cutting and pasting. A cumulative distribution variable 
(weighted, if necessary) and the poverty line(s) can easily be generated in Excel. 
A line chart showing the distributions of the gross and net of payment expendi-
tures by the cumulative proportion of households can then be generated.
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