focus B

Biodiversity and ecosystem services in a changing climate

Earth supports a complex web of 3 million to 10 million species of plants and animals\(^1\) and an even greater number of microorganisms. For the first time a single species, humankind, is in a position to preserve or destroy the very functioning of that web.\(^2\) In people’s daily lives only a few species appear to matter. A few dozen species provide most basic nutrition—20 percent of human calorie intake comes from rice,\(^3\) 20 percent comes from wheat;\(^4\) a few species of cattle, poultry, and pigs supply 70 percent of animal protein. Only among the 20 percent of animal protein from fish and shellfish is a diversity of dietary species found.\(^5\) Humans are estimated to appropriate a third of the Sun’s energy that is converted to plant material.\(^6\)

But human well-being depends on a multitude of species whose complex interactions within well-functioning ecosystems purify water, pollinate flowers, decompose wastes, maintain soil fertility, buffer water flows and weather extremes, and fulfill social and cultural needs, among many others (box FB.1). The Millennium Ecosystem Assessment concluded that of 24 ecosystem services examined, 15 are being degraded or used unsustainably (table FB.1). The main drivers of degradation are land-use conversion, most often to agriculture or aquaculture; excess nutrients; and climate change. Many consequences of degradation are focused in particular regions, with the poor disproportionately affected because they depend most directly on ecosystem services.\(^7\)

Threats to biodiversity and ecosystem services

In the past two centuries or so, humankind has become the driver of one of the major extinction events on Earth. Appropriating major parts of the energy flow through the food web and altering the fabric of the land cover to favor the species of greatest value have increased the rate of species extinction 100 to 1,000 times the rate before human dominance of Earth.\(^8\) In the past few decades people have become aware of their impacts on biodiversity and the threats of those impacts. Most countries have biodiversity protection programs of varying degrees of effectiveness, and several international treaties and agreements coordinate measures to slow or halt the loss of biodiversity.

Climate change imposes an additional threat. Earth’s biodiversity has adjusted to past changes in climate—even to rapid changes—through a mix of species migration, extinctions, and opportunities for new species. But the rate of change that will continue over the next century or so, whatever the mitigation efforts, far exceeds past rates, other than catastrophic extinctions such as after major meteorite events. For example, the rates of tree species migration during the waxing and waning of the most recent ice age about 10,000 years ago were estimated to be about 0.3–0.5 kilometers a year. This is only a tenth the rate of change in climate zones that will occur over the coming century.\(^9\) Some species will migrate fast enough to thrive in a new location, but many will not keep up, especially in the fragmented landscapes of today, and many more will not survive the dramatic reshuffling of ecosystem composition that will accompany climate change (map FB.1). Best estimates of species losses suggest that about 10 percent of species will be condemned to extinction for each 1°C temperature rise,\(^10\) with even greater numbers at risk of significant decline.\(^11\)

Efforts to mitigate climate change through land-based activities may support the maintenance of biodiversity and ecosystem services or threaten them further. Carbon stocks in and on the land can be increased through reforesta-

BOX FB.1 What is biodiversity? What are ecosystem services?

Biodiversity is the variety of all forms of life, including genes, populations, species, and ecosystems. Biodiversity underpins the services that ecosystems provide and has value for current uses, possible future uses (option values), and intrinsic worth.

The number of species is often used as an indicator of the diversity of an area, though it only crudely captures the genetic diversity and the complexity of ecosystem interactions. There are 5 million to 30 million distinct species on Earth; most are microorganisms and only about 1.75 million have been formally described. Two-thirds of the diversity is in the tropics; a 25 hectare plot in Ecuador was found to have more tree species than exist in all of the United States and Canada, along with more than half the number of mammal and bird species in those two countries.

Ecosystem services are the ecosystem processes or functions that have value to individuals or society. The Millennium Ecosystem Assessment described five major categories of ecosystem services: provisioning, such as the production of food and water; regulating, such as the control of climate and disease; supporting, such as nutrient cycles and crop pollination; cultural, such as spiritual and recreational benefits; and preserving, such as the maintenance of diversity.

Sources: Millennium Ecosystem Assessment 2005; Kraft, Valencia, and Ackerly 2008; Gitay and others 2002.
Biodiversity and ecosystem services in a changing climate

125

This requires an ongoing process to anticipate how ecosystems will respond to a changing climate while interacting with other environmental modifiers. Some species will die out, others will persist, and some will migrate, forming new combinations of species. The ability to anticipate such change will always be incomplete and far from perfect, so any management actions must be within a framework that is flexible and adaptive.

What can be done?

Changes in priorities and active and adaptive management will be needed to maintain biodiversity under a changing climate. In some places, active management will take the form of further improving protection from human interference, while in others conservation may need to include interventions in species and ecosystem processes that are stronger and more hands-on than today’s. In all cases biodiversity values must be actively considered—in the face of climate change and in the context of competing uses for land or sea.

This requires an ongoing process to anticipate how ecosystems will respond to a changing climate while interacting with other environmental modifiers. Some species will die out, others will persist, and some will migrate, forming new combinations of species. The ability to anticipate such change will always be incomplete and far from perfect, so any management actions must be within a framework that is flexible and adaptive.

Table FB.1 Assessment of the current trend in the global state of major services provided by ecosystems

<table>
<thead>
<tr>
<th>Service</th>
<th>Subcategory</th>
<th>Status</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provisioning services</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Food</td>
<td>Crops</td>
<td>↑</td>
<td>Substantial production increase</td>
</tr>
<tr>
<td></td>
<td>Livestock</td>
<td>↑</td>
<td>Substantial production increase</td>
</tr>
<tr>
<td>Capture fisheries</td>
<td></td>
<td>↓</td>
<td>Declining production due to overharvest</td>
</tr>
<tr>
<td>Aquaculture</td>
<td></td>
<td>↑</td>
<td>Substantial production increase</td>
</tr>
<tr>
<td>Wild foods</td>
<td></td>
<td>↓</td>
<td>Declining production</td>
</tr>
<tr>
<td>Fiber</td>
<td>Timber</td>
<td>+/-</td>
<td>Forest loss in some regions, growth in others</td>
</tr>
<tr>
<td></td>
<td>Cotton, hemp, silk</td>
<td>+/-</td>
<td>Declining production of some fibers, growth in others</td>
</tr>
<tr>
<td></td>
<td>Wood fuel</td>
<td>↓</td>
<td>Declining production</td>
</tr>
<tr>
<td>Genetic resources</td>
<td></td>
<td>↓</td>
<td>Lost through extinction and crop genetic resource loss</td>
</tr>
<tr>
<td>Biochemicals, natural medicines,</td>
<td></td>
<td>↓</td>
<td>Lost through extinction, overharvest</td>
</tr>
<tr>
<td>pharmaceuticals</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fresh water</td>
<td></td>
<td>↓</td>
<td>Unsustainable use for drinking, industry, and irrigation; amount of hydro energy unchanged, but dams increase ability to use that energy</td>
</tr>
<tr>
<td>Regulating services</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air quality regulation</td>
<td></td>
<td>↓</td>
<td>Decline in ability of atmosphere to cleanse itself</td>
</tr>
<tr>
<td>Climate regulation</td>
<td>Global</td>
<td>↑</td>
<td>Globally, ecosystems have been a net sink for carbon since mid-century</td>
</tr>
<tr>
<td></td>
<td>Regional and local</td>
<td>↓</td>
<td>Preponderance of negative impacts (for example, changes in land cover can affect local temperature and precipitation)</td>
</tr>
<tr>
<td>Water regulation</td>
<td></td>
<td>+/-</td>
<td>Varies depending on ecosystem change and location</td>
</tr>
<tr>
<td>Erosion regulation</td>
<td></td>
<td>↓</td>
<td>Increased soil degradation</td>
</tr>
<tr>
<td>Water purification and waste treatment</td>
<td></td>
<td>↓</td>
<td>Declining water quality</td>
</tr>
<tr>
<td>Disease regulation</td>
<td></td>
<td>+/-</td>
<td>Varies depending on ecosystem change</td>
</tr>
<tr>
<td>Pest regulation</td>
<td></td>
<td>↓</td>
<td>Natural control degraded through pesticide use</td>
</tr>
<tr>
<td>Pollination</td>
<td></td>
<td></td>
<td>Apparent global decline in abundance of pollinators</td>
</tr>
<tr>
<td>Natural hazard regulation</td>
<td></td>
<td>↓</td>
<td>Loss of natural buffers (wetlands, mangroves)</td>
</tr>
<tr>
<td>Cultural services</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spiritual and religious values</td>
<td></td>
<td>↓</td>
<td>Rapid decline in sacred groves and species</td>
</tr>
<tr>
<td>Aesthetic values</td>
<td></td>
<td>↓</td>
<td>Decline in quantity and quality of natural lands</td>
</tr>
<tr>
<td>Recreation and ecotourism</td>
<td></td>
<td>+/-</td>
<td>More areas accessible but many degraded</td>
</tr>
</tbody>
</table>

Source: Millennium Ecosystem Assessment 2005.
Some species loss is inevitable, and some species may need to be protected in botanical and zoological gardens or in seed banks. It is essential that key species in the delivery of ecosystem services are identified and, if necessary, actively managed. Proactive management of land and the seas under a changing climate is a fairly new and ill-defined process. Relatively little knowledge has been developed on identifying realistic management responses, so significant sharing of learning, best practices, and capacity building will be necessary.

Conservation reserves

Any extensions or modifications to the conservation priority areas (conservation reserves) need to capture altitudinal, latitudinal, moisture, and soil gradients. Proposals to expand or modify conservation reserves could lead to clashes over priorities for land allocation and for resources within biodiversity management (such as money for land acquisition versus that for active habitat manipulation). Powerful tools exist for selecting the optimal allocation of lands to achieve particular conservation goals that could balance competing demands.¹²

But protected areas alone are not the solution to climate change. The current reserve network has increased rapidly over the past decade to cover about 12 percent of Earth’s land area,¹³ but it is still inadequate to conserve biodiversity. Given demographic pressures and competing land uses, protected areas are not likely to grow significantly. This means that the lands that surround and connect areas with high conservation values and priorities (the environmental matrix), and the people who manage or depend on these lands will be of increasing importance for the fate of species in a changing climate.

There will be a greater need for more flexible biodiversity conservation strategies that take the interests of different social groups into account in biodiversity management strategies. So far the principal actors in creating protected areas have been nongovernmental organizations and central governments. To ensure the flexibility needed to maintain biodiversity, a wide range of managers, owners, and stakeholders of these areas will be of increasing importance for the fate of species in a changing climate.

¹² Source: WDR team based on Myers and others (2000) and Fischlin and others (2007).

¹³ Note: The map shows the overlap between biodiversity hotspots—regions with exceptional concentrations of endemic species undergoing exceptional loss of habitat (Conservation International and Myers and others 2000)—and the projected changes in terrestrial ecosystems by 2100 relative to the year 2000, as presented by the Intergovernmental Panel on Climate Change in Fischlin and others (2007), figure 4.3 (a), p. 238. The changes should be taken as only indicative of the range of possible ecosystem changes and include gains or losses of forest cover, grassland, shrub- and woodland, herbaceous cover, and desert amelioration.
matrix lands and waters will need to be engaged in management partnerships. Incentives and compensation for these actors may be required to maintain a matrix that provides refugia and corridors for species. Some of the options include extending payments for environmental services, “habitat banking,” and further exploration of “rights-based approaches to resources access,” as used in some fisheries.

Biodiversity planning and management

A plan for actively managing the viability of ecosystems as the climate changes should be developed for all conservation lands and waters and significant areas of habitat. Elements include:

- Climate-smart management plans for coping with major stressors, such as fire, pests, and nutrient loads.
- Decision procedures and triggers for changing management priorities in the face of climate change. For example, if a conservation area is affected by two fires within a short period, making the reestablishment of the previous habitat and values unlikely, then a program to actively manage the transition to an alternative ecosystem structure should be implemented.
- Integration into the plans of the rights, interests, and contributions of indigenous peoples and others directly dependent on these lands or waters.

Such proactive planning is rare even in the developed world. Canada has a proactive management approach to climate change in the face of rapid warming in its northern regions. Other countries are outlining some of the core principles of proactive management: forecasting changes; managing regional biodiversity; including conservation areas and their surrounding landscape; and setting priorities to support decision making in the face of inevitable change. But in many parts of the world, basic biodiversity management is still inadequate. In 1999 the International Union for Conservation of Nature determined that less than a quarter of protected areas in 10 developing countries were adequately managed and that more than 10 percent of protected areas were already thoroughly degraded.

Community-based conservation

Community-based conservation programs could be adopted on a much larger scale. These programs attempt to enhance local user rights and stewardship over natural resources, allowing those nearest to natural resources, who already share in the costs of conservation (such as wildlife predation of crops) to share in its benefits as well. But such programs are not panaceas, and more effort needs to go into designing effective programs.

Community participation is the sine qua non of successful biodiversity conservation in the developing world, but long-term success stories (such as harvesting sea turtle eggs in Costa Rica and Brazil) are rare. Certain elements clearly contribute to the success that some programs have had regionally, such as the wildlife-focused programs in southern Africa. These elements include stable governments, high resource value (iconic wildlife), strong economies that support export-oriented resource use (including tourism and safari hunting), low human population densities, good local governance, and government policies that offer a social safety net to buffer against lean years. Even when these conditions are met, the benefits in some countries typically do not accrue to the poor.

Managing marine ecosystems

Effective land management also has benefits for marine ecosystems. Sedimentation and eutrophication caused by land-based runoff reduce the resilience of marine ecosystems such as coral reefs. The economic value of coral reefs is often greater than the value of the agriculture on the land that affects them.

For fisheries the main tools for managing biodiversity are ecosystem-based fisheries management, integrated coastal zone management including protected marine areas, and binding international cooperation within the framework of the Law of the Sea. Fisheries are seen as being in crisis, and fisheries mismanagement is blamed. But the fundamental requirements for fisheries management are known. Climate change may provide an additional impetus to implement reforms, primarily by reducing fishing fleet overcapacity and fishing effort to sustainable levels. A sustainable, long-term harvesting strategy must be implemented—one that assesses stock exploitation in relation to reference points that take uncertainty and climate change into account. The key challenge is to translate high-level policy goals into operational actions for sustainable fisheries.
tion. These payments could be part of a market-based mechanism within an enhanced Clean Development Mechanism process, or they could be non-market payments from a new financial mechanism that does not impinge on the emissions compliance mechanisms. The challenge of REDD is in its implementation, which is discussed in more detail in chapter 6.

REDD could make a significant contribution to both the conservation of biodiversity and mitigation of climate change if it protects biologically diverse areas that have high carbon stocks and are at high risk of deforestation. Techniques for identifying such areas are available and could be used to guide the allocation of financial resources (map FB.2).31

To deal effectively with the changing impacts and competing uses of ecosystems under a changing climate, governments will need to introduce strong, locally appropriate policies, measures, and incentives to change long-established behaviors, some of which are already illegal. These actions will run counter to some community preferences, so the balance between appropriate regulation and incentives is critical. REDD holds potential benefits for forest-dwelling indigenous and local communities, but a number of conditions will need to be met for these benefits to be achieved. Indigenous peoples, for example, are unlikely to benefit from REDD if their identities and rights are not recognized and if they do not have secure rights to their lands, territories, and resources (box FB.3). Experience from community-based natural resource management initiatives has shown that the involvement of local people, including indigenous peoples, in participatory monitoring of natural resources can provide accurate, cost-effective, and locally anchored information on forest biomass and natural resource trends.

Ecosystem-based adaptation

“Hard” adaptation measures such as coastal defense walls, river embankments, and dams to control river flows all present threats to biodiversity.32 Adaptation goals can often be achieved through better management of ecosystems rather than through physical and engineering interventions; for example, coastal ecosystems can be more effective as buffer zones against storm surges than sea walls. Other options include catchment and flood plain management to adjust downstream water flows and the introduction of climate-resilient agroecosystems and dry-land pastoralism to support robust livelihoods.

Ecosystem-based adaptation aims to increase the resilience and reduce the vulnerability of people to climate change through the conservation, restoration, and management of ecosystems. When integrated into an overall adaptation strategy, it can deliver a cost-effective contribution to adaptation and generate societal benefits.

In addition to the direct benefits for adaptation, ecosystem-based adaptation activities can also have indirect benefits for people, biodiversity, and mitigation. For example, the restoration of mangrove systems to provide shoreline protection from storm surges...
Biodiversity and ecosystem services in a changing climate

Based adaptation builds effectively on local knowledge and needs. Ecosystem-based adaptation may require giving priority to some ecosystem services at the expense of others. Using wetlands for coastal protection may require emphasis on silt accumulation and stabilization, for example, possibly at some expense to wildlife and recreation. Slope stabilization with dense shrubbery is an effective ecosystem-based adaptation to increasing rainfall intensity under climate change. However, in the dry periods often associated with the increasingly variable rainfall patterns under climate change the slopes may be exposed to wildfires that destroy the shrubs and lead to disastrous reversals of the adaptation goals. So, ecosystem-based adaptation must be assessed for risk and cost-effectiveness.

Notes
2. Vitousek and others 1999.
5. WHO and FAO 2009.
9. England and others (2004) estimated the average rate of glacial retreat to be 0.1 kilometer a year about 8,000 years ago during the last ice age, which ultimately placed a constraint on how fast species could migrate poleward.
14. This is a form of trading high-conservation-value lands. Some holders of such lands will choose to place them in a habitat bank. If a need arises to damage similar land elsewhere, such as for highway easements, the project proponents must buy the rights to land of equivalent conservation value from the bank.

Map FB.2 Unprotected areas at high risk of deforestation and with high carbon stocks should be priority areas to benefit from a REDD mechanism.
References

ICES (International Council for the Exploration of the Sea). 2008a. ICES Advice
Environmental Information Coalition, National Council for Science and Environment.

Book 9: Widely Distributed and Migratory Stocks. Copenhagen: ICES Advisory Committee.