Overview
Changing the Climate for Development

Thirty years ago, half the developing world lived in extreme poverty—today, a quarter. Now, a much smaller share of children are malnourished and at risk of early death. And access to modern infrastructure is much more widespread. Critical to the progress: rapid economic growth driven by technological innovation and institutional reform, particularly in today’s middle-income countries, where per capita incomes have doubled. Yet the needs remain enormous, with the number of hungry people having passed the billion mark this year for the first time in history. With so many still in poverty and hunger, growth and poverty alleviation remain the overarching priority for developing countries.

Climate change only makes the challenge more complicated. First, the impacts of a changing climate are already being felt, with more droughts, more floods, more strong storms, and more heat waves—taxing individuals, firms, and governments, drawing resources away from development. Second, continuing climate change, at current rates, will pose increasingly severe challenges to development. By century’s end, it could lead to warming of 5°C or more compared with preindustrial times and to a vastly different world from today, with more extreme weather events, most ecosystems stressed and changing, many species doomed to extinction, and whole island nations threatened by inundation. Even our best efforts are unlikely to stabilize temperatures at anything less than 2°C above preindustrial temperatures, warming that will require substantial adaptation.

High-income countries can and must reduce their carbon footprints. They cannot continue to fill up an unfair and unsustainable share of the atmospheric commons. But developing countries—whose average per capita emissions are a third those of high-income countries (figure 1)—need massive expansions in energy, transport, urban systems, and agricultural production. If pursued using traditional technologies and carbon intensities, these much-needed expansions will produce more greenhouse gases and, hence, more climate change. The question, then, is not just how to make development more resilient to climate change. It is how to pursue growth and prosperity without causing “dangerous” climate change. Climate change policy is not a simple choice between a high-growth, high-carbon world and a low-growth, low-carbon world—a simple question of whether to grow or to preserve the planet. Plenty of inefficiencies drive today’s high-carbon intensity. For example, existing technologies and best practices could reduce energy consumption in industry and the power sector by 20–30 percent, shrinking carbon footprints without sacrificing growth. Many mitigation actions—meaning changes to reduce emissions of greenhouse gases—have significant co-benefits in public health, energy security, environmental sustainability, and financial savings. In Africa, for example, mitigation opportunities are linked to more sustainable land and
A switch to a low-carbon world through technological innovation and complementary institutional reforms has to start with immediate and aggressive action by high-income countries to shrink their unsustainable carbon footprints. That would free some space in the atmospheric commons (figure 2). More important, a credible commitment by high-income countries to drastically reduce their emissions would stimulate the needed RD&D of new technologies and processes in energy, transport, industry, and agriculture. And large and predictable demand for alternative technologies will reduce their price and help make them competitive with fossil fuels. Only with new technologies at competitive prices can climate change be curtailed without sacrificing growth.

There is scope for developing countries to shift to lower-carbon trajectories without compromising development, but this varies across countries and will depend on the extent of financial and technical assistance from high-income countries. Such assistance would be equitable (and in line with the 1992 United Nations Framework Convention on Climate Change, or UNFCCC): high-income countries, with one-sixth of the world’s population, are responsible for nearly two-thirds of the greenhouse gases in the atmosphere (figure 3). It would also be efficient: the savings from helping to finance early mitigation in developing countries—for example, through infrastructure and housing construction over the next decades—are so large that they produce clear economic benefits for all. But designing, let alone implementing, an international agreement that involves substantial, stable, and predictable resource transfers is no trivial matter.

Developing countries, particularly the poorest and most exposed, will also need assistance in adapting to the changing climate. They already suffer the most from extreme weather events (see chapter 2). And even relatively modest additional warming will require big adjustments to the way development policy is designed and implemented, to the way people live and make a

forest management, to cleaner energy (such as geothermal or hydro power), and to the creation of sustainable urban transport systems. So the mitigation agenda in Africa is likely to be compatible with furthering development. This is also the case for Latin America.

Nor do greater wealth and prosperity inherently produce more greenhouse gases, even if they have gone hand in hand in the past. Particular patterns of consumption and production do. Even excluding oil producers, per capita emissions in high-income countries vary by a factor of four, from 7 tons of carbon dioxide equivalent (CO2e) per capita in Switzerland to 27 in Australia and Luxembourg.

And dependence on fossil fuel can hardly be considered unavoidable given the inadequacy of the efforts to find alternatives. While global subsidies to petroleum products amount to some $150 billion annually, public spending on energy research, development, and deployment (RD&D) has hovered around $10 billion for decades, apart from a brief spike following the oil crisis (see chapter 7). That represents 4 percent of overall public RD&D. Private spending on energy RD&D, at $40 billion to $60 billion a year, amounts to 0.5 percent of private revenues—a fraction of what innovative industries such as telecommunications (8 percent) or pharmaceuticals (15 percent) invest in RD&D.

A switch to a low-carbon world through technological innovation and complementary institutional reforms has to start with immediate and aggressive action by high-income countries to shrink their unsustainable carbon footprints. That would free some space in the atmospheric commons (figure 2). More important, a credible commitment by high-income countries to drastically reduce their emissions would stimulate the needed RD&D of new technologies and processes in energy, transport, industry, and agriculture. And large and predictable demand for alternative technologies will reduce their price and help make them competitive with fossil fuels. Only with new technologies at competitive prices can climate change be curtailed without sacrificing growth.

There is scope for developing countries to shift to lower-carbon trajectories without compromising development, but this varies across countries and will depend on the extent of financial and technical assistance from high-income countries. Such assistance would be equitable (and in line with the 1992 United Nations Framework Convention on Climate Change, or UNFCCC): high-income countries, with one-sixth of the world’s population, are responsible for nearly two-thirds of the greenhouse gases in the atmosphere (figure 3). It would also be efficient: the savings from helping to finance early mitigation in developing countries—for example, through infrastructure and housing construction over the next decades—are so large that they produce clear economic benefits for all. But designing, let alone implementing, an international agreement that involves substantial, stable, and predictable resource transfers is no trivial matter.

Developing countries, particularly the poorest and most exposed, will also need assistance in adapting to the changing climate. They already suffer the most from extreme weather events (see chapter 2). And even relatively modest additional warming will require big adjustments to the way development policy is designed and implemented, to the way people live and make a
living, and to the dangers and the opportunities they face.

The current financial crisis cannot be an excuse to put climate on the back burner. On average, a financial crisis lasts less than two years and results in a 3 percent loss in gross domestic product (GDP) that is later offset by more than 20 percent growth over eight years of recovery and prosperity.\textsuperscript{12} So for all the harm they cause, financial crises come and go. Not so with the growing threat imposed by a changing climate. Why?

Because time is not on our side. The impacts of greenhouse gases released into the atmosphere will be felt for decades, even millennia,\textsuperscript{13} making the return to a “safe” level very difficult. This inertia in the climate system severely limits the possibility of making up for modest efforts today with accelerated mitigation in the future.\textsuperscript{14} Delays also increase the costs because impacts worsen and cheap mitigation options disappear as economies become locked into high-carbon infrastructure and lifestyles—more inertia.

Immediate action is needed to keep warming as close as possible to 2°C. That amount of warming is not desirable, but it is likely to be the best we can do. There isn’t a consensus in the economic profession that this is the economic optimum. There is, however, a growing consensus in policy and scientific circles that aiming for 2°C warming is the responsible thing to do.\textsuperscript{15} This Report endorses such a position. From the perspective of development, warming much above 2°C is simply unacceptable. But stabilizing at 2°C will require major shifts in lifestyle, a veritable energy revolution, and a transformation in how we manage land and forests. And substantial adaptation would still be needed. Coping with climate change will require all the innovation and ingenuity that the human race is capable of.

Inertia, equity, and ingenuity are three themes that permeate this Report. Inertia is the defining characteristic of the climate challenge—the reason we need to act now. Equity is the key to an effective global deal, to the trust needed to find an efficient resolution to this tragedy of the commons—the reason we need to act together. And ingenuity is the only possible answer to a problem that
is politically and scientifically complex—the quality that could enable us to act differently than we have in the past. Act now, act together, act differently—those are the steps that can put a climate-smart world within our reach. But first it requires believing there is a case for action.

**The case for action**

The average temperature on Earth has already warmed by close to 1°C since the beginning of the industrial period. In the words of the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC), a consensus document produced by over 2,000 scientists representing every country in the United Nations: “Warming of the climate system is unequivocal.” Global atmospheric concentrations of CO₂, the most important greenhouse gas, ranged between 200 and 300 parts per million (ppm) for 800,000 years, but shot up to about 387 ppm over the past 150 years (figure 4), mainly because of the burning of fossil fuels and, to a lesser extent, agriculture and changing land use. A decade after the Kyoto Protocol set limits on international carbon emissions, as developed countries enter the first period of rigorous accounting of their emissions, greenhouse gases in the atmosphere are still increasing. Worse, they are increasing at an accelerating rate.

The effects of climate change are already visible in higher average air and ocean temperatures, widespread melting of snow and ice, and rising sea levels. Cold days, cold nights, and frosts have become less frequent while heat waves are more common. Globally, precipitation has increased even as Australia, Central Asia, the Mediterranean basin, the Sahel, the western United States, and many other regions have seen more frequent and more intense droughts. Heavy rainfall and floods have become more common, and the damage from—and probably the intensity of—storms and tropical cyclones have increased.

**Climate change threatens all, but particularly developing countries**

The more than 5°C warming that unmitigated climate change could cause this century amounts to the difference between today’s climate and the last ice age, when glaciers reached central Europe and the northern United States. That change occurred over millennia; human-induced climate change is occurring on a one-century time scale giving societies and ecosystems little time to adapt to the rapid pace. Such a drastic temperature shift would cause large dislocations in ecosystems fundamental to human societies and economies—such as the possible dieback of the Amazon rain forest, complete loss of glaciers in the Andes and the Himalayas, and rapid ocean acidification leading to disruption of marine ecosystems and death of coral reefs. The speed and magnitude of change could condemn more than 50 percent of species to extinction. Sea levels could rise by one meter this century, threatening more than 60 million people and $200 billion in assets in developing countries alone. Agricultural

---

**Figure 4 Off the charts with CO₂**

*Source: Lüthi and others 2008.*

*Note: Analysis of air bubbles trapped in an Antarctic ice core extending back 800,000 years documents the Earth’s changing CO₂ concentration. Over this long period, natural factors have caused the atmospheric CO₂ concentration to vary within a range of about 170 to 300 parts per million (ppm). Temperature-related data make clear that these variations have played a central role in determining the global climate. As a result of human activities, the present CO₂ concentration of about 387 ppm is about 30 percent above its highest level over at least the last 800,000 years. In the absence of strong control measures, emissions projected for this century would result in a CO₂ concentration roughly two or three times the highest level experienced in the past 800,000 or more years, as depicted in the two projected emissions scenarios for 2100.*
productivity would likely decline throughout the world, particularly in the tropics, even with changes in farming practices. And over 3 million additional people could die from malnutrition each year.\(^2\)

Even 2°C warming above preindustrial temperatures would result in new weather patterns with global consequences. Increased weather variability, more frequent and intense extreme events, and greater exposure to coastal storm surges would lead to a much higher risk of catastrophic and irreversible impacts. Between 100 million and 400 million more people could be at risk of hunger.\(^3\) And 1 billion to 2 billion more people may no longer have enough water to meet their needs.\(^4\)

**Developing countries are more exposed and less resilient to climate hazards.** These consequences will fall disproportionately on developing countries. Warming of 2°C could result in a 4 to 5 percent permanent reduction in annual income per capita in Africa and South Asia,\(^5\) as opposed to minimal losses in high-income countries and a global average GDP loss of about 1 percent.\(^6\) These losses would be driven by impacts in agriculture, a sector important to the economies of both Africa and South Asia (map 1).

It is estimated that developing countries will bear most of the costs of the damages—some 75–80 percent.\(^7\) Several factors explain this (box 1). Developing countries are particularly reliant on ecosystem services and natural capital for production in climate-sensitive sectors. Much of their population lives in physically exposed locations and economically precarious conditions. And their financial and institutional capacity to adapt is limited. Already

---

**Map 1** Climate change will depress agricultural yields in most countries in 2050, given current agricultural practices and crop varieties

---

**Sources:** Müller and others 2009; World Bank 2008c.

**Note:** The coloring in the figure shows the projected percentage change in yields of 11 major crops (wheat, rice, maize, millet, field pea, sugar beet, sweet potato, soybean, groundnut, sunflower, and rapeseed) from 2046 to 2055, compared with 1996–2005. The yield-change values are the mean of three emission scenarios across five global climate models, assuming no CO\(_2\) fertilization (a possible boost to plant growth and water-use efficiency from higher ambient CO\(_2\) concentrations). The numbers indicate the share of GDP derived from agriculture in each region. (The share for Sub-Saharan Africa is 23 percent if South Africa is excluded.) Large negative yield impacts are projected in many areas that are highly dependent on agriculture.
BOX 1  All developing regions are vulnerable to the impacts of climate change—for different reasons

The problems common to developing countries—limited human and financial resources, weak institutions—drive their vulnerability. But other factors, attributable to their geography and history, are also significant.

**Sub-Saharan Africa** suffers from natural fragility (two-thirds of its surface area is desert or dry land) and high exposure to droughts and floods, which are forecast to increase with further climate change. The region’s economies are highly dependent on natural resources. Biomass provides 80 percent of the domestic primary energy supply. Rainfed agriculture contributes some 23 percent of GDP (excluding South Africa) and employs about 70 percent of the population. Inadequate infrastructure could hamper adaptation efforts, with limited water storage despite abundant resources. Malaria, already the biggest killer in the region, is spreading to higher, previously safe, altitudes.

In **East Asia and the Pacific** one major driver of vulnerability is the large number of people living along the coast and on low-lying islands—over 130 million people in China, and roughly 40 million, or more than half the entire population, in Vietnam. A second driver is the continued reliance, particularly among the poorer countries, on agriculture for income and employment. As pressures on land, water, and forest resources increase—as a result of population growth, urbanization, and environmental degradation caused by rapid industrialization—greater variability and extremes will complicate their management. In the Mekong River basin, the rainy season will see more intense precipitation, while the dry season lengthens by two months. A third driver is that the region’s economies are highly dependent on marine resources—the value of well-managed coral reefs is $13 billion in Southeast Asia alone—which are already stressed by industrial pollution, coastal development, overfishing, and runoff of agricultural pesticides and nutrients.

Vulnerability to climate change in **Eastern Europe and Central Asia** is driven by a lingering Soviet legacy of environmental mismanagement and the poor state of much of the region’s infrastructure. An example: rising temperatures and reduced precipitation in Central Asia will exacerbate the environmental catastrophe of the disappearing Southern Aral Sea (caused by the diversion of water to grow cotton in a desert climate) while sand and salt from the dried-up seabed are blowing onto Central Asia’s glaciers, accelerating the melting caused by higher temperature. Poorly constructed, badly maintained, and aging infrastructure and housing—a legacy of both the Soviet era and the transition years—are ill suited to withstand storms, heat waves, or floods.

**Latin America and the Caribbean**’s most critical ecosystems are under threat. First, the tropical glaciers of the Andes are expected to disappear, changing the timing and intensity of water available to several countries, resulting in water stress for at least 77 million people as early as 2020 and threatening hydropower, the source of more than half the electricity in many South American countries. Second, warming and acidifying oceans will result in more frequent bleaching and possible diebacks of coral reefs in the Caribbean, which host nurseries for an estimated 65 percent of all fish species in the basin, provide a natural protection against storm surge, and are a critical tourism asset. Third, damage to the Gulf of Mexico’s wetlands will make the coast more vulnerable to more intense and more frequent hurricanes. Fourth, the most disastrous impact could be a dramatic dieback of the Amazon rain forest and a conversion of large areas to savannah, with severe consequences for the region’s climate—and possibly the world’s.

Water is the major vulnerability in the **Middle East and North Africa**, the world’s driest region, where per capita water availability is predicted to halve by 2050 even without the effects of climate change. The region has few attractive options for increasing water storage, since close to 90 percent of its freshwater resources are already stored in reservoirs. The increased water scarcity combined with greater variability will threaten agriculture, which accounts for some 85 percent of the region’s water use. Vulnerability is compounded by a heavy concentration of population and economic activity in flood-prone coastal zones and by social and political tensions that resource scarcity could heighten.

**South Asia** suffers from an already stressed and largely degraded natural resource base resulting from geography coupled with high levels of poverty and population density. Water resources are likely to be affected by climate change through its effect on the monsoon, which provides 70 percent of annual precipitation in a four-month period, and on the melting of Himalayan glaciers. Rising sea levels are a dire concern in the region, which has long and densely populated coastlines, agricultural plains threatened by saltwater intrusion, and many low-lying islands. In more severe climate-change scenarios, rising seas would submerge much of the Maldives and inundate 18 percent of Bangladesh’s land.

**Sources:** de la Torre, Fajnzylber, and Nash 2008; Fay, Block, and Ebinger 2010; World Bank 2007a; World Bank 2007c; World Bank 2008b; World Bank 2009b.

policy makers in some developing countries note that more of their development budget is diverted to cope with weather-related emergencies. 27

High-income countries will also be affected even by moderate warming. Indeed, damages per capita are likely to be higher in wealthier countries since they account for 16 percent of world population but would bear 20–25 percent of the global impact costs. But their much greater wealth makes them better able to cope with such impacts. Climate change will wreak havoc everywhere—but it will increase the gulf between developed and developing countries.
**Growth is necessary for greater resilience, but is not sufficient.** Economic growth is necessary to reduce poverty and is at the heart of increasing resilience to climate change in poor countries. But growth alone is not the answer to a changing climate. Growth is unlikely to be fast enough to help the poorer countries, and it can increase vulnerability to climate hazards (box 2). Nor is growth usually equitable enough to ensure protection for the poorest and most vulnerable. It does not guarantee that key institutions will function well. And if it is carbon intensive, it will cause further warming.

But there is no reason to think that a low-carbon path must necessarily slow economic growth: many environmental regulations were preceded by warnings of massive job losses and industry collapse, few of which materialized.²⁸ Clearly, however, the transition costs are substantial, notably in developing low-carbon technologies and infrastructure for energy, transport, housing, urbanization, and rural development.

Two arguments often heard are that these transition costs are unacceptable given the urgent need for other more immediate investments in poor countries, and that care should be taken not to sacrifice the welfare of poor individuals today for the sake of future, possibly richer, generations. There is validity to these concerns. But the point remains that a strong economic argument can be made for ambitious action on climate change.

**The economics of climate change: Reducing climate risk is affordable**

Climate change is costly, whatever the policy chosen. Spending less on mitigation will mean spending more on adaptation and accepting greater damages: the cost of action must be compared with the cost of inaction. But, as discussed in chapter 1, the comparison is complex because of the considerable uncertainty about the technologies that will be available in the future (and their cost), the ability of societies and ecosystems to adapt (and at what price), the extent of damages that higher greenhouse gas concentrations will cause, and the temperatures that might constitute thresholds or tipping points beyond which catastrophic impacts occur (see Science focus). The comparison is also complicated by distributional issues across time (mitigation incurred by one generation produces benefits for many generations to come) and space (some areas are more vulnerable than others, hence more likely to support aggressive global mitigation efforts). And it is further complicated by the question of how to value the loss of life, livelihoods, and nonmarket services such as biodiversity and ecosystem services.

Economists have typically tried to identify the optimal climate policy using cost-benefit analysis. But as box 3 illustrates, the results are sensitive to the particular assumptions about the remaining uncertainties, and to the normative choices made regarding distributional and measurement issues. (A technology optimist, who expects the impact of climate change to be relatively modest and occurring gradually over time, and who heavily discounts what happens in the future, will favor modest action now. And vice versa for a technology pessimist.) So economists continue to disagree on the economically or socially optimal carbon...
trajectory. But there are some emerging agreements. In the major models, the benefits of stabilization exceed the costs at 2.5°C warming (though not necessarily at 2°C). And all conclude that business as usual (meaning no mitigation efforts whatsoever) would be disastrous.

Advocates of a more gradual reduction in emissions conclude that the optimal target—the one that will produce the lowest total cost (meaning the sum of impact and mitigation costs)—could be well above 3°C. But they do note that the incremental cost of keeping warming around 2°C would be modest, less than half a percent of GDP (see box 3). In other words, the total costs of the 2°C option is not much more than the total cost of the much less ambitious economic optimum. Why? Partly because the savings from less mitigation are largely offset by the additional costs of more severe impacts or higher adaptation spending. And partly because the real difference between ambitious and modest

**BOX 3 The cost of “climate insurance”**

Hof, den Elzen, and van Vuuren examine the sensitivity of the optimal climate target to assumptions about the time horizon, climate sensitivity (the amount of warming associated with a doubling of carbon dioxide concentrations from preindustrial levels), mitigation costs, likely damages, and discount rates. To do so, they run their integrated assessment model (FAIR), varying the model’s settings along the range of assumptions found in the literature, notably those associated with two well-known economists: Nicholas Stern, who advocates early and ambitious action; and William Nordhaus, who supports a gradual approach to climate mitigation.

Not surprisingly, their model results in completely different optimal targets depending on which assumptions are used. (The optimal target is defined as the concentration that would result in the lowest reduction in the present value of global consumption.) The “Stern assumptions” (which include relatively high climate sensitivity and climate damages, and a long time horizon combined with low discount rates and mitigation costs) produce an optimum peak CO₂-e concentration of 540 parts per million (ppm). The “Nordhaus assumptions” (which assume lower climate sensitivity and damages, a shorter time horizon, and a higher discount rate) produce an optimum of 750 ppm. In both cases, adaptation costs are included implicitly in the climate damage function.

The figure plots the least cost of stabilizing atmospheric concentrations in the range of 500 to 800 ppm for the Stern and Nordhaus assumptions (reported as the difference between the modeled present value of consumption and the present value of consumption that the world would enjoy with no climate change). A key point evident in the figure is the relative flatness of the consumption loss curves over wide ranges of peak CO₂-e concentrations. As a consequence, moving from 750 ppm to 550 ppm results in a relatively small loss in consumption (0.3 percent) with the Nordhaus assumptions. The results therefore suggest that the cost of precautionary mitigation to 550 ppm is small. With the Stern assumptions, a 550 ppm target results in a gain in present value of consumption of about 0.5 percent relative to the 750 ppm target.

A strong motivation for choosing a lower peak concentration target is to reduce the risk of catastrophic outcomes linked to global warming. From this perspective, the cost of moving from a high target for peak CO₂-e concentrations to a lower target can be viewed as the cost of climate insurance—the amount of welfare the world would sacrifice to reduce the risk of catastrophe. The analysis of Hof, den Elzen, and van Vuuren suggests that the cost of climate insurance is modest under a very wide range of assumptions about the climate system and the cost of mitigating climate change.

**Looking at tradeoffs: The loss in consumption relative to a world without warming for different peak CO₂-e concentrations**

<table>
<thead>
<tr>
<th>CO₂-e concentration peak level (ppm)</th>
<th>Reduction in net present value of consumption (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>500</td>
<td>0</td>
</tr>
<tr>
<td>550</td>
<td>0.3</td>
</tr>
<tr>
<td>600</td>
<td>0.5</td>
</tr>
<tr>
<td>650</td>
<td>0.7</td>
</tr>
<tr>
<td>700</td>
<td>0.9</td>
</tr>
<tr>
<td>750</td>
<td>1.1</td>
</tr>
<tr>
<td>800</td>
<td>1.3</td>
</tr>
</tbody>
</table>

Source: Adapted from Hof, den Elzen, and van Vuuren 2008, figure 10.

Note: The curves show the percentage loss in the present value of consumption, relative to what it would be with a constant climate, as a function of the target for peak CO₂-e concentrations. The “Stern assumptions” and “Nordhaus assumptions” refer to choices about the value of key parameters of the model as explained in the text. The dot shows the optimum for each set of assumptions, where the optimum is defined as the greenhouse gas concentration that would minimize the global consumption loss resulting from the sum of mitigation costs and impact damages.

Source: Hof, den Elzen, and van Vuuren 2008.
climate action lies with costs that occur in the future, which gradualists heavily discount.

The large uncertainties about the potential losses associated with climate change and the possibility of catastrophic risks may well justify earlier and more aggressive action than a simple cost-benefit analysis would suggest. This incremental amount could be thought of as the insurance premium to keep climate change within what scientists consider a safer band. Spending less than half a percent of GDP as “climate insurance” could well be a socially acceptable proposition: the world spends 3 percent of global GDP on insurance today. But beyond the question of “climate insurance” is the question of what might be the resulting mitigation costs—and the associated financing needs. In the medium term, estimates of mitigation costs in developing countries range between $140 billion and $175 billion annually by 2030. This represents the incremental costs relative to a business-as-usual scenario (table 1).

Financing needs would be higher, however, as many of the savings from the lower operating costs associated with renewable energy and energy efficiency gains only materialize over time. McKinsey, for example, estimates that while the incremental cost in 2030 would be $175 billion, the upfront investments required would amount to $563 billion over and above business-as-usual investment needs. McKinsey does point out that this amounts to a roughly 3 percent increase in global business-as-usual investments, and as such is likely to be within the capacity of global financial markets. However, financing has historically been a constraint in developing countries, resulting in underinvestment in infrastructure as well as a bias toward energy choices with lower upfront capital costs, even when such choices eventually result in higher overall costs. The search for suitable financing mechanisms must therefore be a priority.

What about the longer term? Mitigation costs will increase over time to cope with growing population and energy needs—but so will income. As a result, the present value of global mitigation costs to 2100 is expected to remain well below 1 percent of global GDP, with estimates ranging between 0.3 percent and 0.7 percent (table 2). Developing countries’ mitigation costs would represent a higher share of their own GDP, however, ranging between 0.5 and 1.2 percent.

There are far fewer estimates of needed adaptation investments, and those that exist are not readily comparable. Some look only at the cost of climate-proofing foreign aid projects. Others include only certain sectors. Very few try to look at overall country needs (see chapter 6). A recent World Bank study that attempts to tackle these issues suggests that the investments needed could be between $75 billion and $100 billion annually in developing countries alone.

### Table 1 Incremental mitigation costs and associated financing requirements for a 2°C trajectory: What will be needed in developing countries by 2030?

<table>
<thead>
<tr>
<th>Model</th>
<th>Mitigation cost</th>
<th>Financing requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEA ETP</td>
<td>565</td>
<td></td>
</tr>
<tr>
<td>McKinsey</td>
<td>175</td>
<td>563</td>
</tr>
<tr>
<td>MESSAGE</td>
<td>139</td>
<td>264</td>
</tr>
<tr>
<td>MiniCAM</td>
<td>384</td>
<td></td>
</tr>
</tbody>
</table>

**Sources**: IEA ETP: IEA 2008c; McKinsey: McKinsey & Company 2009 and additional data provided by McKinsey (J. Dinkel) for 2030, using a dollar-to-euro exchange rate of $1.25 to €1; MESSAGE: IIASA 2009 and additional data provided by V. Krey; MiniCAM: Edmonds and others 2008 and additional data provided by J. Edmonds and L. Clarke; REMIND: Knopf and others, forthcoming and additional data provided by B. Knopf.

Note: Both mitigation costs and associated financing requirements are incremental relative to a business-as-usual baseline. Estimates are for the stabilization of greenhouse gases at 450 ppm CO₂e, which would provide a 40–50 percent chance of staying below 2°C warming by 2100 (Schaeffer and others 2008; Hare and Meinshausen 2006). IEA ETP is the model developed by the International Energy Agency, and McKinsey is the proprietary methodology developed by McKinsey & Company; MESSAGE, MiniCAM, and REMIND are the peer-reviewed models of the International Institute for Applied Systems Analysis, the Pacific Northwest Laboratory, and the Potsdam Institute for Climate Impact Research, respectively. McKinsey includes all sectors; other models only include mitigation efforts in the energy sector. MiniCAM reports $188 billion in mitigation costs in 2035, in constant 2000 dollars; this figure has been interpolated to 2030 and converted to 2005 dollars.

### Table 2 In the long term, what will it cost? Present value of mitigation costs to 2100

<table>
<thead>
<tr>
<th>Models</th>
<th>Present value of mitigation costs to 2100 for 450 ppm CO₂e (% of GDP)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>World</td>
</tr>
<tr>
<td>DICE</td>
<td>0.7</td>
</tr>
<tr>
<td>FAIR</td>
<td>0.6</td>
</tr>
<tr>
<td>MESSAGE</td>
<td>0.3</td>
</tr>
<tr>
<td>MiniCAM</td>
<td>0.7</td>
</tr>
<tr>
<td>PAGE</td>
<td>0.4</td>
</tr>
<tr>
<td>REMIND</td>
<td>0.4</td>
</tr>
</tbody>
</table>

**Sources**: DICE: Nordhaus 2008 (estimated from table 5.3 and figure 5.3); FAIR: Hof, den Elzen, and van Vuuren 2006; MESSAGE: IIASA 2009; MiniCAM: Edmonds and others 2008 and personal communications; PAGE: Hope 2009 and personal communications; REMIND: Knopf and others, forthcoming.

**Note**: DICE, FAIR, MESSAGE, MiniCAM, PAGE, and REMIND are peer-reviewed models. Estimates are for the stabilization of greenhouse gases at 450 ppm CO₂e, which would provide a 40–50 percent chance of staying below 2°C warming by 2100 (Schaeffer and others 2008; Hare and Meinshausen 2006). The FAIR model result reports abatement costs using the low settings (see table 3 in Hof, den Elzen, and van Vuuren 2008).
A climate-smart world is within reach if we act now, act together, and act differently

Even if the incremental cost of reducing climate risk is modest and the investment needs far from prohibitive, stabilizing warming around 2°C above preindustrial temperatures is extremely ambitious. By 2050 emissions would need to be 50 percent below 1990 levels and be zero or negative by 2100 (figure 5). This would require immediate and Herculean efforts: within the next 20 years global emissions would have to fall, compared to a business-as-usual path, by an amount equivalent to total emissions from high-income countries today. In addition, even 2°C warming would also require costly adaptation—changing the kinds of risks people prepare for; where they live; what they eat; and the way they design, develop, and manage agroecological and urban systems.36

So both the mitigation and the adaptation challenges are substantial. But the hypothesis of this Report is that they can be tackled through climate-smart policies that entail acting now, acting together (or globally), and acting differently. Acting now, because of the tremendous inertia in both climate and socioeconomic systems. Acting together, to keep costs down and protect the most vulnerable. And acting differently, because a climate-smart world requires a transformation of our energy, food production, and risk management systems.

Act now: Inertia means that today’s actions will determine tomorrow’s options

The climate system exhibits substantial inertia (figure 6). Concentrations lag emission reductions: CO2 remains in the atmosphere for decades to centuries, so a decline in emissions takes time to affect concentrations. Temperatures lag concentrations: temperatures will continue increasing for a few centuries after concentrations have stabilized. And sea levels lag temperature reductions: the thermal expansion of the ocean from an increase in temperature will last 1,000 years or more while the sea-level rise from melting ice could last several millennia.37

The dynamics of the climate system therefore limit how much future mitigation can be substituted for efforts today. For example, stabilizing the climate near 2°C (around 450 ppm of CO2e) would require global emissions to begin declining immediately by about 1.5 percent a year. A five-year delay would have to be offset by faster emission declines. And even longer delays simply could not be offset: a ten-year delay in mitigation would most likely make it impossible to keep warming from exceeding 2°C.38

Inertia is also present in the built environment, limiting flexibility in reducing greenhouse gases or designing adaptation responses. Infrastructure investments are lumpy, concentrated in time rather than evenly distributed.39 They are also long-lived: 15–40 years for factories and power plants, 40–75 years for road, rail, and power distribution networks. Decisions on land use and urban form—the structure and density of cities—have impacts lasting more than a century. And long-lived infrastructure triggers investments in associated capital (cars

---

**Figure 5** What does the way forward look like? Two options among many: Business as usual or aggressive mitigation

Project ed annual total global emissions (GtCO2e)

<table>
<thead>
<tr>
<th>Year</th>
<th>2000</th>
<th>2010</th>
<th>2020</th>
<th>2030</th>
<th>2040</th>
<th>2050</th>
<th>2060</th>
<th>2070</th>
<th>2080</th>
<th>2090</th>
<th>2100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Business as usual (~5°C)</td>
<td>160</td>
<td>140</td>
<td>120</td>
<td>100</td>
<td>80</td>
<td>60</td>
<td>40</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>-20</td>
</tr>
<tr>
<td>2°C trajectory</td>
<td>160</td>
<td>140</td>
<td>120</td>
<td>100</td>
<td>80</td>
<td>60</td>
<td>40</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>-20</td>
</tr>
</tbody>
</table>

**Source:** Clarke and others, forthcoming.

**Note:** The top band shows the range of estimates across models (GTEM, IMAGE, MESSAGE, MiniCAM) for emissions under a business-as-usual scenario. The lower band shows a trajectory that could yield a concentration of 450 ppm of CO2e (with a 50 percent chance of limiting warming to less than 2°C). Greenhouse gas emissions include CO2, CH4, and N2O. Negative emissions (eventually required by the 2°C path) imply that the annual rate of emissions is lower than the rate of uptake and storage of carbon through natural processes (for example, plant growth) and engineered processes (for example, growing biofuels and when burning them, sequestering the CO2 underground). GTEM, IMAGE, MESSAGE, and MiniCAM are the integrated assessment models of the Australian Bureau of Agricultural and Resource Economics, the Netherlands Environmental Assessment Agency, International Institute of Applied Systems Analysis, and Pacific Northwest National Laboratory.
for low-density cities; gas-fired heat and power generation capacity in response to gas pipelines), locking economies into lifestyles and energy consumption patterns.

The inertia in physical capital is nowhere close to that in the climate system and is more likely to affect the cost rather than the feasibility of achieving a particular emission goal—but it is substantial. The opportunities to shift from high-carbon to low-carbon capital stocks are not evenly distributed in time. China is expected to double its building stock between 2000 and 2015. And the coal-fired power plants proposed around the world over the next 25 years are so numerous that their lifetime CO₂ emissions would equal those of all coal-burning activities since the beginning of the industrial era. Only those facilities located close enough to the storage sites could be retrofitted for carbon capture and storage (if and when that technology becomes commercially available; see chapters 4 and 7). Retiring these plants before the end of their useful life—if changes in the climate force such action—would be extremely costly.

Inertia is also a factor in research and development (R&D) and in the deployment of new technologies. New energy sources have historically taken about 50 years to reach half their potential. Substantial investments in R&D are needed now to ensure that new technologies are available and rapidly penetrating the marketplace in the near future. This could require an additional $100 billion to $700 billion annually. Innovation is also needed in transport, building, water management, urban design, and many other sectors that affect climate change and are in turn affected by climate change—so innovation is a critical issue for adaptation as well.

Inertia is also present in the behavior of individuals and organizations. Despite greater public concern, behaviors have not changed much. Available energy-efficient technologies that are effective and pay for themselves are not adopted. R&D in renewables is underfunded. Farmers face incentives to over-irrigate their crops, which in turn affects energy use, because energy is a major input in water provision and treatment. Building continues in hazard-prone areas, and infrastructure continues to be designed for the climate of the past. Changing behaviors and organizational goals and standards is difficult and usually slow, but it has been done before (see chapter 8).

**Act together: For equity and efficiency**

Collective action is needed to effectively tackle climate change and reduce the costs of mitigation. It is also essential to
facilitate adaptation, notably through better risk management and safety nets to protect the most vulnerable.

To keep costs down and fairly distributed. Affordability hinges on mitigation being done cost effectively. When estimating the mitigation costs discussed earlier, modelers assume that greenhouse gas emission reductions occur wherever and whenever they are cheapest. *Wherever* means pursuing greater energy efficiency and other low-cost options to mitigate in whatever country or sector the opportunity arises. *Whenever* entails timing investments in new equipment, infrastructure, or farming and forestry projects to minimize costs and keep economies from getting locked into high-carbon conditions that would be expensive to alter later. Relaxing the whenever, wherever rule—as would necessarily happen in the real world, especially in the absence of a global carbon price—dramatically increases the cost of mitigation.

The implication is that there are enormous gains to global efforts—on this point, analysts are unanimous. If any country or group of countries does not mitigate, others must reach into higher-cost mitigation options to achieve a given global target. For example, by one estimate, the nonparticipation of the United States, which is responsible for 20 percent of world emissions, in the Kyoto Protocol increases the cost of achieving the original target by about 60 percent.46

Both equity and efficiency argue for developing financial instruments that separate who finances mitigation from where it happens. Otherwise, the substantial mitigation potential in developing countries (65–70 percent of emission reductions, adding up to 45–70 percent of global mitigation investments in 2030) 47 will not be fully tapped, substantially increasing the cost of achieving a given target. Taking it to the extreme, a lack of financing that results in fully postponing mitigation in developing countries to 2020 could more than double the cost of stabilizing around 2°C.48 With mitigation costs estimated to add up to $4 trillion to $25 trillion 49 over the next century, the losses implied by such delays are so large that there are clear economic benefits for high-income countries committed to limiting dangerous climate change to finance early action in developing countries.50 More generally, the total cost of mitigation could be greatly reduced through well-performing carbon-finance mechanisms, financial transfers, and price signals that help approximate the outcome produced by the whenever, wherever assumption.

To manage risk better and protect the poorest. In many places previously uncommon risks are becoming more widespread. Consider floods, once rare but now increasingly common, in Africa and the first hurricane ever recorded in the South Atlantic, which hit Brazil in 2004.51 Reducing disaster risk—through community-based early warning systems, climate monitoring, safer infrastructure, and strengthened and enforced zoning and building codes, along with other measures—becomes more important in a changing climate. Financial and institutional innovations can also limit risks to health and livelihoods. This requires domestic action—but domestic action will be greatly enhanced if it is supported by international finance and sharing of best-practice.

But as discussed in chapter 2, actively reducing risk will never be enough because there will always be a residual risk that must also be managed through better preparedness and response mechanisms. The implication is that development may need to be done differently, with much greater emphasis on climate and weather risk. International cooperation can help, for example, through pooling efforts to improve the production of climate information and its broad availability (see chapter 7) and through sharing best practices to cope with the changing and more variable climate.52

Insurance is another instrument to manage the residual risk, but it has its limitations. Climate risk is increasing along a trend and tends to affect entire regions or large groups of people simultaneously, making it difficult to insure. And even with insurance, losses associated with
catastrophic events (such as widespread flooding or severe droughts) cannot be fully absorbed by individuals, communities, and the private sector. In a more volatile climate, governments will increasingly become insurers of last resort and have an implicit responsibility to support disaster recovery and reconstruction. This requires that governments protect their own liquidity in times of crisis, particularly poorer or smaller countries that are financially vulnerable to the impacts of climate change: Hurricane Ivan caused damages equivalent to 200 percent of Grenada’s GDP. Having immediate funds available to jump-start the rehabilitation and recovery process reduces the derailing effect of disasters on development.

Multicountry facilities and reinsurance can help. The Caribbean Catastrophe Risk Insurance Facility spreads risk among 16 Caribbean countries, harnessing the reinsurance market to provide liquidity to governments quickly following destructive hurricanes and earthquakes. Such facilities may need help from the international community. More generally, high-income countries have a critical role in ensuring that developing countries have timely access to the needed resources when shocks hit, whether by supporting such facilities or through the direct provision of emergency funding.

But insurance and emergency funding are only one part of a broader risk-management framework. Social policies will become more important in helping people cope with more frequent and persistent threats to their livelihoods. Social policies reduce economic and social vulnerability and increase resilience to climate change. A healthy, well-educated population with access to social protection can better cope with climate shocks and climate change. Social protection policies will need to be strengthened where they exist, developed where they are lacking, and designed so that they can be expanded quickly after a shock. Creating social safety nets in countries that do not yet have them is critical, and Bangladesh shows how it can be done even in very poor countries (box 4). Development agencies could help spread successful models of social safety nets and tailor them to the needs created by the changing climate.

**To ensure adequate food and water for all countries.** International action is critical to manage the water and food security challenges posed by the combination of climate change and population pressures—even with improved agricultural productivity and water-use efficiency. One fifth of the world’s freshwater renewable resources are shared between countries. That includes 261 transboundary river basins, home to 40 percent of the world’s people and governed by over 150 international treaties that do not always include all riparian states.

If countries are to manage these resources
more intensively, they will have to scale up cooperation on international water bodies through new international treaties or the revision of existing ones. The system of water allocation will need to be reworked due to the increased variability, and cooperation can be effective only when all riparian countries are involved and responsible for managing the watercourse.

Similarly, increasing arid conditions in countries that already import a large share of their food, along with more frequent extreme events and growth in income and population, will increase the need for food imports. But global food markets are thin—relatively few countries export food crops. So small changes in either supply or demand can have big effects on prices. And small countries with little market power can find it difficult to secure reliable food imports.

To ensure adequate water and nutrition for all, the world will have to rely on an improved trade system less prone to large price shifts. Facilitating access to markets for developing countries by reducing trade barriers, weatherproofing transport (for example, by increasing access to year-round roads), improving procurement methods, and providing better information on both climate and market indexes can make food trade more efficient and prevent large price shifts. Price spikes can also be prevented by investing in strategic stockpiles of key grains and foodstuffs and in risk-hedging instruments.

!*Act differently: To transform energy, food production, and decision-making systems*!

Achieving the needed emission reductions will require a transformation both of our energy system and of the way we manage agriculture, land use, and forests (figure 7). These transformations must also incorporate the needed adaptations to a changing climate. Whether they involve deciding which crop to plant or how much hydroelectric power to develop, decisions will have to be robust to the variety of climate outcomes we could face in the future rather than being optimally adapted to the climate of the past.

*To ignite a veritable energy revolution.* If financing is available, can emissions be cut sufficiently deeply or quickly without sacrificing growth? Most models suggest that they can, although none find it easy (see chapter 4). Dramatically higher energy efficiency, stronger management of energy demand, and large-scale deployment of existing low-CO2-emitting electricity sources could produce about half the emission reductions needed to put the world on a path toward 2°C (figure 8). Many have substantial co-benefits but are hampered by institutional and financial constraints that have proven hard to overcome.

So known technologies and practices can buy time—if they can be scaled up. For that to happen, appropriate energy pricing is absolutely essential. Cutting subsidies and increasing fuel taxes are politically difficult, but the recent spike and fall in oil and gas prices make the time opportune for doing so. Indeed, European countries used the 1974 oil crisis to introduce high fuel taxes. As a result, fuel demand is about half what it likely would have been had prices been close to those in the United States. Similarly, electricity prices are twice as high
in Europe as they are in the United States and electricity consumption per capita is half. Prices help explain why European emissions per capita (10 tons of CO₂e) are less than half those in the United States (23 tons). Global energy subsidies in developing countries were estimated at $310 billion in 2007, disproportionately benefiting higher-income populations. Rationalizing energy subsidies to target the poor and encourage sustainable energy and transport could reduce global CO₂ emissions and provide a host of other benefits.

But pricing is only one tool for advancing the energy-efficiency agenda, which suffers from market failures, high transaction costs, and financing constraints. Norms, regulatory reform, and financial incentives are also needed—and are cost-effective. Efficiency standards and labeling programs cost about 1.5 cents a kilowatt-hour, much less than any electricity supply options, while industrial energy performance targets spur innovation and increase competitiveness. And because utilities are potentially effective delivery channels for making homes, commercial buildings, and industry more energy efficient, incentives have to be created for utilities to conserve energy. This can be done by decoupling a utility’s profits from its gross sales, with profits instead increasing with energy conservation successes. Such an approach is behind California’s remarkable energy conservation program; its adoption has become a condition for any U.S. state to receive federal energy-efficiency grants from the 2009 fiscal stimulus.

For renewable energy, long-term power-purchase agreements within a regulatory framework that ensures fair and open grid access for independent power producers will attract investors. This can be done through mandatory purchases of renewable energy at a fixed price (known as a feed-in tariff) as in Germany and Spain; or through renewable

![Figure 8](image-url)

**Figure 8** The full portfolio of existing measures and advanced technologies, not a silver bullet, will be needed to get the world onto a 2°C path

CO₂e (gigatons)

Source: WDR team with data from IIASA 2009.
portfolio standards that require a minimum share of power to come from renewables, as in many U.S. states. Importantly, predictably higher demand is likely to reduce the costs of renewables, with benefits for all countries. In fact, experience shows that expected demand can have an even higher impact than technological innovation in driving down prices (figure 9).

But new technologies will be indispensable: every energy model reviewed for this Report concludes that it is impossible to get onto the 2°C trajectory with only energy efficiency and the diffusion of existing technologies. New or emerging technologies, such as carbon capture and storage, second-generation biofuels, and solar photovoltaics, are also critical.

Few of the needed new technologies are available off the shelf. Ongoing carbon capture and storage demonstration projects currently store only about 4 million tons of CO₂ annually. Fully proving the viability of this technology in different regions and settings will require about 30 full-size plants at a total cost of $75 billion to $100 billion. Storage capacity of 1 billion tons a year of CO₂ is necessary by 2020 to stay within 2°C warming.

Investments in biofuels research are also needed. Expanded production using the current generation of biofuels would displace large areas of natural forests and grasslands and compete with the production of food. Second-generation biofuels that rely on nonfood crops may reduce competition with agriculture by using more marginal lands. But they could still lead to the loss of pasture land and grassland ecosystems and compete for water resources.

Breakthroughs in climate-smart technologies will require substantially more spending for research, development, demonstration, and deployment. As mentioned earlier, global public and private spending on energy RD&D is modest, both relative to estimated needs and in comparison with what innovative industries invest. The modest spending means slow progress, with renewable energy still accounting for only 0.4 percent of all patents. Moreover, developing countries need access to these technologies, which requires boosting domestic capacity to identify and adapt new technologies as well as strengthening international mechanisms for technology transfer (see chapter 7).

To transform land and water management and manage competing demands. By 2050 the world will need to feed 3 billion more people and cope with the changing dietary demands of a richer population (richer people eat more meat, a resource-intensive way to obtain proteins). This must be done in a harsher climate with more storms, droughts, and floods, while also incorporating agriculture in the mitigation agenda—because agriculture drives about half the deforestation every year and directly contributes 14 percent of overall emissions. And ecosystems, already weakened by pollution, population pressure, and overuse, are further threatened by climate change. Producing more and protecting better in a harsher climate while reducing greenhouse gas emissions is a tall order. It will require managing the competing demands for land and water from agriculture, forests and other ecosystems, cities, and energy.

So agriculture will have to become more productive, getting more crop per drop and per hectare—but without the increase in environmental costs currently associated with intensive agriculture. And societies will have to put much more effort into protecting ecosystems. To avoid pulling more land into cultivation and spreading into “unmanaged”

---

Figure 9  High expected demand drove cost reductions in solar photovoltaics by allowing for larger-scale production

<table>
<thead>
<tr>
<th>Cost reduction by factor ($/watt)</th>
<th>1979 price</th>
<th>Plant size</th>
<th>Efficiency</th>
<th>Other</th>
<th>Unexplained</th>
<th>2001 price</th>
</tr>
</thead>
<tbody>
<tr>
<td>$10</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
</tr>
<tr>
<td>$15</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
</tr>
<tr>
<td>$20</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
</tr>
<tr>
<td>$25</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
</tr>
<tr>
<td>$30</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
</tr>
<tr>
<td>$35</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
</tr>
<tr>
<td>$40</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
</tr>
<tr>
<td>$45</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
</tr>
<tr>
<td>$50</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Source: Adapted from Nemet 2006.

Note: Bars show the portion of the reduction in the cost of solar photovoltaic power, from 1979 to 2001, accounted for by different factors such as plant size (which is determined by expected demand) and improved efficiency (which is driven by innovation from R&D). The “other” category includes reductions in the price of the key input silicon (12 percent) and a number of much smaller factors including reduced quantities of silicon needed for a given energy output, and lower rates of discarded products due to manufacturing error.
land and forests, agricultural productivity will have to increase, perhaps by as much as 1.8 percent a year compared to 1 percent a year without climate change. Most of that increase will have to occur in developing countries because agriculture in high-income countries is already close to maximum feasible yields. Fortunately, new technologies and practices are emerging (box 5). Some improve productivity and resilience as they sequester carbon in the soil and reduce the nutrient runoff that damages aquatic ecosystems. But more research is needed to understand how to scale them up.

Increased efforts to conserve species and ecosystems will need to be reconciled with food production (whether agriculture or fisheries). Protected areas—already 12 percent of the earth’s land but only a tiny portion of the ocean and fresh water system—cannot be the only solution to maintaining biodiversity, because species ranges are likely to shift outside the boundaries of such areas. Instead ecoagricultural landscapes, where farmers create mosaics of cultivated and natural habitats, could facilitate the migration of species. While benefiting biodiversity, ecoagriculture practices also increase agriculture’s resilience to climate change along with farm productivity and incomes. In Central America farms using these practices suffered half or less of the damage inflicted on others by Hurricane Mitch.

Better management of water is essential for agriculture to adapt to climate change. River basins will be losing natural water storage in ice and snow and in reduced aquifer recharge, just as warmer temperatures increase evaporation. Water can be used more efficiently through a combination of new and existing technologies, better information, and more sensible use. And that can be done even in poor countries and among small farmers: in Andhra Pradesh, India, a simple scheme, in which farmers monitor their rain and groundwater and learn new farming and irrigation techniques, has caused 1 million farmers to voluntarily reduce groundwater consumption to sustainable levels.

Efforts to increase water resources include dams, but dams can be only a part

**BOX 5 Promising approaches that are good for farmers and good for the environment**

**Promising practices**
Cultivation practices such as zero-tillage (which involves injecting seeds directly into the soil instead of sowing on ploughed fields) combined with residue management and proper fertilizer use can help to preserve soil moisture, maximize water infiltration, increase carbon storage, minimize nutrient runoff, and raise yields. Now being used on about 2 percent of global arable land, this practice is likely to expand. Zero tillage has mostly been adopted in high-income countries, but is expanding rapidly in countries such as India. In 2005, in the rice–wheat farming system of the Indo-Gangetic plain, farmers adopted zero-tillage on 1.6 million hectares; by 2008, 20–25 percent of the wheat in two Indian states (Haryana and Punjab) was cultivated using minimum tillage. And in Brazil, about 45 percent of cropland is farmed using these practices.

**Promising technologies**
Precision agriculture techniques for targeted, optimally timed application of the minimum necessary fertilizer and water could help the intensive, high-input farms of high-income countries, Asia, and Latin America to reduce emissions and nutrient runoff, and increase water-use efficiency. New technologies that limit emissions of gaseous nitrogen include controlled-release nitrogen through the deep placement of supergranules of fertilizer or the addition of biological inhibitors to fertilizers. Remote sensing technologies for communicating precise information about soil moisture and irrigation needs can eliminate unnecessary application of water. Some of these technologies may remain too expensive for most developing-country farmers (and could require payment schemes for soil carbon conservation or changes in water pricing). But others such as biological inhibitors require no extra labor and improve productivity.

**Learning from the past**
Another approach building on a technology used by indigenous peoples in the Amazon rain forest could sequester carbon on a huge scale while improving soil productivity. Burning wet crop residues or manure (biomass) at low temperatures in the almost complete absence of oxygen produces biochar, a charcoal-type solid with a very high carbon content. Biochar is highly stable in soil, locking in the carbon that would otherwise be released by simply burning the biomass or allowing it to decompose. In industrial settings this process transforms half the carbon into biofuel and the other half into biochar. Recent analysis suggests biochar may be able to store carbon for centuries, possibly millennia, and more studies are underway to verify this property.

of the solution, and they will need to be designed flexibly to deal with more variable rainfall. Other approaches include using recycled water and desalination, which, while costly, can be worthwhile for high-value use in coastal areas, especially if powered by renewable energy (see chapter 3).

But changing practices and technologies can be a challenge, particularly in poor, rural, and isolated settings, where introducing new ways of doing things requires working with a large number of very risk-averse actors located off the beaten track and facing different constraints and incentives. Extension agencies usually have limited resources to support farmers and are staffed with engineers and agronomists rather than trained communicators. Taking advantage of emerging technologies will also require bringing higher technical education to rural communities.

To transform decision-making processes: Adaptive policy making to tackle a riskier and more complex environment. Infrastructure design and planning, insurance pricing, and numerous private decisions—from planting and harvesting dates to siting factories and designing buildings—have long been based on stationarity, the idea that natural systems fluctuate within an unchanging envelope of variability. With climate change, stationarity is dead. Decision makers now have to contend with the changing climate compounding the uncertainties they already faced. More decisions have to be made in a context of changing trends and greater variability, not to mention possible carbon constraints.

The approaches being developed and applied by public and private agencies, cities, and countries around the world from Australia to the United Kingdom are showing that it is possible to increase resilience even in the absence of expensive and sophisticated modeling of future climate. Of course better projections and less uncertainty help, but these new approaches tend to focus on strategies that are “robust” across a range of possible future outcomes, not just optimal for a particular set of expectations (box 6). Robust strategies can be as simple as picking seed varieties that do well in a range of climates.

Robust strategies typically build flexibility, diversification, and redundancy in response capacities (see chapter 2). They favor “no-regrets” actions that provide benefits (such as water and energy efficiency) even without climate change. They also favor reversible and flexible options to keep the cost of wrong decisions as low as possible (restrictive urban planning for coastal areas can easily be relaxed while forced retreats or increased protection can be difficult and costly). They include safety margins to increase resilience (paying the marginal costs of building a higher bridge or one that can be flooded, or extending safety nets to groups on the brink). And they rely on long-term planning based on scenario analysis and an assessment of strategies under a wide range of possible futures. Participatory design and implementation is critical, because it permits the use of local knowledge about existing vulnerability and fosters ownership of the strategy by its beneficiaries.

Policy making for adaptation also needs to be adaptive itself, with periodic reviews based on the collection and monitoring of information, something increasingly feasible at low cost thanks to better technologies. For example, a key problem in water management is the lack of knowledge about underground water, or about who consumes what. New remote-sensing technology makes it possible to infer groundwater consumption, identify which farmers have low water productivity, and specify when to increase or decrease water applications to maximize productivity without affecting crop yields (see chapter 3).

Making it happen: New pressures, new instruments, and new resources

The previous pages describe the many steps needed to manage the climate change challenge. Many read like the standard fare of a development or environmental science textbook: improve water resource management, increase energy efficiency, promote sustainable agricultural practices, remove perverse subsidies. But these have proven elusive in the past, raising the question of what might make the needed reforms and
behavior changes possible. The answer lies in a combination of new pressures, new instruments, and new resources.

New pressures are coming from a growing awareness of climate change and its current and future costs. But awareness does not always lead to action: to succeed, climate-smart development policy must tackle the inertia in the behavior of individuals and organizations. Domestic perception of climate change will also determine the success of a global deal—its adoption but also its implementation. And while many of the answers to the climate and development problem will be national or even local, a global deal is needed to generate new instruments and new resources for action (see chapter 5). So while new pressures must start at home with changing behaviors and shifting public opinion, action must be enabled by an efficient and effective international agreement, one that factors in development realities.

**BOX 6 Ingenuity needed: Adaptation requires new tools and new knowledge**

Regardless of mitigation efforts, humanity will need to adapt to substantial changes in the climate—everywhere, and in many different fields.

**Natural capital**

A diversity of natural assets will be needed to cope with climate change and ensure productive agriculture, forestry, and fisheries. For example, crop varieties are needed that perform well under drought, heat, and enhanced CO₂. But the private-sector- and farmer-led process of choosing crops favors homogeneity adapted to past or current conditions, not varieties capable of producing consistently high yields in warmer, wetter, or drier conditions. Accelerated breeding programs are needed to conserve a wider pool of genetic resources of existing crops, breeds, and their wild relatives. Relatively intact ecosystems, such as forested catchments, mangroves, and wetlands, can buffer the impacts of climate change. Under a changing climate these ecosystems are themselves at risk, and management approaches will need to be more proactive and adaptive. Connections between natural areas, such as migration corridors, may be needed to facilitate species movements to keep up with the change in climate.

**Physical capital**

Climate change is likely to affect infrastructure in ways not easily predictable and varying greatly with geography. For example, infrastructure in low-lying areas is threatened by flooding rivers and rising seas whether in Tangier Bay, New York City, or Shanghai. Heat waves soften asphalt and can require road closures; they affect the capacity of electricity transmission lines and warm the water needed to cool thermal and nuclear power plants just as they increase electricity demand. Uncertainties are likely to influence not only investment decisions but the design of infrastructure that will need to be robust to the future climate. Similar uncertainty about the reliability of water supply is leading to both integrated management strategies and improved water-related technologies as hedges against climate change. Greater technical knowledge and engineering capabilities will be needed to design future infrastructure in the light of climate change.

**Human health**

Many adaptations of health systems to climate change will initially involve practical options that build on existing knowledge. But others will require new skills. Advances in genomics are making it possible to design new diagnostic tools that can detect new infectious diseases. These tools, combined with advances in communications technologies, can detect emerging trends in health and provide health workers with early opportunities to intervene. Innovations in a range of technologies are already transforming medicine. For example, the advent of hand-held diagnostic devices and video-mediated consultations are expanding the prospects for telemedicine and making it easier for isolated communities to connect to the global health infrastructure.

Climate-smart policies also have to tackle the inertia in the behavior of individuals and organizations. Weaning modern economies from fossil fuels and increasing resilience to climate change will require attitudinal shifts by consumers, business leaders, and decision makers. The challenges in changing ingrained behaviors call for a special emphasis on nonmarket policies and interventions.

Throughout the world disaster risk management programs are focused on changing community perceptions of risk. The City of London has made targeted communication and education programs a centerpiece of its “London Warming” Action Plan. And utilities across the United States have begun using social norms and peer community pressure to encourage lower energy demand: simply showing households how they are faring relative to others, and signaling approval of lower than average consumption is enough to encourage lower energy use (see chapter 8).

Addressing the climate challenge will also require changes in the way governments operate. Climate policy touches on the mandate of many government agencies, yet belongs to none. For both mitigation and adaptation, many needed actions require a long-term perspective that goes well beyond those of any elected administration. Many countries, including Brazil, China, India, Mexico, and the United Kingdom, have created lead agencies for climate change, set up high-level coordination bodies, and improved the use of scientific information in policy making (see chapter 8).

Cities, provinces, and regions provide political and administrative space closer to the sources of emissions and the impacts of climate change. In addition to implementing and articulating national policies and regulations, they perform policy-making, regulatory, and planning functions in sectors key to mitigation (transportation, construction, public services, local advocacy) and adaptation (social protection, disaster risk reduction, natural resource management). Because they are closer to citizens, these governments can raise public awareness and mobilize private actors.81 And at the intersection of the government and the public, they become the space where government accountability for appropriate responses is played out. That is why many local governments have preceded national governments in climate action (box 7).

**New instruments and new resources: The role of a global agreement**

Immediate and comprehensive action is not feasible without global cooperation, which requires a deal perceived as equitable by all parties—high-income countries, which need to make the most immediate and stringent efforts; middle-income countries, where substantial mitigation and adaptation need to happen; and low-income countries, where the priority is technical and financial assistance to cope with vulnerability to today’s conditions, let alone unfolding changes in the climate. The deal must also be effective in achieving climate goals, incorporating lessons from other international agreements and from past successes and failures with large international transfers of resources. Finally, it has to be efficient, which requires adequate funding and financial instruments that can separate where mitigation happens from who funds it—thereby achieving mitigation at least cost.

**An equitable deal.** Global cooperation at the scale needed to deal with climate change can happen only if it is based on a global agreement that addresses the needs and constraints of developing countries, only if it can separate where mitigation happens from who bears the burden of this effort, and only if it creates financial instruments to encourage and facilitate mitigation, even in countries that are rich in coal and poor in income or that have contributed little or nothing historically to climate change. Whether these countries seize the opportunity to embark on a more sustainable development path will be heavily influenced by the financial and technical support that higher-income countries can muster. Otherwise the transition costs could be prohibitive.

Global cooperation will require more than financial contributions, however. Behavioral economics and social psychology show that people tend to reject deals they perceive as unfair toward them, even if they stand to benefit.82 So the fact that
it is in everyone’s interest to collaborate is
no guarantee of success. There are real con-
cerns among developing countries that a
drive to integrate climate and development
could shift responsibility for mitigation
onto the developing world.

Enshrining a principle of equity in a
global deal would do much to dispel such
concerns and generate trust (see chapter 5).
A long-term goal of per capita emissions
converging to a band could ensure that no
country is locked into an unequal share of
the atmospheric commons. India has
recently stated that it would never exceed
the average per capita emissions of high-
income countries. So drastic action by
high-income countries to reduce their own
carbon footprint to sustainable levels is
essential. This would show leadership, spur
innovation, and make it feasible for all to
switch to a low-carbon growth path.

Another major concern of developing
countries is technology access. Innovation
in climate-related technologies remains
concentrated in high-income countries,
although developing countries are increas-
ing their presence (China is seventh in
overall renewable energy patents, and
an Indian firm is now the leader in on-
road electric cars). In addition, devel-
oping countries—at least the smaller or
poorer ones—may need assistance to pro-
duce new technology or tailor it to their
circumstances. This is particularly prob-
lematic for adaptation, where technologies
can be very location specific.

International transfers of clean technol-
ologies have so far been modest. They have
occurred in at best one-third of the projects
funded through the Clean Development
Mechanism (CDM), the main channel for
financing investments in low-carbon tech-
nologies in developing countries. The
Global Environment Facility, which has
historically allocated about $160 million
a year to climate mitigation programs,
is supporting technology needs assess-
ments in 130 countries. About $5 billion
has recently been pledged under the new
Clean Technology Fund to assist develop-
ing countries by supporting large, risky
investments involving clean technologies,
but there are disputes over what constitutes
clean technology.

Building technology agreements into a
global climate deal could boost technology
innovation and ensure developing-country
access. International collaboration is criti-
cal for producing and sharing climate-
smart technologies. On the production side,
cost-sharing agreements are needed for
large-scale and high-risk technologies such
as carbon capture and storage (see chapter
7). International agreements on standards
create markets for innovation. And inter-
national support for technology transfer

**BOX 7** Cities reducing their carbon footprints

The movement toward carbon-neutral
cities shows how local governments are
taking action even in the absence of
international commitments or stringent
national policies. In the United States,
which has not ratified the Kyoto Protocol,
close to a thousand cities have agreed to
meet the Kyoto Protocol target under the
Mayors’ Climate Protection agreement. In
Rizhao, a city of 3 million people in north-
ern China, the municipal government
combined incentives and legislative tools
to encourage the large-scale efficient
use of renewable energy. Skyscrapers are
built to use solar power, and 99 percent
of Rizhao’s households use solar-power
heaters. Almost all traffic signals, street
lights, and park illuminations are powered
by photovoltaic solar cells. In total the
city has over 500,000 square meters of
solar water heating panels, the equiva-
 lent of about 0.5 megawatts of electric
water heaters. As a result of these efforts,
energy use has fallen by nearly a third and
CO₂ emissions by half.

Examples of movements to carbon-
neutral cities are mushrooming well
beyond China. In 2008 Sydney became
the first city in Australia to become carbon
neutral, through energy efficiency, renew-
able energy, and carbon offsets. Copenha-
gen is planning to cut its carbon emissions
to zero by 2025. The plan includes invest-
ments in wind energy and encouraging
the use of electric and hydrogen-powered
cars with free parking and recharging.

More than 700 cities and local govern-
ments around the world are participating
in a “Cities for Climate Protection Cam-
paign” to adopt policies and implement
quantifiable measures to reduce local
greenhouse gas emissions (http://www.
icel.org). Together with other local gov-
ernment associations, such as the C40
Cities Climate Leadership Group and the
World Mayors Council on Climate Change,
they have embarked on a process that
seeks empowerment and inclusion of cities
and local governments in the UN Frame-
work Convention on Climate Change.

Sources: Bai 2006; World Bank 2009d; C40
c40cities.org (accessed August 1, 2009).
can take the form of joint production and technology sharing—or financial support for the incremental cost of adopting new cleaner technology (as was done through the Multilateral Fund for the Implementation of the Montreal Protocol on Substances that Deplete the Ozone Layer).

A global deal will also have to be acceptable to high-income countries. They worry about the financial demands that could be placed on them and want to ensure that financial transfers deliver the desired adaptation and mitigation results. They also are concerned that a tiered approach allowing developing countries to delay actions might affect their own competitiveness with leading middle-income countries.

An effective deal: Lessons from aid effectiveness and international agreements. An effective climate deal will achieve agreed targets for mitigation and adaptation. Its design can build on the lessons of aid effectiveness and international agreements. Climate finance is not aid finance, but the aid experience does offer critical lessons. In particular, it has become clear that commitments are seldom respected unless they correspond to a country’s objectives—the conditionality versus ownership debate. So funding for adaptation and mitigation should be organized around a process that encourages recipient-country development and ownership of a low-carbon development agenda. The aid experience also shows that a multiplicity of funding sources imposes huge transaction costs on recipient countries and reduces effectiveness. And while the sources of funding might be separate, the spending of adaptation and mitigation resources must be fully integrated into development efforts.

International agreements also show that tiered approaches can be an appropriate way of bringing hugely different partners into a single deal. Look at the World Trade Organization: special and differential treatment for developing countries has been a defining feature of the multilateral trading system for most of the postwar period. Proposals are emerging in the climate negotiations around the multitrack framework put forward in the UNFCCC’s Bali Action Plan. These proposals would have developed countries commit to output targets, where the “output” is greenhouse gas emissions, and developing countries commit to policy changes rather than emission targets.

This approach is appealing for three reasons. First, it can advance mitigation opportunities that carry development co-benefits. Second, it is well suited to developing countries, where fast population and economic growth is driving the rapid expansion of the capital stock (with opportunities for good or bad lock-in) and increases the urgency of moving energy, urban, and transport systems toward a lower-carbon path. A policy-based track can also offer a good framework for countries with a high share of hard-to-measure emissions from land use, land-use change, and forestry. Third, it is less likely to require monitoring of complex flows—a challenge for many countries. Nevertheless, some overall monitoring and evaluation of these approaches is critical, if only to understand their effectiveness.

An efficient deal: The role of climate finance

Climate finance can reconcile equity and efficiency by separating where climate action takes place from who pays for it. Sufficient finance flowing to developing countries—combined with capacity building and access to technology—can support low-carbon growth and development. If mitigation finance is directed to where mitigation costs are lowest, efficiency will increase. If adaptation finance is directed to where the needs are greatest, undue suffering and loss can be avoided. Climate finance offers the means to reconcile equity, efficiency, and effectiveness in dealing with climate change.

But current levels of climate finance fall far short of foreseeable needs. The estimates presented in table 1 suggest mitigation costs in developing countries could reach $140–$175 billion a year by 2030 with associated financing needs of $265–$565 billion. Current flows of mitigation finance averaging some $8 billion a year to 2012 pale in comparison. And the estimated $30–$100 billion that could be needed annually for adaptation in developing countries dwarfs the less than $1 billion a year now available (figure 10).
Compounding the shortfalls in climate finance are significant inefficiencies in how funds are generated and deployed. Key problems include fragmented sources of finance; high costs of implementing market mechanisms such as the Clean Development Mechanism; and insufficient, distortionary instruments for raising adaptation finance.

Chapter 6 identifies nearly 20 different bilateral and multilateral funds for climate change currently proposed or in operation. This fragmentation has a cost identified in the Paris Declaration on Aid Effectiveness: each fund has its own governance, raising transaction costs for developing countries; and alignment with country development objectives may suffer if sources of finance are narrow. Other tenets of the Paris Declaration, including ownership, donor harmonization, and mutual accountability, also suffer when financing is highly fragmented. An eventual consolidation of funds into a more limited number is clearly warranted.

Looking forward, pricing carbon (whether through a tax or through a cap and trade scheme) is the optimal way of both generating carbon-finance resources and directing those resources to efficient opportunities. In the near future, however, the CDM and other performance-based mechanisms for carbon offsets are likely to remain the key market-based instruments for mitigation finance in developing countries and are therefore critical in supplementing direct transfers from high-income countries.

The CDM has in many ways exceeded expectations, growing rapidly, stimulating learning, raising awareness of mitigation options, and building capacity. But it also has many limitations, including low development co-benefits, questionable additivity (because the CDM generates carbon credits for emission reductions relative to a baseline, the choice of baseline can always be questioned), weak governance, inefficient operation, limited scope (key sectors such as transport are not covered), and concerns about market continuity beyond 2012.88 For the effectiveness of climate actions it is also important to understand that CDM transactions do not reduce global carbon emissions beyond agreed commitments—they simply change where they occur (in developing rather than developed countries) and lower the cost of mitigation (thereby increasing efficiency).

The Adaptation Fund under the Kyoto Protocol employs a novel financing instrument in the form of a 2 percent tax on certified emission reductions (units of carbon offset generated by the CDM). This clearly raises finance that is additional to other sources, but as pointed out in chapter 6, this approach has several undesirable characteristics. The instrument is taxing a good (mitigation finance) rather than a bad (carbon emissions) and like any tax, there are inevitable inefficiencies (deadweight losses). Analysis of the CDM market suggests that most of the lost gains from trade as a result of the

Figure 10 The gap is large: Estimated annual incremental climate costs required for a 2°C trajectory compared with current resources

Sources: See table 1 on page 9 and the discussion in chapter 6.
Note: Mitigation and adaptation costs for developing countries only. Bars represent the range of estimates for the incremental costs of the adaptation and mitigation efforts associated with a 2°C trajectory. Mitigation financing needs associated with the incremental costs depicted here are much higher, ranging between $265 billion and $595 billion annually by 2030.
tax would fall on developing-country suppliers of carbon credits. Adaptation finance will also require an allocation mechanism that ideally would embrace the principles of transparency, efficiency, and equity—efficient approaches would direct finance to the most vulnerable countries and those with the greatest capacity to manage adaptation, while equity would require that particular weight be given to the poorest countries.

Within countries the role of the public sector will be critical in creating incentives for climate action (through subsidies, taxes, caps, or regulations), providing information and education, and eliminating market failures that inhibit action. But much of the finance will come from the private sector, particularly for adaptation. For private infrastructure service providers the flexibility of the regulatory regime will be crucial in providing the right incentives for climate-proofing investments and operations. While it will be possible to leverage private finance for specific adaptation investments (such as flood defenses) experience to date with public-private partnerships on infrastructure in developing countries suggests that the scope will be modest.

Generating additional finance for adaptation is a key priority, and innovative schemes such as auctioning assigned amount units (AAUs, the binding caps that countries accept under the UNFCCC), taxing international transport emissions, and a global carbon tax have the potential to raise tens of billions of dollars of new finance each year. For mitigation it is clear that having an efficient price for carbon, through either a tax or cap-and-trade, will be transformational. Once this is achieved, the private sector will provide much of the needed finance as investors and consumers factor in the price of carbon. But national carbon taxes or carbon markets will not necessarily provide the needed flows of finance to developing countries. If the solution to the climate problem is to be equitable, a reformed CDM and other performance-based schemes, the linking of national carbon markets, the allocation and sale of AAUs, and fiscal transfers will all provide finance to developing countries.

As this Report goes to press, countries are engaged in negotiations on a global climate agreement under the auspices of the UNFCCC. Many of these same countries
Land use, agriculture, and forestry have a substantial mitigation potential but have been contentious in the climate negotiations. Could emissions and uptakes be measured with sufficient accuracy? What can be done about natural fluctuations in growth and losses from fires associated with climate change? Should countries get credits for actions taken decades or centuries before the climate negotiations? Would credits from land-based activities swamp the carbon market and drive down the carbon price, reducing incentives for further mitigation? Progress has been made on many of these issues, and the Intergovernmental Panel on Climate Change has developed guidelines for measuring land-related greenhouse gases.

Net global deforestation averaged 7.3 million hectares a year from 2000 to 2005, contributing about 5.0 gigatons of CO₂ a year in emissions, or about a quarter of the emission reduction needed. Another 0.9 gigaton reduction could come from reforestation and better forest management in developing countries. But improved forest management and reduced deforestation in developing countries are currently not part of the international Clean Development Mechanism of the UNFCCC.

There is also interest in creating a mechanism for payments for improved management of soil carbon and other greenhouse gases produced by agriculture. Technically about 6.0 gigatons of CO₂e in emissions could be reduced through less tillage of soils, better wetland and rice paddy management, and better livestock and manure management. About 1.5 gigatons of emission reductions a year could be achieved in agriculture for a carbon price of $20 a ton of CO₂e (figure). Forestry and agricultural mitigation would produce many co-benefits. The maintenance of forests keeps open a wider diversity of livelihood options, protects biodiversity, and buffers against extreme events such as floods and landslides. Reduced tillage and better fertilizer management can improve productivity. And the resources generated could be substantial—at least for countries with large forests: if the forest carbon markets meet their full potential, Indonesia could earn $400 million to $2 billion a year.

As for soil carbon, even in Africa, where relatively carbon-poor lands cover close to half the continent, the potential for soil carbon sequestration is 100 million to 400 million tons of CO₂e a year. At $10 a ton, this would be on par with current official development assistance to Africa.

Largely through the efforts of a group of developing countries that formed the Coalition for Rainforests, land use, land-use change, and forestry accounting were reintroduced into the UNFCCC agenda. Those countries seek opportunities to contribute to reducing emissions under their common but differentiated responsibility and to raise carbon finance to better manage their forested systems. Negotiations over what has become known as REDD (Reduced Emissions from Deforestation and Forest Degradation) continue, but most expect some elements of REDD to be part of an agreement in Copenhagen.

Initiatives on soil carbon are not so advanced. While carbon sequestration in agriculture would be an inexpensive, technically simple, and efficient response to climate change, developing a market for it is no easy feat. A pilot project in Kenya (see chapter 3) and soil carbon offsets on the Chicago Climate Exchange point to opportunities. Three steps can help move soil carbon sequestration forward.

First, the carbon monitoring should follow an “activity-based” approach, where emission reductions are estimated based on the activities carried out by the farmer rather than on much more expensive soil analyses. Specific and conservative emission reduction factors can be applied for different agroecological and climatic zones. This is simpler, cheaper, and more predictable for the farmer, who knows up front what the payments, and possible penalties, are for any given activity. Second, transaction costs can be reduced by “aggregators,” who combine activities over many smallholder farms, as in the Kenya pilot project. By working with many farms, aggregators can build up a permanent buffer and average out occasional reversals in sequestration. Pooling over a portfolio of projects with conservative estimates of permanence can make soil carbon sequestration fully equivalent to CO₂ reduction in other sectors.

Third, logistical help, especially for poor farmers who need help to finance upfront costs, must include strengthened extension services. They are key to disseminating knowledge about sequestration practices and finance opportunities.

are also in the throes of one of the most severe financial crises of recent decades. Fiscal difficulties and urgent needs could make it difficult to get legislatures to agree to spend resources on what is incorrectly perceived as solely a longer-term threat.

Yet a number of countries have adopted fiscal recovery packages to green the economy while restoring growth, for a global total of more than $400 billion over the next few years in the hope of stimulating the economy and creating jobs.\(^5\) Investments in energy efficiency can produce a triple dividend of greater energy savings, fewer emissions, and more jobs.

The current climate negotiations, to culminate in Copenhagen in December 2009, have been making slow progress—inertia in the political sphere. For all the reasons highlighted in this Report—inertia in the climate system, inertia in infrastructure, inertia in socioeconomic systems—a climate deal is urgently needed. But it must be a smart deal, one that creates the incentives for efficient solutions, for flows of finance and the development of new technologies. And it must be an equitable deal, one that meets the needs and aspirations of developing countries. Only this can create the right climate for development.

Notes

1. Extreme poverty is defined as living on $1.25 a day or less. Chen and Ravallion 2008.
2. FAO 2009b.
3. Article 2 of the United Nations Framework Convention on Climate Change (UNFCCC) calls for stabilizing greenhouse gas concentrations in the atmosphere at a level that “would prevent dangerous anthropogenic [human-caused] inter-
4. Defined as carbon emitted per dollar of GDP.
5. On a global scale, this would reduce CO\(_2\) emissions by 4–6 gigatons a year given the current energy mix in the power sector and industry (IEA 2008e). Similar reductions would be possible in the building sector in high-income countries. See, for example, Mills 2009.
7. de la Torre, Fajnzylber, and Nash 2008.
8. Greenhouse gases each have different heat-trapping potential. The carbon dioxide equivalent (CO\(_2\)e) concentration can be used to describe the composite global warming effect of these gases in terms of the amount of CO\(_2\) that would have the same heat-trapping potential over a specified period of time.
9. Authors’ calculations, based on data from Climate Analysis Indicators Tool (WRI 2008). The range is much greater if small island states such as Barbados (4.6 tons of CO\(_2\)e per capita) and oil producers such as Qatar (55 tons of CO\(_2\)e per capita) or the United Arab Emirates (39 tons of CO\(_2\)e per capita) are included.
10. IEA 2008c.
11. Edmonds and others 2008; Hamilton 2009. Blanford, Richels, and Rutherford (2008) also show substantial savings from countries announcing in advance the date when they will engage in mitigation, because that allows those investing in long-lived assets to factor in the likely change in future regulatory regimes and carbon prices and therefore minimizes the number of stranded assets.
12. Financial crises that are highly synchronized across countries are associated with similar durations and are followed by similar recoveries, although the losses tend to be more severe (5 percent of GDP on average). IMF 2009, table 3.1. Even the Great Depression in the United States lasted only three and a half years, from August 1929 to March 1933. National Bureau of

15. While the question of what constitutes dangerous climate change requires value judgments, summaries of recent research by the Intergovernmental Panel on Climate Change (IPCC) suggest that warming by more than 2°C above preindustrial levels sharply increases risks, so that “significant benefits result from constraining temperatures to not more than 1.6°C–2.6°C.” Fisher and others 2007; IPCC 2007b; IPCC 2007c; Parry and others 2007.
16. Recent scientific publications further support the notion that warming should be constrained to remain as close as possible to 2°C above preindustrial temperatures. Focus A on science; Mann 2009; Smith and others 2009. The organizers of the 2009 International Scientific Congress on Climate Change concluded that “there is increasing agreement that warming above 2°C would be very difficult for contemporary societies and ecosystems to cope with.” http://climatecongress .ku.dk/ (accessed August 1, 2009). Other calls for not allowing warming to exceed 2°C include European Commission 2007; SEG 2007; and International Scientific Steering Committee 2005. The leaders of Australia, Brazil, Canada, China, the European Union, France, Germany, India, Indonesia, Italy, Japan, the Republic of Korea, Mexico, the Russian Federation, South Africa, the United Kingdom, and the United States—meeting at the Major Economies Forum on Energy and Climate in July 2009—recognized “the scientific view that the increase in global average temperature above preindustrial levels ought not to exceed 2°C.” http://usclimatenetwork.org/resource-database/MEF_ Declaratienl-0.pdf (accessed August 1, 2009).
17. IPCC 2007c.
18. Lawrence and others 2008; Matthews and Keith 2007; Parry and others 2008; Schaeffer, Brovkin, and Cox 2006; Torn and Harte 2006; Walter and others 2006.
20. This estimate does not take into account the increase of damages from storm surges, and it uses current population and economic activities. So in the absence of large-scale adaptation, it is likely to be a significant underestimate. Dasgupta and others 2009.
22. Easterling and others 2007, table 5.6, p 299.
24. Nordhaus and Boyer 2000. Stern (2007) also finds that losses associated with climate change would be much greater in India and Southeast Asia than the world average.
25. Nordhaus 2008; Stern 2007; Yohe and others 2007, figure 20.3.
26. The PAGE model, used for the Stern Review of Climate Change, estimates that 80 percent of the costs of damages would be borne by developing countries; Hope (2009), with further data breakdowns communicated by the author. The RICE model (Nordhaus and Boyer 2000), as expanded to include adaptation in de Bruin, Dellink, and Agrawala (2009), suggests that about three-quarters of the costs of damages would be borne by developing countries. See also Smith and others (2009); Tol (2008). Note that this may well be an underestimate, since it does not take into account the value of lost ecosystem services. See chapter 1 for a discussion of the limitation of models’ ability to capture costs of impacts.
27. Noted during consultations with East African and Latin American countries.
31. Few models incorporate adaptation costs.
32. Nordhaus 2008, p. 86, figure 5.3. Nordhaus finds the additional cost of stabilizing warming at 2°C rather than his optimal target of 3.5°C to be 0.3 percent of GDP annually. The additional cost of 2.5°C rather than 3.5°C is less than 0.1 percent of GDP annually.
33. The developing-country average is 1.5 percent of GDP; it includes health insurance and excludes life insurance. Swiss Re 2007.
38. Mignone and others 2008. This is true in the absence of effective and acceptable geoengineering technology (see chapter 7).
39. This can result from economies of scale in technology provision (as was the case for the French nuclear program and appears to be an issue for concentrated solar power); network effects (for a highway or rail construction program); or demographic or economic shocks. This and the rest of the paragraph are based on Shalizi and Lecocq 2009.
41. Folger 2006; Levin and others 2007.
prices, the elasticity is estimated at –0.5, meaning that a doubling of fuel prices would halve emissions, holding income per capita constant.


63. Emission data is from WRI (2008).


67. ESMAP 2006.


69. Calvin and others, forthcoming; IEA 2008a.


72. OECD 2008.

73. Lotze-Campen and others 2009; Wise and others 2009. See chapter 3 for a discussion.

74. Scherr and McNeely 2008.

75. World Bank 2007b.

76. Milly and others 2008.

77. Fay, Block, and Ebinger 2010; Ligeti, Penney, and Wieditz 2007; Heinz Center 2007.

78. Lempert and Schlesinger 2000.


84. Dechezleprêtre and others 2008.


86. Haites and others 2006.


89. The development and aid community has been moving toward impact evaluation and results-based aid, suggesting a degree of frustration with input-based programs (where the quantity of funds disbursed and the number of schools built were monitored, as opposed to the number of children graduating from schools or
improvements in their performance). However, there is some difference in the way “input-based” approaches are defined in this case, because the “inputs” are policy changes rather than narrowly defined financial inputs—adoption and enforcement of a fuel efficiency standard rather than public spending on an efficiency program. Nevertheless, monitoring and evaluation would still be important to learn what works.


91. Fankhauser, Martin, and Prichard, forthcoming.

92. World Bank 2007d.

93. Stimulus packages around the world are expected to inject about $430 billion in key climate change areas over the next few years: $215 billion will be spent on energy efficiency, $38 billion on low-carbon renewables, $20 billion on carbon capture and storage, and $92 billion on smart grids. Robins, Clover, and Singh 2009. See chapter 1 for a discussion of expected job creation.

References


Overview: Changing the Climate for Development

35


