TRANSIT–ORIENTED DEVELOPMENT
IMPLEMENTATION RESOURCES & TOOLS
2nd Edition
ACKNOWLEDGMENTS

The Transit-oriented Development Implementation Resources & Tools publication was created for the Global Platform for Sustainable Cities (www.theGPSC.org) and the TOD Community of Practice (TOD COP), which are both managed by the World Bank. Preparation of the publication was led by Gerald Ollivier, TOD COP Lead.

IBI Group both drafted and designed the layout of the document’s first edition, along with compiling the various knowledge resources shared by the many individuals who were consulted during the document’s refinement. The IBI team was led by Ashish Ghate and Bankim Kalra and supported by Aadish Nargunde, Amanda Murray, Aravind Vishwanathan, Astha Malhotra, David Richardson, Duncan Allen, Kamran Naseem, Kim Behrouzian, Ksenija Pridraski, Linden Laserna, Marckley Etienne, Nita Johnson, Patricia Rumado, Rachel Vesz, Rashmi Rajpal, Sandeep Venkataramu, Shraddha Kumar, Sumeet Sharma, Surabhi Kapoor, Tony Zhou, Trevor McIntyre, Vivian Brooks, and Zohra Mutabanna. GPSC team members Lincoln Lewis and Qiyang Xu offered feedback and contributed with IBI to the translation of the document’s contents to the GPSC web platform.

Sincere thanks are given to the World Bank’s convened peer review panel, which was jointly chaired by Franz Drees-Gross and Sameh Wahba. The panel consisted of Fabio Duarte, Sujata Govada, Sarah Lin, Joanna Masic, Aiga Stokenberga, Eric Turner, Felipe Targa Rodriguez, Shin Kim, Jasmine Tillu, Cuong Dang and John Good (World Bank), and Mariana Orloff (from World Resources Institute, WRI). The document also benefited from valuable inputs from Valerie-Joy Santos, Victor Vergara and Barjor Mehta.

The first edition was jointly developed at the World Bank by the Social, Urban, Rural, and Resilience Global Practice (GSURR) under the direction of Sameh Wahba and the Transport Global Practice (GTRDR) under the direction of Franz Drees-Gross. Particular thanks go to Xueman Wang who coordinates the GPSC and its development of knowledge products. The preparation of the document was supported by the GPSC’s partnership between the Global Environment Facility (GEF), the World Bank, participating countries and cities, project-implementing agencies, and resource team organizations.

World Resources Institute India (WRI India) supplemented the first edition with an additional dimension of road safety considerations to create the second edition of the document. The project was guided at the World Bank by Gerald Ollivier and Alina Burlacu, WRI India’s team was led by Prerna Mehta and included Abhishek Behera, Jaya Dhindaw, Binoy Mascarenhas and Dhawal Ashar. GPSC’s Lincoln Lewis was the production editor and Borja Castro translated the materials to the GPSC TOD website. Peer reviewers were Blanca Domine, Said Dahdah, Wanli Fang, and Juan Miguel Velasquez Torres. Dipan Bose offered helpful comments during the finalization of the document.

The creation of the second edition was supported by the Global Road Safety Facility (GRSF), which is managed by the World Bank, with funding from UK Aid.
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADB</td>
<td>Asian Development Bank</td>
</tr>
<tr>
<td>AE</td>
<td>Automated Enforcement</td>
</tr>
<tr>
<td>AICTSL</td>
<td>Atal Indore City Transport Services Limited</td>
</tr>
<tr>
<td>ANSV</td>
<td>Agencia Nacional de Seguridad Vial</td>
</tr>
<tr>
<td>APTMS</td>
<td>Automatic Public Transport Management System</td>
</tr>
<tr>
<td>ARDSS</td>
<td>Augmented Reality Decision Support Systems</td>
</tr>
<tr>
<td>ARR</td>
<td>Accounting Rate of Return</td>
</tr>
<tr>
<td>ASI</td>
<td>Avoid–Shift–Improve</td>
</tr>
<tr>
<td>BER</td>
<td>Break-Even Ratio</td>
</tr>
<tr>
<td>BID</td>
<td>Business Improvement District</td>
</tr>
<tr>
<td>BMC</td>
<td>Bombay Municipal Corporation (now known as Municipal Corporation of Greater Mumbai)</td>
</tr>
<tr>
<td>BMS</td>
<td>Bus Management System</td>
</tr>
<tr>
<td>BMTC</td>
<td>Bangalore Metropolitan Transport Corporation</td>
</tr>
<tr>
<td>BOT</td>
<td>Build-Operate-Transfer</td>
</tr>
<tr>
<td>BRT</td>
<td>Bus Rapid Transit</td>
</tr>
<tr>
<td>BRTS</td>
<td>Bus Rapid Transit System</td>
</tr>
<tr>
<td>BTOD</td>
<td>Bus Transit Oriented Development</td>
</tr>
<tr>
<td>CAP</td>
<td>Capital</td>
</tr>
<tr>
<td>CAPEX</td>
<td>Capital Expenditure</td>
</tr>
<tr>
<td>CBD</td>
<td>Central Business District</td>
</tr>
<tr>
<td>CCTV</td>
<td>Close-circuit television</td>
</tr>
<tr>
<td>CDM</td>
<td>Clean Development Mechanism</td>
</tr>
<tr>
<td>CET</td>
<td>Traffic Engineering Company</td>
</tr>
<tr>
<td>CFAT</td>
<td>Cash Flow After Tax</td>
</tr>
<tr>
<td>CFBT</td>
<td>Cash Flow Before Tax</td>
</tr>
<tr>
<td>CISA</td>
<td>Certified Information System Auditor</td>
</tr>
<tr>
<td>CNU</td>
<td>Congress for the New Urbanism</td>
</tr>
<tr>
<td>COC</td>
<td>Cash On Cash Return</td>
</tr>
<tr>
<td>COP</td>
<td>Community of Practice</td>
</tr>
<tr>
<td>CPRE</td>
<td>Campaign to Protect Rural England’s</td>
</tr>
<tr>
<td>CPTED</td>
<td>Crime Prevention through Environmental Design</td>
</tr>
<tr>
<td>CPTM</td>
<td>Sào Paulo Metropolitan Trains Company</td>
</tr>
<tr>
<td>CTOD</td>
<td>Centre for Transit Oriented Development</td>
</tr>
<tr>
<td>CTS</td>
<td>Centre of Sustainable Transport</td>
</tr>
<tr>
<td>DBF</td>
<td>Design-Build-Finance</td>
</tr>
<tr>
<td>DBFM</td>
<td>Design-Build-Finance-Maintain</td>
</tr>
<tr>
<td>DBLC</td>
<td>Development-Based Land Value Capture</td>
</tr>
<tr>
<td>DBO</td>
<td>Design-Build-Operate</td>
</tr>
<tr>
<td>DCR</td>
<td>Debt Coverage Ratio</td>
</tr>
<tr>
<td>DCRs</td>
<td>Development Control Regulations</td>
</tr>
<tr>
<td>DDA</td>
<td>Delhi Development Authority</td>
</tr>
<tr>
<td>DMDP</td>
<td>DSM Metropolitan Development Project</td>
</tr>
<tr>
<td>DMRC</td>
<td>Delhi Metro Rail Corporation</td>
</tr>
<tr>
<td>DOTS</td>
<td>Digital Observation Technology Skills</td>
</tr>
<tr>
<td>DPR</td>
<td>Detail Project Report</td>
</tr>
<tr>
<td>DRC</td>
<td>Development Rights Certificate</td>
</tr>
<tr>
<td>DULT</td>
<td>Directorate of Urban Land Transport</td>
</tr>
<tr>
<td>EDC</td>
<td>External Development Charges</td>
</tr>
<tr>
<td>EMTU</td>
<td>Metropolitan Urban Transportation Company</td>
</tr>
<tr>
<td>EPA</td>
<td>Environmental Protection Agency</td>
</tr>
<tr>
<td>ERP</td>
<td>Electronic Road Pricing</td>
</tr>
<tr>
<td>FAO</td>
<td>Food and Agriculture Organization</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>FAR</td>
<td>Floor Area Ratio</td>
</tr>
<tr>
<td>FIFA</td>
<td>International Federation of Association Football</td>
</tr>
<tr>
<td>FOB</td>
<td>Foot over Bridge</td>
</tr>
<tr>
<td>FSI</td>
<td>Floor Space Index</td>
</tr>
<tr>
<td>FV</td>
<td>Future Value</td>
</tr>
<tr>
<td>GDP</td>
<td>Gross Domestic Product</td>
</tr>
<tr>
<td>GEMI</td>
<td>Gujarat Environment Management Institute</td>
</tr>
<tr>
<td>GHG</td>
<td>Greenhouse Gas</td>
</tr>
<tr>
<td>GHMC</td>
<td>Greater Hyderabad Municipal Corporation</td>
</tr>
<tr>
<td>GIS</td>
<td>Geographic Information System</td>
</tr>
<tr>
<td>GISPTN</td>
<td>Gauteng Intermodal Strategic Public Transport Network</td>
</tr>
<tr>
<td>GIZ</td>
<td>The Deutsche Gesellschaft Für Internationale Zusammenarbeit</td>
</tr>
<tr>
<td>GLAAS</td>
<td>The UN-Water Global Analysis and Assessment of Sanitation and Drinking-Water</td>
</tr>
<tr>
<td>GLS</td>
<td>Government Land Sales</td>
</tr>
<tr>
<td>GOI</td>
<td>Gross Operating Income</td>
</tr>
<tr>
<td>GPS</td>
<td>Global Positioning System</td>
</tr>
<tr>
<td>GPSC</td>
<td>Global Platform for Sustainable Cities</td>
</tr>
<tr>
<td>GRHS</td>
<td>Global Report of Human Settlements</td>
</tr>
<tr>
<td>GRM</td>
<td>Gross Rent Multiplier</td>
</tr>
<tr>
<td>GSI</td>
<td>Gross Scheduled Income</td>
</tr>
<tr>
<td>GTIDR</td>
<td>Global Training Institute Development & Research</td>
</tr>
<tr>
<td>GVM</td>
<td>Gross Vehicle Mass</td>
</tr>
<tr>
<td>GVMC</td>
<td>Greater Vishakapatnam Municipal Corporation</td>
</tr>
<tr>
<td>HCMC</td>
<td>Ho Chi Minh City</td>
</tr>
<tr>
<td>HDI</td>
<td>Human Development Index</td>
</tr>
<tr>
<td>HMDA</td>
<td>Hyderabad Metropolitan Development Area</td>
</tr>
<tr>
<td>HMR</td>
<td>Hyderabad Metro Rail Limited</td>
</tr>
<tr>
<td>IBGE</td>
<td>Brazilian Institute of Geography and Statistics</td>
</tr>
<tr>
<td>ICT</td>
<td>Information and Communication Technologies</td>
</tr>
<tr>
<td>IDB</td>
<td>Inter-American Development Bank</td>
</tr>
<tr>
<td>IPT</td>
<td>Intermediate Public Transport</td>
</tr>
<tr>
<td>iRAP</td>
<td>International Road Assessment Programme</td>
</tr>
<tr>
<td>IRR</td>
<td>Internal Rate of Return</td>
</tr>
<tr>
<td>ITDP</td>
<td>Institute for Transportation and Development Policy</td>
</tr>
<tr>
<td>ITP</td>
<td>Integrated Transport Plan</td>
</tr>
<tr>
<td>ITS</td>
<td>Intelligent Transportation Systems</td>
</tr>
<tr>
<td>ITU</td>
<td>International Telecommunications Union</td>
</tr>
<tr>
<td>JICA</td>
<td>Japan International Cooperation Agency</td>
</tr>
<tr>
<td>KPI</td>
<td>Key Performance Indicator</td>
</tr>
<tr>
<td>LAC</td>
<td>Latin American and Caribbean</td>
</tr>
<tr>
<td>LCR</td>
<td>London and Continent Railways</td>
</tr>
<tr>
<td>LEED</td>
<td>Leadership in Energy and Environmental Design</td>
</tr>
<tr>
<td>LOS</td>
<td>Level of Service</td>
</tr>
<tr>
<td>LPA</td>
<td>Locally Preferred Alternative</td>
</tr>
<tr>
<td>LRT</td>
<td>Light Rail Transit</td>
</tr>
<tr>
<td>LSE</td>
<td>London School of Economics</td>
</tr>
<tr>
<td>LTA</td>
<td>Land Transport Authority</td>
</tr>
<tr>
<td>LTV</td>
<td>Loan to Value</td>
</tr>
<tr>
<td>LVC</td>
<td>Land Value Capture</td>
</tr>
<tr>
<td>MCGM</td>
<td>Municipal Corporation of Greater Mumbai</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
</tr>
<tr>
<td>MDGS</td>
<td>Millennium Development Goals</td>
</tr>
<tr>
<td>MIDC</td>
<td>Maharashtra Industrial Development Corporation</td>
</tr>
<tr>
<td>MIT</td>
<td>Massachusetts Institute of Technology</td>
</tr>
<tr>
<td>MLD</td>
<td>Millions of Liters Per Day</td>
</tr>
<tr>
<td>MMTS</td>
<td>Multi-Modal Transport System</td>
</tr>
<tr>
<td>MOUD</td>
<td>Ministry of Urban Development, India</td>
</tr>
<tr>
<td>MPD</td>
<td>Master Plan Development</td>
</tr>
<tr>
<td>MRT</td>
<td>Mass Rapid Transit</td>
</tr>
<tr>
<td>MRTS</td>
<td>Mass Rapid Transport System</td>
</tr>
<tr>
<td>MRVC</td>
<td>Mumbai Railway Vikas Corporation Ltd.</td>
</tr>
<tr>
<td>MTR</td>
<td>Mass Transit Railway</td>
</tr>
<tr>
<td>NACTO</td>
<td>National Association of City Transportation Officials</td>
</tr>
<tr>
<td>NAMA</td>
<td>Nationally Appropriate Mitigation Actions</td>
</tr>
<tr>
<td>NCT</td>
<td>National Capital Territory</td>
</tr>
<tr>
<td>NCTD</td>
<td>National Capital Territory of Delhi</td>
</tr>
<tr>
<td>NGO</td>
<td>Non-Governmental Organizations</td>
</tr>
<tr>
<td>NMG</td>
<td>Nanchang Municipal Government</td>
</tr>
<tr>
<td>NMT</td>
<td>Non-Motorized Transportation</td>
</tr>
<tr>
<td>NOI</td>
<td>Net Operating Income</td>
</tr>
<tr>
<td>NPPF</td>
<td>National Planning Policy Framework</td>
</tr>
<tr>
<td>NPV</td>
<td>Net Present Value</td>
</tr>
<tr>
<td>NRTG</td>
<td>Nanchang Railway Transit Group</td>
</tr>
<tr>
<td>OECD</td>
<td>Organization for Economic Co-operation and Development</td>
</tr>
<tr>
<td>OER</td>
<td>Operating Expense Ratio</td>
</tr>
<tr>
<td>OODC</td>
<td>Outorga Onerosa do Direito de Construir</td>
</tr>
<tr>
<td>OPEX</td>
<td>Operating Expense</td>
</tr>
<tr>
<td>OVE</td>
<td>Evaluation and Oversights</td>
</tr>
<tr>
<td>PBS</td>
<td>Public Bicycle Sharing</td>
</tr>
<tr>
<td>PDG</td>
<td>Palmer Development Group</td>
</tr>
<tr>
<td>PERT</td>
<td>Program Evaluation Review Technique</td>
</tr>
<tr>
<td>PIARC</td>
<td>World Road Association (Permanent International Association of Road Congresses)</td>
</tr>
<tr>
<td>PIC</td>
<td>Public Information Center</td>
</tr>
<tr>
<td>POC</td>
<td>Postal Operations Council</td>
</tr>
<tr>
<td>PPIP</td>
<td>Policy-Program-Implementation Process</td>
</tr>
<tr>
<td>PPP</td>
<td>Public-Private Partnerships</td>
</tr>
<tr>
<td>PPUDO</td>
<td>Pick Up and Drop Off</td>
</tr>
<tr>
<td>PRC</td>
<td>People’s Republic of China</td>
</tr>
<tr>
<td>PTUS</td>
<td>Urban Transportation Plan for Santiago</td>
</tr>
<tr>
<td>PUI</td>
<td>Proyecto Urbano Integral</td>
</tr>
<tr>
<td>PV</td>
<td>Present Value</td>
</tr>
<tr>
<td>PWC</td>
<td>PricewaterhouseCoopers</td>
</tr>
<tr>
<td>REA</td>
<td>Real Estate Analysis</td>
</tr>
<tr>
<td>RIA</td>
<td>Road Safety Impact Assessment</td>
</tr>
<tr>
<td>ROI</td>
<td>Return on Investment</td>
</tr>
<tr>
<td>ROW</td>
<td>Right-of-Way</td>
</tr>
<tr>
<td>RSA</td>
<td>Road Safety Audit</td>
</tr>
<tr>
<td>RSI</td>
<td>Road Safety Inspections</td>
</tr>
<tr>
<td>RTA</td>
<td>Road and Transportation Authority</td>
</tr>
<tr>
<td>RTAAP</td>
<td>Rapid Transit Alternative Analysis Process</td>
</tr>
<tr>
<td>RTC</td>
<td>Road Transport Corporation</td>
</tr>
<tr>
<td>RTOD</td>
<td>Rapid Transit Oriented Development</td>
</tr>
<tr>
<td>RWA</td>
<td>Residents Welfare Association</td>
</tr>
<tr>
<td>SAM</td>
<td>Safe Access Mass Transit</td>
</tr>
<tr>
<td>SAP</td>
<td>Station Accessibility Plans</td>
</tr>
<tr>
<td>Acronym</td>
<td>Full Form</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
</tr>
<tr>
<td>SAR</td>
<td>Special Administrative Region</td>
</tr>
<tr>
<td>SBC</td>
<td>Sustainable Buildings and Construction</td>
</tr>
<tr>
<td>SDI</td>
<td>Seoul Development Institute</td>
</tr>
<tr>
<td>SDG</td>
<td>Sustainable Development Goals</td>
</tr>
<tr>
<td>SEFORALL</td>
<td>Sustainable Energy for All</td>
</tr>
<tr>
<td>SEZ</td>
<td>Special Economic Zone</td>
</tr>
<tr>
<td>SSEZ</td>
<td>Shenzhen Special Economic Zone</td>
</tr>
<tr>
<td>STEM</td>
<td>Science, Technology, Engineering and Mathematics</td>
</tr>
<tr>
<td>STM</td>
<td>Secretariat of Metropolitan Transport</td>
</tr>
<tr>
<td>SUTMP</td>
<td>Sustainable Urban Transport Master Plan</td>
</tr>
<tr>
<td>SWOT</td>
<td>Strengths, Weaknesses, Opportunities and Threats</td>
</tr>
<tr>
<td>SZMC</td>
<td>Shenzhen Metro Group Co.</td>
</tr>
<tr>
<td>TAD</td>
<td>Transit Adjacent Development</td>
</tr>
<tr>
<td>TDLC</td>
<td>Tokyo Development Learning Centre</td>
</tr>
<tr>
<td>TDM</td>
<td>Transportation Demand Management</td>
</tr>
<tr>
<td>TDR</td>
<td>Transferable Development Rights</td>
</tr>
<tr>
<td>TIF</td>
<td>Tax Increment Financing</td>
</tr>
<tr>
<td>TNO</td>
<td>The Netherlands Organization Business</td>
</tr>
<tr>
<td>TOD</td>
<td>Transit-Oriented Development</td>
</tr>
<tr>
<td>TOR</td>
<td>Terms of Reference</td>
</tr>
<tr>
<td>TRX</td>
<td>Tun Razak Exchange</td>
</tr>
<tr>
<td>TSD</td>
<td>Transit Supportive Development</td>
</tr>
<tr>
<td>UAE</td>
<td>United Arab Emirates</td>
</tr>
<tr>
<td>UHI</td>
<td>Urban Heat Island</td>
</tr>
<tr>
<td>ULB</td>
<td>Urban Local Body</td>
</tr>
<tr>
<td>UNDP</td>
<td>United Nations Development Programme</td>
</tr>
<tr>
<td>UNECE</td>
<td>United Nations Economic Commission for Europe</td>
</tr>
<tr>
<td>UNEP</td>
<td>United Nations Environment Programme</td>
</tr>
<tr>
<td>UNESCO</td>
<td>United Nations Educational, Scientific and Cultural Organization</td>
</tr>
<tr>
<td>UN-HABITAT</td>
<td>United Nations Human Settlements Programme</td>
</tr>
<tr>
<td>UNICEF</td>
<td>United Nations Children’s Fund</td>
</tr>
<tr>
<td>UNIDO</td>
<td>United Nations Industrial Development Organization</td>
</tr>
<tr>
<td>UNRSF</td>
<td>United Nations Road Safety Fund</td>
</tr>
<tr>
<td>UPU</td>
<td>Universal Postal Union</td>
</tr>
<tr>
<td>URA</td>
<td>Urban Redevelopment Authority</td>
</tr>
<tr>
<td>USAID</td>
<td>United States Agency for International Development</td>
</tr>
<tr>
<td>USDOT</td>
<td>United States Department of Transportation</td>
</tr>
<tr>
<td>UTF</td>
<td>Urban Transport Fund</td>
</tr>
<tr>
<td>UT-DAT</td>
<td>Urban Transport Data Analysis Tool</td>
</tr>
<tr>
<td>UTTIPEC</td>
<td>Unified Traffic and Transportation Infrastructure Planning and Engineering Centre</td>
</tr>
<tr>
<td>VCF</td>
<td>Value Capture Financing</td>
</tr>
<tr>
<td>VDM</td>
<td>Vehicle Demand Management</td>
</tr>
<tr>
<td>VKT</td>
<td>Vehicle Kilometer Traveled</td>
</tr>
<tr>
<td>VGF</td>
<td>Viability Gap Funding</td>
</tr>
<tr>
<td>WB</td>
<td>World Bank</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
<tr>
<td>WRI</td>
<td>World Resources Institute</td>
</tr>
</tbody>
</table>
The Overview chapter introduces the Knowledge Products and the principles, barriers and existing resources related to transit-oriented development that will act as the foundation for the tools provided. This overview will also introduce the five steps of TOD and tools for each.

The Assess chapter provides an overview of the steps required to examine a city’s preparedness for undertaking TOD initiatives, including defining scale and scope of the planning of the area and identifying stakeholders for undertaking TOD projects.

The Enable chapter provides the steps necessary to create an enabling environment for implementing successful TODs, prior to embarking on detailed TOD planning initiatives.

The Plan+Design chapter contains a series of detailed planning principles and design components to formulate TOD plans at various scales of intervention [city, corridor, station area and site scales].

The Finance chapter provides an overview of the financing tools that can be used by a city to achieve the TOD planning policies, projects and initiatives identified in the previous steps.

Implementation provides an overview of the tasks and sub-tasks required to implement TOD plans, including the institutional framework and supportive public policies.

Additional Resources
Further resources appended to this publication include: Case Studies – Compliance of Good and Innovative Practices; Glossary of Terms; Sample Documents and Reports; and Good Practice Note – Integration of Road Safety Considerations in TOD Projects. These knowledge products, along with an Image Bank, are also available online on GPSC’s TOD website and the World Bank’s TOD COP website.
TOD KNOWLEDGE PRODUCTS

OVERVIEW
Transit-oriented development, commonly known as TOD, is a planning and design strategy that focuses on creating urban development patterns which facilitate the use of public transit, walking and cycling, as primary modes of transport and which supports vibrant, diverse and livable communities. This is achieved by concentrating urban densities, communities and activities within a 5-10 minute walking distance from mass rapid transit stations (both bus and rail-based), developing quality urban space and providing convenient and efficient access to a diverse mix of land uses.

TOD brings together elements of land use and transport planning, urban design, urban regeneration, real estate development, financing, land value capture, and infrastructure implementation to achieve more sustainable urban development. Since TOD implementation can be complex, it is essential that cities understand the dynamics at play related to all city systems- real estate economics, transit routing, infrastructure design, land use planning and zoning, the development of the local economy through urban regeneration, and urban design- to achieve the concept’s full potential. TOD, as a tool, enables city actors to negotiate through varying urban priorities to ultimately prioritize inclusion and resilience in an optimized environment. The World Bank considers these priorities as the bedrock of successful TODs.

Eight principles of inclusive and resilient TOD

1. Align human/economic densities, mass transit capacity and network characteristics for greater accessibility
2. Create compact regions with short commutes
3. Ensure resilience of areas connected by mass transit
4. Plan and zone for mixed-income neighborhoods at corridor level
5. Create vibrant, people-centric public spaces around stations
6. Develop neighborhoods that foster walking and biking
7. Develop good quality, accessible, and integrated public transit
8. Manage private vehicle demand

The Transit-oriented Development Implementation Resources & Tools publication brings together knowledge resources from multiple sources and countries that help in breaking down the concept of TOD for application in cities from World Bank client countries. The World Bank, through its Community of Practice (COP), and the Global Platform for Sustainable Cities (GPSC), identified the need for such a resource through their work with over 30 cities on TOD at all scales across all geographic regions. The COP focuses on supporting TOD assessment and implementation, expanding the available TOD knowledge base and leveraging partnerships with other global think-tanks and agencies.

These new knowledge resources are the first comprehensive attempt by the World Bank COP to provide an implementation-focused guide to plan and implement successful TODs. With increased investment in mass rapid transit systems, the time is opportune to prepare a compendium of resources that help TOD stakeholders address how integrated land use and transit can serve as a tool to initiate a paradigm shift in transforming the future of the growing number of cities in World Bank client countries.
TOD CHALLENGES IN WORLD BANK CLIENT COUNTRIES

TOD implementation in some major cities in high-income countries is characterized by the intent to increase population densities and transit ridership, driven by a robust appetite for market risk and development, well-defined regulatory and policy frameworks and strong institutional capacities. Some of the most successful TOD examples are cited in Hong Kong SAR, China, Singapore, and the city of Arlington, Virginia in the USA. These successes were driven by high-quality transit investments supported with comparable investments in public infrastructure, timely revisions in development regulations, with due enforcement, and finally active participation of the private sector.

Rapidly growing cities in World Bank client countries are more often than not, densely populated even before the introduction of public transit. Some of the densest cities globally, including Manila, Dhaka, Mumbai and Mexico City, are characterized by either insufficient or overburdened transit infrastructure. In response to the resulting deterioration of living conditions in urban cores, suburbanization is rapidly becoming the preferred method of development. In the case of many cities, suburbanization is mandated through restrictive policies, such as low-density maximums and high parking minimums. This is compounded by reduced land prices in suburban locations with little or no land organization. Examples of such growth are widely seen in the outskirts of Beijing, Shanghai, Gurugram and Lagos, among others.

The need for a transit-oriented approach to urban growth is an essential means to reverse this trend and return to compact development patterns supported by high-quality transit systems. The whole notion of urban sustainability – Smart Growth, Complete Streets and location efficiency – is viewed as the road map to successfully solving the problems of the 21st Century and to develop urban mobility and a high quality of city living globally. Following coordinated capacity building efforts in the last decade from global think-tanks and agencies such as World Bank, UNDP, GIZ, WRI, ITDP, new transit systems have begun in Delhi, Ahmedabad, Guangzhou, Shanghai, Beijing, Dar es Salaam, Lahore, Bogota, Curitiba, and many others, in the last two decades.

While the existing global TOD guidance has helped these cities in conceptualizing and reinterpreting the concept for local application, the examples of successful implementation are few and far between. Borrowing from their high-income country counterparts, cities such as Ahmedabad and Curitiba have focused TOD mostly as a tool for densification by both public and private sectors and are generally viewed in terms of increased floor area ratios (FAR) or floor-space index (FSI). Other cities such as Guangzhou and Bogota have been successful in linking transit improvements with pedestrian and cycling networks, but have not been able to influence development patterns. The fundamental premise of TOD, the application of context-sensitive and inter-dependent design standards, including building densities based on variables surrounding the station area such as transit capacity, plot sizes, street widths and infrastructure capacities, innovative real estate negotiations, affordable housing near transit stations, or public space design with high-quality public realm, are often ignored and compromised.
Some of the key barriers to TOD in World Bank client countries were summarized in the World Bank Group publication: Transforming Cities with Transit (Suzuki, Cervero and Iuchi, 2013):

- Lack of regional coordination at the metropolitan level;
- Sector silo behavior and practices at the city level;
- Inadequate policies and regulations for strategically creating “articulated densities” (densities that are strategically distributed across parts of a metropolitan area) that match the level of accessibility and connectivity offered by public transit;
- Restrictive national regulations and administrative constraints;
- Inconsistencies in the planning instruments and deficiencies in their implementation;
- Inadequate policies, regulations, and supporting mechanisms for redeveloping built-up areas, particularly brownfields or distressed and blighted districts;
- Neglected urban design at the neighborhood and street level; and
- Financial constraints.

The implementation and management of TOD risks is complex, as it requires multi-sector implementation over extended periods, political buy-in, and institutional capacity. The trade-offs that TOD concepts are expected to navigate through, reflecting the local economic conditions and infrastructure needs, present numerous challenges for TOD implementation. For example, as evidenced through many cases, the concept of TOD-led land value capture contradicts with the need to maintain housing affordability; the concept of higher densities around transit challenges infrastructural carrying capacities; or very often the real estate market demand around transit does not support TOD principles.

There is an urgent need to address these challenges faced by TOD stakeholders to increase the success rate of projects and enhance their ability to achieve quality of life aspirations. The experiences from cities such as Hong Kong SAR, China, Delhi, Mexico City, and Seoul have helped in identifying key barriers to TOD implementation and lead the way to develop strategies to overcome some of these challenges and assist in finding innovative solutions.
MOVING FORWARD - LEVERAGING EXISTING RESOURCES

Many existing resources, World Bank published and others, focus on selected aspects of TOD themes citing a strong link between transport planning, land-use planning, real estate development, land management, infrastructure delivery, financing, and institutional frameworks. Based on an extensive review of published reports, online articles, websites, and course modules, the following “core documents” are identified as the most influential resources for multiple aspects of the TOD implementation process:

Transforming Cities with Transit: Transit and Land Use Integration for Sustainable Urban Development (Suzuki, Cervero and Iuchi 2013): Link
The document explores the complex process of transit and land-use integration in rapidly growing cities in developing countries. It identifies barriers, opportunities, recommends a set of policies and implementation measures for the effective coordination of transit infrastructure and urban development, including relevant government policies.

Financing Transit-Oriented Development with Land Values; The World Bank Group, 2015 (Suzuki, Murukami, et al. 2015): Link
This comprehensive examination of LVC techniques by Hiroaki Suzuki covers examples of development-based land value capture, primarily as it is handled in East Asia (Hong Kong SAR, China, and Japan). The book talks about how these principles could be implemented in fast-growing developing cities to help finance needed transport investments.

Transforming the Urban Space through Transit-Oriented Development The 3V approach (Salat and Ollivier 2017): Link
This (3V) Framework, which considers the node, place and market potential values of each station identifies key arguments for measuring the viability and potential of each station which is derived through the study of the transit network, urban design quality, and demand and supply in market analysis studies. This analytical tool can help cities plan for TOD at city and corridor levels, develop a TOD typology, understand opportunities for different TOD types and prioritize TOD investments.

TOD Standard Version 3.0 (Institute of Transportation and Development Policy 2017): Link
TOD Standard is an assessment tool to evaluate and score the plans and products of urban development according to their adherence to the TOD principles: Walk, Cycle, Connect, Transit, Mix, Densify Compact, Shift. A simple scoring system distributes 100 points across 25 quantitative metrics that are designed to measure the implementation of the eight principles and their 14 specific objectives. The metrics are supported by details, measurement method, data sources and marking criteria.
TOD Corridor Course (World Bank Group and World Resource Institute 2015): Link
The TOD at a Corridor Scale Course introduces the concept of TOD and the potential benefits it can bring to a city. This course provides a summary of concepts and multi-scale planning tools (illustrations, case studies and processes) that are useful to elected leaders, practitioners, and citizens as they may employ such tools to initiate successful multi-scale TOD planning processes.

This World Bank publication provides city managers and planning officials with guidance including a wide variety of options from conceiving and implementing an urban regeneration project. To help identify the sequence of actions needed for a regeneration process, this report identifies four distinct phases: scoping, planning, financing, and implementation, with a set of unique tools for each phase.

TOD Guidance Document (Ministry of Urban Development, India 2016): Link
The TOD Guidance document presents a compendium of analytical tools, communication tools, design principles elaborated with standards, design processes, applicable policies that can be integrated with the regulatory documents, and implementation practices for the Indian context. It suggests a 5-step TOD Planning Framework: Assess, Enable, Plan+Design, Invest, Implement. The framework incorporates an additional step of “Enable” specifically addressing institutional challenges in low and middle-income country considerations.

The TOD Implementation Guide is a toolkit for local governments to help them mobilize and implement policies and pilot projects related to TOD in the Mexican context. The toolkit focuses on climate resilience as a key objective of TOD projects.

TOD Guide for Urban Communities (CTS-EMBARQ Mexico 2014): Link
The TOD Guide for Urban Communities is a part of the DOTS Kit of tools developed to guide TOD practitioners in Mexico. The tools contain design concepts, indicators, GIS analysis, engagement tools, and planning methodologies.

Steps to Avoid Stalled Equitable TOD Projects (Carlton and Fleissig 2014): Link
This Report within the context of TOD experiments in US cities presents the typical causes of failure of TODs and potential strategies to enable successful implementation.

Performance-Based Transit-Oriented Development Typology Guidebook (C-TOD 2010): Link
This guidebook offers a tool to communities to define TOD typologies based on performance across different factors. It provides baseline guidance for long-term strategies addressing TOD goals.

This good practice note is created for The World Bank to provide guidance on supporting efforts of the borrowers for improving road safety. It outlines the Bank’s road safety goals based on holistic and systematic methods of Safe System approach, which is based on the Swedish ‘Vision Zero’ and Dutch ‘Sustainability and Safe’ strategies. This guidance isn’t limited to transport projects but caters to ‘any project which generates or relocates traffic, influences travel speeds, travel modes, traffic patterns, and is likely to result in new or changed road safety risks’.

Good Practice Note – Integration of Road Safety Considerations in TOD Projects (World Bank 2020): Link
This good practice note created as part of the toolkit provides an overview on how to integrate road safety considerations at each stage of the TOD process.
These core documents present an expansive base of knowledge for TOD stakeholders in World Bank client countries. There is a need, however, to adapt the tools and findings into a user-friendly comprehensive suite of TOD related tools, guides and resources, specifically as it relates to overcoming challenges of TOD implementation in World Bank client countries.

The publication Transit-oriented Development Implementation Resources & Tools consolidates and complements the existing TOD resources from different authors, including theoretical, academic, analytical, and best practice tools, leveraging existing research and knowledge on critical subjects and building a comprehensive and integrated TOD resource base. These are not intended to create new definitions or measures for TOD, merely to smoothen out areas of overlap and gaps in the current literature. Subsequently, the knowledge products are largely framed to address the following areas related to successful TOD implementation:

STRATEGIC AND COMPREHENSIVE PLANNING: The lack of long-term, strategic, and coordinated planning is ubiquitous in many countries, where resources are limited and immediate solutions are in higher demand. There is a need for a flexible, phased and multi-scalar approach to TOD that allows for quick wins, as well as long-term continued benefits. To address this need, the TOD knowledge products provide guidance and resources on simplified assessment techniques, comprehensive and coordinated planning methodologies, allowing for effective adaptation to various scales and contexts.

IMPROVING FINANCING MECHANISMS: The lack of readily available finance in World Bank client countries demonstrates a clear need to firstly demarcate finance needs based on efficient costing models; and secondly to create short and long-term financing opportunities from available resources. The presence of informal market players also limits the ability of stakeholders to foresee and plan investments with strong financial backing.

To address this need, the TOD knowledge products provide guidance on planning know-how and analytical processes that help read market trends, unlock TOD-based land value capture and development opportunities.

IMPROVING GOVERNANCE AND IMPLEMENTATION: Ineffective regulatory and policy frameworks in many cities are largely governed by traditional planning paradigms, supported by ineffective monitoring and evaluation mechanisms that limit the ability of agencies to learn from their own experiences. There is an urgent need to improve governance structures and regulations to align with a new planning paradigm that focuses highly on communication with the public and the private sector and ensures acceptance and compliance of TOD fundamentals. To address this need, the TOD knowledge products provide guidance on policy frameworks, phasing strategies, regulatory mechanisms with sample templates, effective governance and coordination, and procurement practices.

SAFE SYSTEM APPROACH: The Safe System approach is a shift away from a traditional approach of preventing collisions to a more forgiving approach of preventing fatalities and mitigating serious injuries in road crashes. The traditional approach emphasizes the responsibility of road users to avoid crashes rather than the responsibility of system designers to provide a safe mobility system. The Safe System approach was pioneered in the 1990s, through programs such as ‘Vision Zero’ in Sweden and ‘Sustainable Safety’ in the Netherlands.

The Safe System approach considers humans as vulnerable and fallible, and errors are to be expected. It aims at ensuring these mistakes do not lead to a crash, and if a crash does occur, it is sufficiently controlled to not cause a death or a life-changing injury. It also emphasizes on shared responsibility between the various government agencies, policy makers, road designers, vehicle manufacturers, enforcement officers, emergency medical agencies, road safety educators etc – who are accountable for the system’s safety and all road users – drivers, cyclists, and pedestrians who are responsible for complying with the system rules.
OBJECTIVES OF THE TOD KNOWLEDGE PRODUCTS

The purpose of the Transit-oriented Development Implementation Resources & Tools is to provide a one-stop resource for practitioners, city leaders, stakeholders, and academics to support TOD implementation. The TOD Knowledge Products are a self-contained, in-depth resource base that includes information on the objectives to be achieved in each topic area, case studies of a range of solutions and best practices from around the world, with a focus on World Bank client countries. This project provides an important opportunity to familiarize local practitioners with widely recognized approaches in dealing with these problems through the lens of a TOD-driven approach, while adapting and enhancing the solutions for development context in World Bank client countries.

Roads within a TOD are multi-functional. They serve two or more of the access, distribution and through functions. They also cater to a very high mix of users of varying volumes and speeds, which leads to raising safety concerns for all. Therefore, it is very critical to look at road safety while assessing, planning and designing networks within a TOD whereby covering overarching safety principles of the Dutch ‘Sustainable Safety’ vision i.e. functionality, homogeneity, and predictability. It is imperative to note that these safety principles are applicable to all kinds of roads and road networks with mono-functional use. However, within a TOD area, these principles need to be adapted more comprehensively to better align with the inherent multi-functional nature of TOD areas.

Based on these safety principles, Knowledge Products AS-H04 How to undertake road safety assessment, PD-H07 How to Plan Safe Access in the Station Area, and PD-R02 TOD Planning Principles & Design Guidelines provide a framework for contextualizing assessment tools, planning, and designing road networks respectively for facilitating implementation of road safety measures specifically within a TOD area.

The main objectives of the toolkit include:

- Creating a comprehensive TOD knowledge resource that reiterates the basic arguments for TOD, with a emphasis on detailed design requirements and implementation mechanisms, ensuring road safety for all users.
- Combining policy best practices with planning and design guidance based on safe system approach, and financial case studies, with a focus on low and middle-income countries.
- Creating a set of new tools and checklists to assist city leaders, practitioners, private developers and citizen representatives in understanding the implementation mechanisms, trade-offs and ‘pros and cons’ of TOD projects.

Based on the lessons learned from TOD experiences in World Bank Client cities and gaps identified in existing TOD resources, key knowledge topics are defined. These topics are anticipated to be of particular use to practitioners and leaders from cities with insufficient planning capacities and planning know-how. The TOD knowledge resources are largely structured around these knowledge topics, covering the life cycle of TOD projects from inception to implementation:

A: PRE-IMPLEMENTATION TOD FEASIBILITY
1. Economic Baseline, Real Estate Assessment and Revitalization
2. Travel Demand Projections, Road Safety Assessment, Alternatives Analysis & Infrastructure Design

B: BEST PRACTICE PLANNING & DESIGN TODS
3. Safe System Approach for Road Safety, Regional Strategic Planning and Intergovernmental Coordination

C: TOOLS & MECHANISMS FOR TOD IMPLEMENTATION
5. Land Value Capture, Financing Mechanisms and other Incentives for developers to promote Non-motorized Transport
6. Supporting Infrastructure, Physical Implications and Cost Estimates
7. Making the Case for TOD to the Public
The TOD Framework aims to organize the tools and resources to ensure a robust process for initiation, design and evaluation of TODs at multiple scales. The TOD framework consists of 5 steps: (1) Assess, (2) Enable, (3) Plan+Design, (4) Finance, and (5) Implement. This should not be considered a linear process, but rather a loop or cyclical process that continues. The Framework is adapted from the TOD Guidance Document for India (Ministry of Urban Development, India 2016) and Regenerating Urban Land (Amirtahmasebi, et al. 2016). It focuses on providing decision-makers with a step-by-step approach required to make informed decisions for developing a realistic TOD plan that is implementable and flexible, adaptable to local conditions, capacities and resources available.
The following TOD knowledge resources were developed to supplement existing resources in the 5-step TOD Framework. For each step, the types of learning resources that were identified to be most useful are identified as per the Framework Step and Knowledge Topic.

<table>
<thead>
<tr>
<th>STEP</th>
<th>KNOWLEDGE PRODUCT TOPIC</th>
<th>TYPE OF RESOURCES NEEDED</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>**A1</td>
<td>Economic Baseline, Real Estate Assessment & Revitalization.**</td>
</tr>
<tr>
<td></td>
<td>Intended to inform planners about the underlying demand for new real estate space for different types of development projects.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>**A2</td>
<td>Road Safety Assessment, Travel Demand Projections, Alternatives Analysis & Infrastructure Design.**</td>
</tr>
<tr>
<td></td>
<td>The other essential prerequisite to developing TOD projects is ensuring that the transport investment ensures road safety, makes economic sense on its own and is the best alternative, given projected levels of travel flows along the new corridor.</td>
<td></td>
</tr>
<tr>
<td>02</td>
<td>**B3</td>
<td>Regional / Strategic Planning & Intergovernmental Coordination.**</td>
</tr>
<tr>
<td></td>
<td>Because development on a regional/metropolitan scale often operates under many jurisdictions, it is essential that practitioners understand the motives of each stakeholder, and possible trade-offs.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>**C7</td>
<td>Making the Case for TOD to the Public.**</td>
</tr>
<tr>
<td></td>
<td>Addressing misconceptions and legitimate concerns like road safety, safe access to stations, potential displacement must be corrected before successful implementation.</td>
<td></td>
</tr>
<tr>
<td>03</td>
<td>**B4</td>
<td>Urban Design, Parking Standards & Land Use Zoning Regulations.**</td>
</tr>
<tr>
<td></td>
<td>Most planning efforts happen at interrelated scales. TOD principles, road safety measures and best practices that need to be considered throughout this multi-scalar planning approach are important to be known and explained.</td>
<td>How-to Guidance for Planning at different Scales and for different outcomes Best Practices</td>
</tr>
<tr>
<td>STEP</td>
<td>KNOWLEDGE PRODUCT TOPIC</td>
<td>TYPE OF RESOURCES NEEDED</td>
</tr>
<tr>
<td>------</td>
<td>-------------------------</td>
<td>-------------------------</td>
</tr>
</tbody>
</table>
| 04 FINANCE | **C5 | Land Value Capture & Other Financing Mechanisms.**
Suggest the value uplift in the concentrated TOD districts can be partly captured by public agencies through special taxes or other mechanisms to fund the transit infrastructure investment, NMT infrastructure, road safety or other social services. | How to Guidance on structuring different financing arrangements
Compendium of Tools and Incentives
Best Practices |
| | **C6 | Supporting Infrastructure, Physical Implications & Cost Estimates.**
Help TOD practitioners know the full suite of infrastructure requirements that may be required when developing/densifying an urban district. | Cost Analytical Tool |
| 05 IMPLEMENT | **B3 | Regional / Strategic Planning & Intergovernmental Coordination.**
Because development on a regional/metropolitan scale often operates under many jurisdictions, it is essential that practitioners understand how interests can be better aligned for successful implementation. | Key Performance Indicators
How to Guidance on phasing and capacity building |
KNOWLEDGE RESOURCE TYPES

Based on the types of resources identified across the 5-step TOD Framework, new Knowledge Products have been categorized into different types. The new Knowledge Products intentionally go beyond discussing TOD theory, but rather focus on actionable tools for implementation and decision-making. The resources are supported by references for accessing standards, case studies and templates such as development control norms (zoning codes) and template terms of references for hiring consultants as implementation agencies.

ANALYTICAL

The Products under this category build on the available facts or information to make critical evaluations

- SPREADSHEETS | REFERENCE DOCUMENT | CHECKLIST

COMMUNICATION

This category of Products impart or exchange information with the purpose of conveying a message or expecting better results

- INTERACTIVE GAMES | REFERENCE DOCUMENT

‘HOW-TO’ GUIDES

Products created as a step-by-step approach for evaluating the multitude of information to reach a conclusion

- STEP-BY-STEP GUIDE

RESOURCES

Products include details of external sources that can be referred for informed assessment

- CHEAT-SHEETS | SPREADSHEETS | WEBLIOGRAPHY | GLOSSARY OF TERMS

PROCUREMENT

The Products help in acquiring services/works from an external source to accomplish a task/attain the objectives

- REFERENCE DOCUMENT | TOR TEMPLATE
ADAPTING TO CONTEXT-SPECIFIC NEEDS

The Transit-oriented Development Implementation Resources & Tools are designed to provide direction to cities in addressing barriers to TOD at all stages of planning, create realistic financing plans, and direct investment to transit stations with the best development opportunities. However, as the context in low and middle-income countries vary from city to city, the application of the TOD knowledge products must be adapted to local needs and priorities. The features of the urban context that influence TOD processes and outcomes are described in some detail.

SCALE OF TOD PLANNING

While TOD projects are operationalized on individual parcels or streets within station areas, planning needs to be conceptualized at multiple interrelated scales:

- **City-region** – comprises of a contiguous extent of urbanized land, largely bounded by administrative jurisdictions.
- **Corridor** – refers to a finite public transit line within a transit network and the immediate area that benefits from the transit line.
- **Station Area** – refers to the area around a public transit station that is within a 10-minute walking distance. The combination of all the station areas along a single transit line forms the corridor.
- **Site** – refers to a development parcel within a corridor or station area. The closer a parcel of land is to the transit station and platform the higher its TOD potential would be.

The interrelationship between a city-wide TOD Plan must be supported by market acceptance at the station or site level, and a site-specific TOD Plan must be supported by a larger TOD Regulatory Framework. TOD planning can start at a smaller scale and move up the spectrum, or at a larger scale and move down. The following table provides an overview of the focus and intended outcomes of TOD intervention at the identified TOD scales.

URBAN DEVELOPMENT CONTEXT

Cities in World Bank client countries are at different stages of development. The urban development context plays an important role in influencing the feasibility and success of TOD. The three overarching types of development context considered include:

- **Greenfield** – refers to land that currently has little or no urban development. Such sites may either lie in the outskirts of existing cities or within newly planned cities.
- **Suburban** – refers to land that is sparsely developed along the outer edges of city limits. Suburban sites are characterized by low residential densities and low transit reach.
- **Urban** – refers to locations within populated cities that are characterized by densely developed or brownfield sites with poor access to open spaces and civic amenities, and dense, aging, or blighted developments.

Some new cities or suburban/growing areas of existing cities offer significant greenfield opportunities for development. Metro cities, for example Mexico City, Mumbai, New Delhi, Cape Town etc. which are already developed, offer mainly redevelopment opportunities. While greenfield sites are favorable for larger developments and allow for an integrated design of the public and private realm, they are vulnerable to higher market risks. Redevelopment sites may have limited flexibility in parcel sizing and accessibility. In some cases, they may be highly dependent on land assemblage, which increases planning complexities and consequently impacts feasibility.
SCALES OF TOD

<table>
<thead>
<tr>
<th>Boundary/Zone</th>
<th>Key Outcomes</th>
<th>Focus</th>
</tr>
</thead>
<tbody>
<tr>
<td>CITY-REGION</td>
<td>Administrative Boundaries/Transit Systems.
TOD Implementation Program, Addis Ababa, Ethiopia
Involves integration of land uses with transit system planning to support analysis and decision making related to citywide growth management. Provides a point of intervention for TOD as a policy in statutory documents (Master Plan/Development Plan).
TOD Policies
Generic DCR Modifications
Institutional Framework for Implementation
Metropolitan/City TOD Plan
Safer Network Planning
Road Safety for all Users
Accessibility Guidelines</td>
<td></td>
</tr>
<tr>
<td>CORRIDOR</td>
<td>10-minute (800m-2km) walking/cycling distance on both sides of existing/planned transit corridor.
BRTS Urban Design Strategy, Hubli-Dharwad, India
Ensures that development at one station complements development at other stations, resulting in a network of transit-oriented places. Specific transit ridership goals can be evaluated at this scale against development potential around transit stations.
TOD Policies
Safer Network Planning
Road Safety for all Users
Generic DCR Modifications
Real Estate/Land Value Capture Potential
Institutional Framework for Implementation</td>
<td></td>
</tr>
<tr>
<td>STATION AREA</td>
<td>5-10 minute (400m-1km) walking distance from station facilities.
TRX financial district, Kuala Lumpur
Focuses on areas surrounding transit stations within a 5-10 minute walking distance focusing on land use, safe access to transit station for all users, transit station accessibility, multi-modal integration and connectivity.
Detailed Station Area Plan including Road Safety Considerations
Urban Design Guidelines (Built Form)
Road Safety Design Measures
Accessibility/ Streetscape Proposals
Real Estate/Land Value Capture Potential
Investment Strategy
Implementation Plan</td>
<td></td>
</tr>
<tr>
<td>SITE LEVEL</td>
<td>Individual parcel within 5-10 minute (800m-1km) walking distance from the station facility.
Metro Mansion Station, Nanchang, China
Focuses on individual developments within a station area. Includes targets for net intensity and density for development, internal circulation, building design, and parking.
Site Easements and Safety Incentives
Detailed Development Program
Urban Design Plan
Accessibility/ Streetscape Design
Financial Strategy
Implementation Plan</td>
<td></td>
</tr>
</tbody>
</table>
DEVELOPMENT CONTEXT

<table>
<thead>
<tr>
<th>GREENFIELD</th>
<th>OPPORTUNITIES</th>
<th>CHALLENGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Single ownership</td>
<td>• Long timeline for new cities to take shape</td>
<td></td>
</tr>
<tr>
<td>• High percentage of government lands</td>
<td>• Unknown population composition</td>
<td></td>
</tr>
<tr>
<td>• Opportunity to master plan new communities around transit</td>
<td>• Limited opportunities initially to achieve jobs-housing balance</td>
<td></td>
</tr>
<tr>
<td>• Lower land costs</td>
<td>• Often sprawl-inducing as public transport connectivity to city centers is not strong.</td>
<td></td>
</tr>
<tr>
<td>• More financial resources appropriated</td>
<td>• Developer may not have the appetite for risk-taking</td>
<td></td>
</tr>
<tr>
<td>• Opportunity for constructing higher capacity infrastructure systems</td>
<td>• Focus on road safety using Safe System Principles</td>
<td></td>
</tr>
<tr>
<td>• Strong political support</td>
<td>• Minimal regulatory barriers</td>
<td></td>
</tr>
<tr>
<td>• Minimal regulatory barriers</td>
<td>• Lower land costs</td>
<td></td>
</tr>
<tr>
<td>• Focus on road safety using Safe System Principles</td>
<td>• Higher percentage of sites available for transformation</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SUBURBAN</th>
<th>OPPORTUNITIES</th>
<th>CHALLENGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Higher percentage of sites available for transformation</td>
<td>• Low density</td>
<td></td>
</tr>
<tr>
<td>• Opportunity to improve transit access to lower density neighborhoods</td>
<td>• Sprawled pattern of development</td>
<td></td>
</tr>
<tr>
<td>• Lower land costs</td>
<td>• Singular land uses</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Poor mobility connections</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Prioritization of automobiles over pedestrians over public transport, transit, non-motorized transport and walking</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>URBAN</th>
<th>OPPORTUNITIES</th>
<th>CHALLENGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Often located near major transportation corridors and established employment centers</td>
<td>• Multiple ownership requiring land assemblage</td>
<td></td>
</tr>
<tr>
<td>• Active transportation modal share is higher, specifically in low and middle-income areas</td>
<td>• Irregular property sizes and configurations</td>
<td></td>
</tr>
<tr>
<td>• Opportunity to improve transit access</td>
<td>• Existing land uses typically not transit supportive</td>
<td></td>
</tr>
<tr>
<td>• Opportunities for redeveloping aging building stock</td>
<td>• Large block sizes inhibiting walkability</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Limited and unsafe walking and cycling infrastructure</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Constrained right-of-ways</td>
<td></td>
</tr>
</tbody>
</table>
ACTORS IN TOD PLANNING

City Leaders – including mayors, bureaucrats, elected officials or leading influencers. As city leaders, their involvement is most essential during the enabling and implementing phase, and can benefit from the Communication and Monitoring and Evaluation Tools.

Policymakers – including national, regional, or local elected officials, bureaucrats, and technical leaders. Policymakers are important to engage during the entire TOD process. They are the ones who can benefit most from Best Practices, Resources, Procurement and Communication Tools.

Urban Planners – including planners involved in the city, metropolitan, or regional planning organizations. Urban planners define the development framework for a city. As such their involvement is key during the entire TOD Planning process. Urban Planners can benefit from How-to Guides that help in master planning and public engagement, best practices for development patterns, urban design requirements for walkability in TOD districts, infrastructure upgrades needed for higher density, zoning reform for mixed use, etc.

Transit Planners – including transit agency officials, and transit operators. Transit planners need to be involved during the entire planning process as well. They can benefit from the Analytical Tools and How-to Guides that help in incorporating denser development projections into travel demand projections, connecting new corridors to the existing network through TOD, identifying appropriate station locations along new corridors, multi-modal design for pedestrians and cyclists, parking policy review, exploring joint development to construct transit infrastructure, etc.

Road Safety Experts – including street designers and road engineers with experience and knowledge of Safe System principles and complete street design. They can benefit from analytical tools for assessing the context and How-to-Guides and Resources to ensure safety considerations for all road users can be ensured throughout the project cycle.

Economic Development Stakeholders – including economic planners, developers and staff of development financial institutions. Economic Development Specialists can benefit from Analytical Tools and How-to Guides that help in the analysis of economic clusters and growing sectors, available land inventory, land amalgamation processes, branding for area/change when TOD is implemented, identification of hurdles for real estate developers, potential public-private projects, etc.

TOD Stakeholders and Community Specialist – including academics, civil society organizations, community groups, local business groups, etc. Community specialists can benefit from the Best Practice Resources, Communication Tools, and Analytical Tools that help them in ensuring transparency and engagement is maintained throughout the TOD implementation process.
REFERENCES

TOD KNOWLEDGE PRODUCTS
BY STEP

ASSESS

The ‘Assess’ stage is used to help assess the city’s readiness in terms of technical capacities, real estate conditions, and transit service quality, as well as the appropriate scale and context for TOD in the city.

ANALYTICAL - A -

AS-A 01 - TOD Readiness Assessment - Also Refer to AS-H04 / IM-H01
A checklist and spreadsheet aimed to help city leaders and policymakers define the city’s readiness across various aspects. Applicable at all scales and contexts.

AS-A 02 - TOD Scale & Context Assessment - Also Refer to PD-H01/02/03/04/05
A checklist aimed to help urban planners define the scale of TOD interventions and context-specific typologies. Applicable at all scales and contexts.

AS-A 03 - Thresholds for TOD Real Estate Demand - Also Refer to AS-H01
A spreadsheet aimed to help urban planners identify real estate demand. Applicable at corridor and station area scales in urban and suburban context.

AS-A 04 - Threshold for Rapid Transit Mode - Also Refer to AS-H02
A spreadsheet aimed to help transport planners identify appropriate mode for transit-oriented densities. Applicable at city and corridor scales in urban and suburban context.

‘HOW-TO’ GUIDE - H -

AS-H 01 - How to Undertake Real Estate Market Analysis - Also Refer to AS-H03/04 / AS-R01 / AS-P01 / FI-A02
A step-by-step guide process to help economists determine the full development potential of the TOD corridors and sites, as well as the financial viability of such projects. Applicable at the corridor, station and site scales and all contexts.

AS-H 02 - How to Undertake Rapid Transit Alternatives Assessment - Also Refer to AS-H04 / AS-P02 / FI-A01
A step-by-step guide to help transport planners evaluate the mode, cost-effectiveness and alignment alternatives for rapid transit. Applicable at the city and corridor scales.

AS-H 03 - Infrastructure Carrying Capacity Assessment - Also Refer to AS-P03 / FI-A01
A step-by-step guide to help urban and transport planners evaluate the infrastructure needs of the city and the carrying capacity required by transit-oriented developments. Applicable at all scales and contexts.

AS-H 04 - How to Undertake Road Safety Assessment for TOD Areas - Also Refer to AS-A01 / IM-H01 / IM-P01
A step-by-step guide to help urban and transport planners assess road safety and crash data within the TOD station area. Applicable at all scales and contexts.
INTRODUCTION

ASSESS

RESOURCE - R -
AS-R 01 - Real Estate Analysis Best Practices - Also Refer to AS-H01
Case study examples of real estate analysis for economists undertaking TOD projects in low and middle-income countries. Applicable at all scales and contexts.

PROCUREMENT - P -
AS-P 01 - Real Estate Analysis Terms of Reference- Also Refer to AS-H01
Template terms of reference for city leaders to hire a real estate consultant to perform targeted demand analyses along a TOD corridor. Applicable at the corridor, station and site scales and all contexts.

AS-P 02 - Transit Alternatives Analysis Terms of Reference- Also Refer to AS-H02
Template for city leaders to hire a transport planning consultant to perform a transit alternatives study. Applicable at all scales and contexts.

AS-P 03 - Infrastructure Analysis Terms of Reference - Also Refer to AS-H03
Template terms of reference for city leaders to hire a consultant to conduct an infrastructure analysis for a TOD project. Applicable at all scales and contexts.
The ‘Enable’ stage highlights policy barriers, communication mechanisms and governance suggestions that cities can use in enabling the TOD planning process.

COMMUNICATION - C -

EN-C 01 - Making a Case for TOD to the Public-Communication Strategy - Also Refer to EN-C02

A creative guide to help urban planners disseminate information to public and regional bodies and express the importance and benefits of TOD. Applicable at all scales and contexts.

EN-C 02 - TOD Role Out - Stakeholder Engagement Games - Also Refer to EN-C01 / EN-P01 / IM-C01

An interactive game, format and templates for cross-agency coordination and visioning with all stakeholders, including city leaders, urban and transport planners, policymakers, economists and community members. Applicable at all scales and contexts.

‘HOW-TO’ GUIDE - H -

EN-H 01 - How to Build Institutions and Enable Intergovernmental Coordination - Also Refer to IM-H01 / IM-P01

A step-by-step guide for city leaders and policymakers to define an institutional structure and coordination framework that can make TOD happen within the existing planning and development framework. Applicable at all scales and contexts.

RESOURCE - R -

EN-R 01 - Roles & Responsibilities of Stakeholders - Also Refer to EN-C01 / EN-P01

A resource to help TOD urban and transport planners identify the stakeholders to be involved in planning and implementing TOD and the roles and responsibilities of each stakeholder. Applicable at all scales and contexts.

PROCUREMENT - P -

EN-P 01 - Communications Strategy Terms Of Reference - Also Refer to EN-C01 / IM-H01

Template for hiring a Public Relations agency to analyze potential risks, plan and implement a TOD communications strategy within a community. Applicable at all scales and contexts.
The ‘Plan+Design’ stage focuses on formulating context specific planning and design solutions and priorities

‘HOW-TO’ GUIDE - H -

PD-H 01 - How To Prepare A City-Wide TOD Plan- Also Refer to PD-H05/07 / PD-R02
A step-by-step process guided by a series of task-based actions that will assist urban and transport planners in planning and implementing TOD at the city-wide level. Applicable at the city-wide scale and across all contexts.

PD-H 02 - How To Prepare A Corridor TOD Plan- Also Refer to PD-H05/07 / PD-R02
A step-by-step process guided by a series of task-based actions that will assist urban and transport planners in planning and implementing TOD at the corridor level. Applicable at the corridor scale and across all contexts.

PD-H 03 - How To Prepare A Station Area Plan- Also Refer to PD-H06/07 / PD-R02
A step-by-step process guided by a series of task-based actions that will assist urban and transport planners in planning and implementing TOD at the station level. Applicable at the station area and across all contexts.

PD-H 04 - How To Prepare A Site Level TOD Plan- Also Refer to PD-R02
A step-by-step process guided by a series of task-based actions that will assist urban and transport planners in planning and implementing TOD at the site level. Applicable at the site level scale and across all contexts.

PD-H 05 - How To Develop TOD Supportive Zoning Framework - Also Refer to PD-H01
A guideline for city leaders and policymakers to prepare/revise TOD-supportive zoning ordinances, including revisions for pedestrian activities, urban design and parking restrictions. Applicable at all scales and contexts.

PD-H 06 - Land Amalgamation Framework- Also Refer to IM-H01
A step-by-step process that details the process of land amalgamation for urban and transport planners and policymakers. Applicable at all scales and contexts.

PD-H 07 - How To Plan Safe Access for TOD- Also Refer to PD-H01/02/03 / PD-R02 / FI-R01
A guideline on TOD area network planning to ensure safe access to stations for urban and transport planners and policymakers. Applicable at station area scale and all contexts.
RESOURCE - R -

PD-R 01 - TOD Zoning Code Template- Also Refer to PD-H05
Template zoning ordinance/guidelines for policymakers to use, including provisions on pedestrian pathways, activity generating uses, porous urban design, parking restrictions, shared parking provision, etc. Applicable at citywide and corridor scales and all contexts.

PD-R 02 - TOD Planning Principles & Design Guidelines- Also Refer to PD-H01/02/03/04/05/07
A series of detailed planning principles and design components to help urban and transport planners formulate TOD plans at various scales and contexts of intervention. Applicable at all scales and contexts.

PD-R 03 - Land Use And Transportation Integration Best Practices- Also Refer to AS-H02 / PD-H01 / PD-R02
Case study examples of land use and transportation integration for urban and transport planners that influenced significant improvements and found great success in cities globally. Applicable at corridor and station area scales and all contexts.

PD-R 04 - Pedestrian Friendly Design Best Practices- Also Refer to PD-R02
Small-scale, iterative, pedestrian-friendly examples in low-middle income countries for urban and transport planners that depict significant improvements in an area brought forth by pedestrian-oriented and walkable design. Applicable at corridor and station area scales and all contexts.

PROCUREMENT - P -

PD-P 01 - TOD Plans Terms of Reference- Also Refer to PD-H01/02/03/04 / PD-R02
Template for city leaders to hire a consultant to prepare TOD plans at the required scale and context. Applicable at all scales and contexts.
The ‘Finance’ stage focuses on the dynamics of real estate financing, infrastructure investments and the role of private developers in TOD.

ANALYTICAL - A -

FI-A 01 - Infrastructure Capital & Operating Cost Estimates/Ranges - Also Refer to AS-H03 / AS-P03

An interactive Excel spreadsheet available online to urban and transport planners to help estimate the capital and operating costs of TOD projects, based on examples in low and middle-income countries. Applicable at all scales and contexts.

FI-A 02 - Real Estate Development Pro-Forma - Also Refer to AS-H01 / AS-R01 / AS-P01

A working spreadsheet to help economists gauge the potential return on investment (ROI) based on certain basic development parameters for a given TOD project. Applicable at all scales and contexts.

‘HOW-TO’ GUIDE - H -

FI-H 01 - Land Value Capture Framework - Also Refer to FI-R02

A step-by-step process for economists, urban and transport planners and city leaders with a variety of alternative approaches to adopting Land Value Capture (LVC) in TOD projects of varying scale and context. Applicable at all scales and contexts.

FI-H 02 - Private Sector Participation Framework - Also Refer to FI-R03

A project structuring process for economists to plan financial resources to meet the project cost using a PPP financing framework. Applicable at all scales and contexts.

RESOURCE - R -

FI-R 01 - Development Incentives - Also Refer to PD-H07 / FI-R03

A guide of the potential financial tools urban planners and economists can use to finance a TOD project. Applicable at all scales and contexts.

FI-R 02 - Land Value Capture Mechanisms Best Practices - Also Refer to FI-H01

Examples of land value capture tools employed in low and middle-income countries to help economists and urban planners fund major transit projects globally. Applicable at all scales and contexts.

FI-R 03 - Municipal Finance Tools - Also Refer to FI-R01 / FI-H02

Collection of the most commonly used tools for TOD and urban development financing around the world to guide economists and urban planners in their TOD financing. Applicable at all scales and contexts.
The ‘Implement’ stage ties the diverse interventions needed to ‘Make TOD happen’ from prioritizing projects, to capacity building, and monitoring.

ANALYTICAL - A -

IM-A 01 - Monitoring and Evaluation - Also Refer to IM-A02

Methodology for city leaders and urban and transport planners to define the appropriate monitoring and evaluation framework for a TOD project or program to track project success. Applicable at all scales and contexts.

IM-A 02 - Key Performance Indicators for TOD - Also Refer to IM-A01

A framework for city leaders and urban and transport planners to measure TOD plans or practices in individual cities against global performance indicators. Applicable at all scales and contexts.

COMMUNICATION - C -

IM-C 01 - Applying Safe Access in TOD Areas - Also Refer to EN-C02

A guide for urban and transport planners and policymakers to identify road safety concerns in a station area and formulate ways to address them. Applicable at station area scale and all contexts.

‘HOW-TO’ GUIDE - H -

IM-H 01 - How To Undertake Capacity Building - Also Refer to IM-P01

A guide for city leaders and policymakers to build the institutional arrangement for TOD project or programs. Applicable at all scales and contexts.

IM-H 02 - How To Develop A TOD Phasing Strategy - Also Refer to PD-R02

Methodology for urban and transport planners to help develop phasing strategies for a TOD project or program. Applicable at all scales and contexts.

PROCUREMENT - P -

IM-P 01 - Capacity Development Strategy Terms of Reference- Also Refer to IM-H01

Template to help city leaders outsource capacity building and training exercises to spread awareness about TOD. Applicable at all scales and contexts.
TOD KNOWLEDGE PRODUCTS
BY TYPE

ANALYTICAL -A-

AS-A01 - TOD Readiness Assessment
AS-A02 - TOD Scale & Context Assessment
AS-A03 - Thresholds for TOD Real Estate Demand
AS-A04 - Threshold for Rapid Transit Mode
FI -A01 - Real Estate Development Pro-Forma
FI -A02 - Infrastructure Capital & Operating Cost Estimates/Ranges
IM-A01 - Monitoring and Evaluation
IM-A02 - Key Performance Indicators for TOD

COMMUNICATION -C-

EN-C01 - Making a Case for TOD to the Public-Communication Strategy-
EN-C02 - TOD Role Out - Stakeholder Engagement Games
IM-C01 - Applying Safe Access in TOD Areas

RESOURCES -R-

AS-R01 - Real Estate Analysis Best Practices
EN-R01 - Roles & Responsibilities of Stakeholders
PD-R01 - TOD Zoning Code Template
PD-R02 - TOD Planning Principles & Design Guidelines
PD-R03 - Land Use And Transportation Integration Best Practices
PD-R04 - Pedestrian Friendly Design Best Practices
FI- R01 - Development Incentives
FI- R02 - Land Value Capture Mechanisms Best Practices
FI- R03 - Municipal Finance Tools

‘HOW-TO’ GUIDES -H-

AS-H01 - How to Undertake Real Estate Market Analysis
AS-H02 - How to Undertake Rapid Transit Alternatives Assessment
AS-H03 - Infrastructure Carrying Capacity Assessment
AS-H04 - How to Undertake Road Safety Assessment for TOD Areas
EN-H01 - How to Build Institutions and Enable Intergovernmental Coordination
PD-H01 - How To Prepare A City-Wide TOD Plan
PD-H02 - How To Prepare A Corridor TOD Plan
PD-H03 - How To Prepare A Station Area Plan
PD-H04 - How To Prepare A Site Level TOD Plan
PD-H05 - How To Develop TOD Supportive Zoning Framework
PD-H06 - Land Amalgamation Framework
PD-H07 - How To Plan Safe Access for TOD
FI -H01 - Land Value Capture Framework
FI -H02 - Private Sector Participation Framework
IM-H01 - How To Undertake Capacity Building
IM-H02 - How To Develop A TOD Phasing Strategy

PROCUREMENT -P-

AS-P01 - Real Estate Analysis Terms of Reference
AS-P02 - Transit Alternatives Analysis Terms of Reference
AS-P03 - Infrastructure Analysis Terms of Reference
EN-P01 - Communications Strategy Terms Of Reference
PD-P01 - TOD Plans Terms of Reference
IM -P01 - Capacity Development Strategy Terms of Reference
ASSESS

INTRODUCTION

The ‘Assess’ step of the TOD Framework is developed to determine how “ready” a city is for TOD, based on analysis of a complementary set of economic, geographic, demographic, economic, urban form, and institutional factors.
The ‘Assess’ step of the TOD Framework is developed to determine how “ready” a city is for TOD, based on analysis of a complementary set of economic, geographic, demographic, economic, urban form, and institutional factors. TODs do not simply consist of one project or site located in close proximity to the transit station; they consist of a series of projects encompassing various scales of development. There is no single solution for TODs and not all sites that are accessible from a station exhibit all factors necessary for creating successful TODs. Determining the appropriate scale and scope of work is one of the crucial steps in determining the preparation of a realistic TOD Plan.

For TOD to trigger successful large-scale transformations, conditions such as high levels of transit ridership, rapid population growth, rising incomes, high densities are all pre-existing in many cities in World Bank client countries. On the other hand, infrastructure capacities are grossly inadequate and real estate markets continue to remain unregulated, resulting in a diffusion of the intended positive benefits of TODs.

Determining the scale of TOD intervention in terms of timing of transit and investment, as well as the place value of the transit corridor—whether suburban, urban or intense urban—helps determine the type of strategies that may be adopted for future investments. Once the scale is determined, identifying TOD opportunities and roadblocks is key to understanding whether a city, corridor or station areas is “ready” for TOD, and develop strategies to increase the readiness for TOD at individual station areas. Before any TOD/transit corridor project is commenced, it is essential that urban planners and economic development experts know the underlying demand for new real estate space in the region, and the projected growth for different types of development products. Smart infrastructure planning and public policy can encourage urban economic growth and increased market interest in certain areas of the city.

Conducting pre-feasibility studies of TOD interventions is the starting point for a city to balance the development potential and public benefits of transit. Transit and land planners often determine transit corridors and station locations based on decision parameters that do not take into consideration the real estate potential required. Furthermore, the time differential between transit implementation and development projects often discourage the private sector to invest in longer-term opportunities and often leads to land speculation that leads to an increase in land values. Planners also need to ensure that the transport investment makes economic sense on its own and is the best alternative, given projected levels of travel flows along the new corridor. When combined with information on existing and future transport capacity, transportation planners can determine which capacity investments should have the highest priority.

In this respect, it is imperative to consider the demand for and the impact of disruptive technologies such as ride-sharing applications. These technologies offer dynamic data that can be used to analyze mobility patterns in real time to better inform TOD decisions. For example, Uber provides a data sharing platform known as Movement (https://movement.uber.com/), which helps cities understand travel patterns spatially as well as temporally. This could help assess and compare locations most appropriate for TOD interventions.

Applying the concept of integrated economic, transport, and land use planning is often complex, because of divergent perspectives of multiple agencies. Pre-feasibility assessments help to determine the technical and economic viability of proposed TOD projects and mitigate any risks for investments early-on in the planning process.

This section builds on the previous research related to TOD, undertaken by World Bank’s TOD Community of Practice, GPSC, WRI, ITDP, and other agencies such as Reconnecting America and Florida Department of Transportation (USA). While research in these resources often use case studies and best practices from higher-income countries, some tools, processes and theories are relevant even in the World Bank client countries’ context. The Knowledge Products for the ‘Assess’ Framework, presented in this section, are repurposed to be applied in the context of World Bank client countries, with an emphasis on highlighting the challenges faced from a political, regulatory, enforcement, financing, and other factors in implementing successful TOD projects.
ANALYTICAL

AS-A01 TOD Readiness Assessment *(Spreadsheet + User Guide)*
AS-A02 TOD Scale & Context Assessment *(Checklist)*
AS-A03 Thresholds for TOD Real Estate Demand *(Spreadsheet + User Guide)*
AS-A04 Thresholds for Rapid Transit Mode *(Spreadsheet + User Guide)*

‘HOW-TO’ GUIDES

AS-H01 How to Undertake Real Estate Market Analysis *(Step-by-Step Guide)*
AS-H02 How to Undertake Rapid Transit Alternatives Assessment *(Step-by-Step Guide)*
AS-H03 Infrastructure Carrying Capacity Assessment *(Step-by-Step Guide)*
AS-H04 How to Undertake Road Safety Assessment for TOD Areas *(Step-by-Step Guide)*

RESOURCES

AS-R01 Real Estate Analysis Best Practices *(Ref Doc.)*

PROCUREMENT

AS-P01 Real Estate Analysis Terms of Reference *(TOR Template)*
AS-P02 Transit Alternatives Analysis Terms of Reference *(TOR Template)*
AS-P03 Infrastructure Analysis Terms of Reference *(TOR Template)*
REFERENCES

AS-A01

TOD READINESS ASSESSMENT TOOL

This Knowledge Product is intended to be used as a checklist along with interactive excel spreadsheet. These tools are available online at the GPSC’s TOD website and the World Bank’s TOD COP website. The reader should first review the summary presented below before using the spreadsheet tool.
As cities in World Bank client countries continue experiencing rapid urbanization and population growth, plans on developing urban rapid transit systems are gaining much-needed acceptance. From Tanzania (Dar-es-Salaam), Brazil (20+ cities) and South Africa (6 cities) to China (40+ cities), India (15+ cities) and Indonesia (10 + cities) have launched rapid mass transit systems within the last decade. These investments also act as catalysts to reveal untapped opportunities for developing lands surrounding the transit stations in an economically viable, socially equitable, and environmentally sensitive manner. In order to identify these opportunities early-on in the process is critical in maximizing the benefits of transit-oriented developments (TOD).

Government agencies in World Bank client countries have minimal planning and engineering resources in-house to undertake TOD studies, especially in medium-sized cities. Often, the current resources are not well-equipped to understand the nuances and intricacies of TODs or require a lot of hand-holding in understanding, applying and finally implementing TOD concepts during the development phase. Furthermore, access to data is often a daunting task and restricts informed decision-making. The TOD Readiness Assessment helps cities conduct a rapid assessment of TOD readiness with relatively accessible datasets that are often available at local levels.

Disclaimer: The Transit-Orientated Development Implementation Resources & Tools knowledge product is designed to provide a high-level framework for the implementation of TOD and offer direction to cities in addressing barriers at all stages. As the context in low and middle-income cities varies, the application of the knowledge product must be adapted to local needs and priorities, and customized on a case-by-case basis.

© 2021 International Bank for Reconstruction and Development / The World Bank
The TOD Readiness Assessment Tool is designed to assess the existing TOD potential for three (3) primary scales of intervention:

Initial TOD Readiness Assessment: A checklist designed to conduct a rapid assessment of external factors that are vital for planning and implementing TOD in any city regardless of the context. These factors include: i) existing policy and regulatory framework; ii) technical capacities available in-house; and iii) existing data availability to conduct detailed studies. This checklist is designed only to develop a better understanding of the factors that indicate the level of political support for TOD and are primarily public sector driven. This tool builds on the WB/WRI TOD Corridor Course on “Building Blocks for TOD” and National-level Guidance Document for India (World Resource Institute and World Bank Group 2015; MoUD, World Bank, India 2016).

The City-level TOD Readiness Assessment may be used to inform the Enable, Plan + Design and Implement Knowledge Products (EN-P03 & EN-P05; PD-H01; IM-P03).

Detailed Station Area Level Readiness Assessment: This interactive, spreadsheet-based tool, helps urban planners and decision-makers evaluate the TOD readiness at the station area scale. When planning for TOD, the network of stations in a mass transit network form a corridor; however, each station exhibits characteristics that are often unique but also show some similarities. This spreadsheet is designed to assist urban planners and policy-makers identify the station area attributes to develop context-sensitive strategies to increase readiness for TOD and understand the value of each station within the larger corridor network. This tool can be used by government agencies to build a case for retaining a consultant for further studies and/or prioritizing investments in station area and/or drafting the terms of reference for retaining consultants to conduct planning studies. Existing literature, specifically the 3V metrics in World Bank’s “Transforming the Urban Space through Transit-Oriented Development: The 3V approach” formed the basis to develop this tool (Salat and Ollivier 2017).

The Station Area Level TOD Readiness Assessment may be used to inform the Knowledge Products under the Plan + Design (PD-H03, PD-H04 and PD-H05); and Implement (IM-A01).

Detailed Corridor-level Readiness Assessment: This tool overlays the node, place and market potential value for all the stations to show the mosaic of conditions throughout the corridor. All the individual metrics are added, giving each station a total score ranging from 16 points (if it scored “Low” on all 16 metrics) to 48 points (if it scored “High” on all 16). This composite score helps in categorizing stations into three levels: Long-Term, Emerging and Arrived that would require different investment tools and strategies, as well as different phasing of investments will be needed in different locations.

The Corridor-level TOD Readiness Assessment may be used to inform the Knowledge Products under the Plan + Design (PD-H01, PD-H02, and PD-H03).
ASSUMPTIONS AND LIMITATIONS
• The tool is applicable for city, corridor and station scales. It is not intended to be applied on individual TOD projects at the site level.
• The tool is applicable in multiple contexts—greenfield, urban infill, suburban and redevelopment.
• The tool is not intended to compare different station areas along a corridor but highlight each station area’s TOD potential.
• The tool is a relative measure of a station compared to other stations, and of imbalances in terms of connectivity, urban space and market potential. It is used for planning purposes, not design purposes.
• This tool is applicable for municipalities, development agencies, transit agencies, private developers or any agency interested in getting their city ready for TOD.

DATA SOURCES
• High-definition aerials/satellite photography/Google Earth/Open Street
• Census information
• Local government GIS data
• Site Survey; Photos
• Local government transport data
• Secondary documents—applicable zoning codes; adopted master plans
• Field surveys
• Third-party reports
• Community mapping participatory planning exercises
• Open Source data
• Crowdsourced data
• Google Street view or other similar applications

INTENDED OUTCOMES
• Develop a preliminary checklist to identify potential pitfalls early-on in the process that prioritizes interventions needed to enable and implement TOD.
• Create an inventory of data availability.
• Gauge existing strengths and weaknesses of station areas to understand its full TOD potential and opportunities for improvement.
• Prepare a specific scope of work and terms of references for retaining external consultants, based on a preliminary understanding of data availability.
• Utilize spreadsheet tool results to refer other TOD Knowledge Products for additional technical guidance.
HOW TO USE THE TOD READINESS ASSESSMENT TOOL?

First, the user should read the User Guide Tab before using the spreadsheet. The application of the TOD Readiness Assessment tool consists of four basic steps:

01 INITIAL ASSESSMENT TAB

Populate the Initial Assessment tab as a checklist of the citywide policy, regulatory, and institutional framework; and evaluating technical data availability for detailed assessment.

[Refer following pages for details]

02 CREATE A CITY OR CORRIDOR BASE MAP

Identify station nodes along a transit network or transit corridor. Collect base data for each station, including ridership, land use conditions and other important data needs as specified in the Detailed Assessment Tab

03 DETAILED ASSESSMENT TAB

Enter data requirements in the Detailed Evaluation tab. The spreadsheet tool has measures developed that make use of readily available data and in some cases GIS-based analysis.

[Refer following pages for details]

04 SUMMARY TAB

Fill the template under the Summary tab to identify the station area's strengths and weaknesses, based on the readiness score calculated automatically through the tool.
INITIAL ASSESSMENT TOOL

The Initial Assessment tool is applicable at any scale. It measures the technical and regulatory readiness of the city agency to take up TOD planning and implementation. It includes three categories of measures –

1. Technical Capacities
2. Data Availability
3. Policy & Regulatory Environment

The total score is converted to the following outputs:

TECHNICAL CAPACITIES
Review of existing technical and professional staff available to manage, implement and monitor TOD planning activities

<table>
<thead>
<tr>
<th>Score</th>
<th>Knowledge Product Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Low</td>
<td>0–3</td>
</tr>
<tr>
<td>B Medium</td>
<td>4–6</td>
</tr>
<tr>
<td>C High</td>
<td>7–10</td>
</tr>
</tbody>
</table>

DATA AVAILABILITY
A comprehensive database as a resource to help document baseline conditions and analyze constraints based on the GIS/AutoCAD database for the last 5 years.

<table>
<thead>
<tr>
<th>Score</th>
<th>Knowledge Product Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Low</td>
<td>0–5</td>
</tr>
<tr>
<td>B Medium</td>
<td>6–10</td>
</tr>
<tr>
<td>C High</td>
<td>11–15</td>
</tr>
</tbody>
</table>

POLICY & REGULATORY FRAMEWORK
To evaluate the TOD readiness of the city with respect to the institutional support, plans, policies, and development market.

<table>
<thead>
<tr>
<th>Score</th>
<th>Knowledge Product Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Low</td>
<td>0–3</td>
</tr>
<tr>
<td>B Medium</td>
<td>4–6</td>
</tr>
<tr>
<td>C High</td>
<td>7–10</td>
</tr>
</tbody>
</table>
The Detailed Readiness Assessment tool is applicable at the corridor and station scales. It is a relative measure of a station compared to other stations as well as evaluation of the station itself. It includes three categories of measures –

- **Node Value**
- **Place Value**
- **Market Potential Value**

These categories rely on the “3V Framework”, developed by World Bank (Salat and Ollivier 2017). The three values are defined as:

A. NODE VALUE

Node value describes the importance of a station in the public transit network based on its passenger traffic volume, intermodality, and centrality within the network.

B. PLACE VALUE

Place or placemaking value describes the urban quality of a place and its attractiveness in terms of amenities including schools, plazas/open spaces representing the urban fabric around the station.

C. MARKET POTENTIAL VALUE

Market potential value refers to the unrealized market value of station areas. It is derived through market analysis measured analyzing major drivers of demand including current and future human densities (residential plus employment).

Understanding where, when and how potential economic value can be created requires tools that help differentiate the opportunities offered by the diverse stations in a mass transit network. The Detailed Readiness Assessment tool assessment is designed to highlight the interdependencies of economics, land use, urban design and mass transit networks and stations. The results of this tool may be used to direct the city for drafting a TOD vision and subsequently prepare detailed plans that enhance the value and economic potential of a station area.

- Input data into each of the metrics listed in the Detailed Assessment spreadsheet.
- Each metric is evaluated and simplified into a 1 to 5 score, where 5 indicates high readiness, 3 indicates medium readiness and 1 indicates low readiness.
- The total score reveals several key strengths and opportunities. Based on the identified strengths, weaknesses, and opportunities, the city can develop targeted strategies to increase the area’s readiness for TOD.

References:

Capital Metropolitan Transportation Authority. TOD Priority Tool – A Resource for Identifying TOD Opportunities to Support High-Capacity Transit. Austin, Texas
WHAT IS THE 3 VALUE FRAMEWORK?

The 3V Framework is a methodology for identifying economic opportunities in areas around mass transit stations and optimizing them through the interplay between the node, place, and market potential values. It provides a typology to cluster stations based on the three values. It equips policy and decision makers with quantified indicators to better understand the interplay between the economic vision for the city, its land use, its mass transit network, and its stations’ urban qualities and market vibrancy. It outlines planning and implementation measures for the different clusters of stations that can help prioritize limited public resources and create value through coordinated interagency measures.

B. PLACEMAKING VALUE

Placemaking value describes the urban quality of a place and its attractiveness in terms of amenities, schools, and healthcare; the type of urban development; local accessibility to daily needs by walking and cycling; the quality of the urban fabric around the station, in particular its pedestrian accessibility, the small sizing of urban blocks, and the fine mesh of connected streets that create vibrant neighborhoods; and the mixed pattern of land use.

Value is calculated through the following indicators:

- Density of street intersections
- Local pedestrian accessibility
- Diversity of uses
- Density of social infrastructure within 800 meters of the station
A. NODE VALUE

Node value describes the importance of a station in the public transit network based on its passenger traffic volume, intermodality, and centrality within the network.

Value is calculated through the following indicators:

- Degree centrality
- Closeness centrality
- Betweenness centrality
- Daily ridership
- Inter-modal Diversity

C. MARKET POTENTIAL VALUE

Market potential value refers to the unrealized market value of station areas. It is derived through market analysis. It is measured by analyzing major drivers of demand including current and future human densities (residential plus employment); the current and future number of jobs accessible by transit within 30 minutes; and major drivers of supply, including developable land, potential changes in zoning (such as increasing floor area ratios (FARs)), and market vibrancy.

Value is calculated through the following indicators:

- Human density
- Jobs/residents ratio
- Human density growth potential
- Average or median income
- Percentage of managers in labor force
- Number of accessible jobs by transit
- Real estate opportunities
- Dynamics of real estate development
AS-A02

TOD SCALE ASSESSMENT

Checklist to determine the appropriate scale for TOD planning

Type: Checklist + User Guide
INTRODUCTION

Existing literature, both in high income and low to middle-income countries, emphasizes the need for planning TODs at the metropolitan/city level, network/corridor level, local/neighborhood/station area level, and finally the station/site level (Salat and Ollivier 2017; WB/WRI TOD Corridor Module 2015; Ministry of Urban Development, India 2016; Center for Transit Oriented Development 2010). Some progressive cities in World Bank client countries such as Delhi, Hubli-Dharwad in India, Capetown and Johannesburg in South Africa are adopting this multi-level TOD planning approach for their development master plans and mass transit system plans. However, the majority of cities in World Bank client countries have taken an inconsistent approach in aligning transit, land use, infrastructure, and economic planning at macro and micro scales.

From an implementation perspective, station area level planning is the most important because most projects are formulated at this scale and could be aligned with transit investments. Often planning at the city and corridor scales are synchronous with each other, while TOD real estate development projects face the issue of addressing the time lag between transit station construction and real estate project viability. In Bogota, for example, research has indicated that a lengthy plan approval and development permit application process (usually 4-5 years), attributed to the lack of coordination between the Territorial Ordinance Plan (POT) and development plans (Suzuki, Cervero and Iuchi 2013), resulted in opportunity losses for attracting TODs in the first phases of the BRT implementation.

The nature of development context - whether a greenfield, suburban, urban intense or redevelopment areas - has a strong correlation to the value creation potential of TOD projects. In World Bank client countries, developing new towns, cities and developments on former agricultural lands has been a growing trend over the last 20 years. These developments, such as Dodoma, Tanzania’s new capital city and Naya Raipur, Chattisgarh state in India’s new capital, provide unique opportunities to design cities with TOD concepts embedded in all aspects from the initial stages.

Disclaimer: The Transit-Orientated Development Implementation Resources & Tools knowledge product is designed to provide a high-level framework for the implementation of TOD and offer direction to cities in addressing barriers at all stages. As the context in low and middle-income cities varies, the application of the knowledge product must be adapted to local needs and priorities, and customized on a case-by-case basis.

© 2021 International Bank for Reconstruction and Development / The World Bank

REFERENCES

Center for Transit Oriented Development. 2010. Performance-Based Transit Oriented Development Typology Guidebook. CTOD.
The TOD Scale Assessment tool is developed as a checklist to help cities in understanding the inter-relationships between these various scales of planning and their impact on TOD implementation. On the other hand, the Context Assessment tool is designed to determine the typology of a station area’s context, based on its current and planned urban form, its relationship to transit and its market strength in attracting TOD-related investments. Combined, these two tools help interested cities gauge the points of intervention for planning TODs, as well as understand the need for context-sensitive designing in urban regeneration projects.

Both tools are designed as user-friendly checklists, taking into consideration development trends. These tools are available online on the GPSC’s TOD website and the World Bank’s TOD COP website. The reader should first review the summary presented below before using the spreadsheet tool.

ASSUMPTIONS AND LIMITATIONS

- These tools are intended to solely guide users in initial assessments and need to be followed by detailed analyses, where feasible.
- The tools are designed to ensure that they can be used at multiple stages during the TOD implementation process, and not necessarily followed in a sequential manner.

DATA SOURCES

- Secondary sources - applicable zoning codes; adopted master plans; policies
- Third-party reports
- Google maps / other high-quality aerial/ satellite imagery

HOW TO USE THE TOOL?

01 FILL IN THE CHECKLIST

Read through the applicable sections and insert a check mark for each feature listed in the tool. In the Context Checklist, which is primarily applicable at the station area or site scale, the checkboxes correspond to typical conditions that help define the context of the station area. The context can be used to define the station area typology. In the Scale Checklist, the checkboxes refer to parallel planning activities and land ownership considerations that can help planners determine the most effective scale for planning TOD.

[Refer following pages for details]

02 OUTPUT

The city can undertake TOD planning at any scale or context provided there is one check against a feature in the selected option.

Add up all the checks to identify the priority scale and/or context if more than one is selected.
DETERMINE THE CONTEXT OF A TOD PLAN

GREENFIELD
- Planned land conversion from agricultural to high-intense uses
- High percentage of government-owned lands
- Extremely low or no existing population
- Within close proximity to existing urban centres, generally accessible by automobiles
- High-quality public infrastructure investment as the key economic driver

SUBURBAN
- Non-transit service or low-frequency transit service
- Low to moderately populated
- Lacks a combination of street connectivity, pedestrian and bicycle facilities, and urban amenities
- Single-use developments on large areas of land

URBAN (INFILL AND REDEVELOPMENT)
- Intensely populated areas
- Good or improving pedestrian/bicycle network
- Mix of neighborhood supportive retail and service amenities
- High mix of supporting jobs
Determine the Scale of a TOD Plan

City-Region Level
- **Regional Plan | City Development Plan | Master Plan**
 (Under preparation | Update underway/ongoing/planned)
- **Transportation Plan | Mobility Plan**
 (Under preparation | Update underway/ongoing/planned)
- **BRT/Metro Rail System Project Plan**
 (Under preparation | Planned)

Corridor Level
- **Modifications in Land Development Regulations**
 (Under preparation | Update underway/ongoing/planned)
- **Transportation Plan | Mobility Plan**
 (Under preparation | Update underway/ongoing/planned)
- **BRT/Metro Rail System Project Plan**
 (Under preparation | Planned)

Station Area
- **Transit Operational/Under Construction**
- **Public Owned Vacant Lands/ Redevelopment Opportunities Existing Near Transit**
- **Land Banking/ Pooling Strategy Underway**
- **Modifications in Land Development Regulations**
 (Under preparation | Update underway/ongoing/planned)
- **Market Interest (Rapid Change in Property Values)**

Site Level
- **Redevelopment Opportunities Near Transit**
- **Market Interest in Greenfield, Land Auctioning or Development**
- **Public Owned Vacant Lands/ Redevelopment Opportunities Existing Near Transit**
BRT Corridor, Pune, India
THRESHOLDS FOR TOD REAL ESTATE DEMAND

This Knowledge Product is intended to be used as an interactive Excel spreadsheet. These tools are available online on the GPSC’s TOD website and the World Bank’s TOD COP website. The reader should first review the summary presented below before using the spreadsheet tool.

Type: Spreadsheet + User Guide
Real estate developments are broadly classified into residential, retail, commercial (offices) and hospitality. In the case of TOD, however, mixed-use developments are highly recommended as they promote 24/7 use of transit-accessible locations and also promote walkability. The success of revenue earnings in such a mixed-use project is dependent on several factors, out of which appropriate sizing and program development are key factors.

Typically, in low-density markets, residential development is assumed to be the market driver dictating demand for all other components of real estate. However, in many TOD projects, the micro-market is governed by commercial and retail developments. Therefore, the proportion of uses within a mixed-use development is dependent on the optimization of different development components in terms of cross-financing requirements.

The demand for real estate is demonstrated through two principal indicators, namely, price and occupancy. The price is a direct variable of demand and supply scenarios in the real estate micro-market. The occupancy ratio provides the vacancy (supply–demand) status of the market and therefore rationalizes any scenario of overpricing by a seller.

The property yield is an indicator that helps measure future income or the earning potential of a real estate investment. Based on the earning potential of each component, the development components may be ranked as shown below.

To determine the real estate demand of a property, it should be measured across the price and occupancy spectrum as shown in the chart on the next page. Within each possibility, the potential land use mix must be evaluated to best balance the revenue risk with the revenue potential as illustrated below.

For example, in highly priced locations with high revenue risk, development components with moderate property yields are preferred so that the potential return can moderately balance capital investment. In highly priced locations with low risk, on the other hand, high yield investments are preferred so that maximum profitability can be gained. Similarly, in lower-priced locations, low to moderate yield investments are preferred depending on the risk involved.

This chart can be used in setting the initial sketch program for a proposed development. Based on the initial sketch, a detailed financial due diligence is highly recommended before proceeding further on project structuring and financing.

Disclaimer: The Transit-Orientated Development Implementation Resources & Tools knowledge product is designed to provide a high-level framework for the implementation of TOD and offer direction to cities in addressing barriers at all stages. As the context in low and middle-income cities varies, the application of the knowledge product must be adapted to local needs and priorities, and customized on a case-by-case basis.

© 2021 International Bank for Reconstruction and Development/ The World Bank

<table>
<thead>
<tr>
<th>S.No</th>
<th>Development Component</th>
<th>Measurement Indices</th>
<th>Property Yield* (Annual Rental Income / Capital Value)</th>
<th>Ranking based on revenue potential</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Hospitality</td>
<td>Revenue per Available Room, Average Room Rate</td>
<td>Highest</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Retail</td>
<td>Capital and Rental Values</td>
<td>Moderate to High</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>Commercial (Office)</td>
<td>Capital and Rental Values</td>
<td>Moderate to High</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>Residential</td>
<td>Capital and Rental Values</td>
<td>Lowest</td>
<td>4</td>
</tr>
</tbody>
</table>

* the Property Yield descriptions shown here are for comparison between different development components. Yield rates are usually governed by factors such as location and micro-market conditions. In 2018, the commercial yield rates ranged from 9% in Sao Paulo to 5% in Beijing (JLL Global Research 2018), whereas residential yield rates ranged from was 4% in Sao Paulo and 1.5% in Beijing (www.numbeo.com).
A graphical representation of a typical spectrum on real estate conditions varying from highest to lowest prices and highest to lowest occupancy ratios.

Assumptions

<table>
<thead>
<tr>
<th>Revenue Risk - High</th>
<th>Preferred Development Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential - Low</td>
<td></td>
</tr>
<tr>
<td>Commercial - Medium</td>
<td></td>
</tr>
<tr>
<td>Retail - Medium</td>
<td></td>
</tr>
<tr>
<td>Hospitality - Low</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Revenue Risk - Low To Medium</th>
<th>Preferred Development Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential - Low</td>
<td></td>
</tr>
<tr>
<td>Commercial - Medium</td>
<td></td>
</tr>
<tr>
<td>Retail - Medium</td>
<td></td>
</tr>
<tr>
<td>Hospitality - Medium</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Revenue Risk - Low</th>
<th>Preferred Development Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential - Low</td>
<td></td>
</tr>
<tr>
<td>Commercial - Low</td>
<td></td>
</tr>
<tr>
<td>Retail - Low</td>
<td></td>
</tr>
<tr>
<td>Hospitality - High</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Revenue Risk - High To Medium</th>
<th>Preferred Development Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential - Medium</td>
<td></td>
</tr>
<tr>
<td>Commercial - Medium</td>
<td></td>
</tr>
<tr>
<td>Retail - Low</td>
<td></td>
</tr>
<tr>
<td>Hospitality - Medium</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Revenue Risk - Medium</th>
<th>Preferred Development Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential - Medium</td>
<td></td>
</tr>
<tr>
<td>Commercial - Medium</td>
<td></td>
</tr>
<tr>
<td>Retail - Low</td>
<td></td>
</tr>
<tr>
<td>Hospitality - Low</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Revenue Risk - Low To Medium</th>
<th>Preferred Development Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential - Medium</td>
<td></td>
</tr>
<tr>
<td>Commercial - Low</td>
<td></td>
</tr>
<tr>
<td>Retail - Low</td>
<td></td>
</tr>
<tr>
<td>Hospitality - Low</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Revenue Risk - Medium</th>
<th>Preferred Development Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential - High</td>
<td></td>
</tr>
<tr>
<td>Commercial - Medium</td>
<td></td>
</tr>
<tr>
<td>Retail - Low</td>
<td></td>
</tr>
<tr>
<td>Hospitality - High</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Revenue Risk - Low To Medium</th>
<th>Preferred Development Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential - High</td>
<td></td>
</tr>
<tr>
<td>Commercial - Medium</td>
<td></td>
</tr>
<tr>
<td>Retail - Medium</td>
<td></td>
</tr>
<tr>
<td>Hospitality - Low</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Revenue Risk - High</th>
<th>Preferred Development Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential - High</td>
<td></td>
</tr>
<tr>
<td>Commercial - Medium</td>
<td></td>
</tr>
<tr>
<td>Retail - Medium</td>
<td></td>
</tr>
<tr>
<td>Hospitality - Low</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Revenue Risk - High To Medium</th>
<th>Preferred Development Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential - High</td>
<td></td>
</tr>
<tr>
<td>Commercial - Medium</td>
<td></td>
</tr>
<tr>
<td>Retail - Medium</td>
<td></td>
</tr>
<tr>
<td>Hospitality - High</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Revenue Risk - Medium</th>
<th>Preferred Development Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential - High</td>
<td></td>
</tr>
<tr>
<td>Commercial - Low</td>
<td></td>
</tr>
<tr>
<td>Retail - Low</td>
<td></td>
</tr>
<tr>
<td>Hospitality - Low</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Revenue Risk - Low To Medium</th>
<th>Preferred Development Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential - High</td>
<td></td>
</tr>
<tr>
<td>Commercial - Low</td>
<td></td>
</tr>
<tr>
<td>Retail - Low</td>
<td></td>
</tr>
<tr>
<td>Hospitality - Low</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Revenue Risk - Medium</th>
<th>Preferred Development Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential - High</td>
<td></td>
</tr>
<tr>
<td>Commercial - Low</td>
<td></td>
</tr>
<tr>
<td>Retail - Low</td>
<td></td>
</tr>
<tr>
<td>Hospitality - High</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Revenue Risk - Low To Medium</th>
<th>Preferred Development Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential - High</td>
<td></td>
</tr>
<tr>
<td>Commercial - Low</td>
<td></td>
</tr>
<tr>
<td>Retail - Low</td>
<td></td>
</tr>
<tr>
<td>Hospitality - Low</td>
<td></td>
</tr>
</tbody>
</table>
PURPOSE

This tool has been designed to provide assistance in analyzing the potential for real estate development and structuring of different mixed-use development components for optimized revenue generation. The tool identifies the TOD projects under four basic categories viz.

a. Site-based,
b. Station-based,
c. Corridor-based and
d. City-based.

Also, it classifies the region/location of the project planned for development to arrive at suggestive strategies for structuring real estate components. In addition, it also provides a detailed analysis for individual component i.e Residential, Retail, Commercial and Hospitality based on the market scenario and grade of existing supply. This tool aims to assess the Market Value of the TOD project planned for development.

DATA SOURCES

- Population Density - population per sq. km
 - City Region
 - Micro-market Area
- Infrastructure Cost Ratio - pure ratio (total investment planned for the transit infrastructure per square meter divided by the land cost per square meter)
- Realty Price Ratio - pure ratio (average price of the property per square meter divided by the land cost per square meter)
 - Residential
 - Retail
 - Commercial
 - Hospitality
- Premium Supply Ratio - pure ratio (total supply in square meters of grade A property in the micro-market divided by total supply in square meters of grade B property in the micro-market)
 - Residential
 - Retail
 - Commercial
 - Hospitality
- Occupancy Ratio - pure ratio (total rate of occupied units by total units)
 - Residential
 - Retail
 - Commercial
 - Hospitality
HOW TO USE THE REAL ESTATE DEMAND TOOL

01 SELECTING SCALE AND CONTEXT

- **TOD PROJECT SCALE**: Select the scale of the TOD project to highlight the appropriate cells on the Dashboard.
- **PLACE VALUE**: Select the development context of the TOD project.
- **NODE VALUE**: Select the context of transit nodes.

Based on the above selection, the reference to development strategy and structuring of real estate components is provided in the “Dashboard” sheet. The portion highlighted in yellow is the suggested initial strategy to proceed for further analysis.

02 DATA INPUTS IN ASSESSMENT

Select the value in the orange box, after reading the instructions carefully.

03 VIEW THE DETAILED STRATEGY RECOMMENDATIONS

Within each land use, see the specific strategy recommendations on structuring development of real estate components in the project.

First, the user should read the User Guide Tab before using the spreadsheet. The application of the Real Estate Demand tool consists of these basic tabs:

THE TOOL INCLUDES:
- USER GUIDE
- DASHBOARD
- ASSESSMENT
- RESIDENTIAL
- RETAIL
- COMMERCIAL
- HOSPITALITY
- REFERENCE MATRIX
- REFERENCE CASE CITIES
AS-A04

THRESHOLDS FOR RAPID TRANSIT MODE SELECTION

This Knowledge Product is intended to be used as an interactive Excel spreadsheet. These tools are available online on the GPSC’s TOD website and the World Bank’s TOD COP website. The reader should first review the summary presented below before using the spreadsheet tool.
INTRODUCTION

As urban economic growth in World Bank client countries outstrips rural economies, cities continue to see a rapid influx of population and jobs. These new jobs require accessibility through public transit means that are faster and more reliable. Public transit demands have necessitated a change from unregulated and local bus systems to more robust and high-quality rapid mass transit systems. Several cities have launched new rapid transit systems in the last 2 decades including cities in Tanzania (Dar-es-Salaam), Brazil (20+ cities) and South Africa (6 cities) to China (40+ cities), India (15+ cities) and Indonesia (10+ cities). Most cities face difficulties in timing transit investments and changes in land use regulations for more integrated TOD outcomes. Rapid transit investments are more appropriately located along corridors with high population densities and employment access. However, a city may choose to proactively invest in rapid transit systems at the same time as land use regulations are relaxed. This will increase choices for the non-driving population in terms of real estate and mobility.

The increasing choices in rapid transit modes in recent years offer developing countries the option of selecting a transit mode that best addresses mobility needs and economic constraints. While rail rapid transit systems have been around longer, they are more expensive to build and offer little flexibility in adjusting for demand variations. Bus rapid transit systems, on the other hand, offer more flexibility in adjusting to varying demand, but the “Rapid” version is comparatively new and is difficult to enforce in many cities with poor traffic behavior.

Transit planners in World Bank client countries, are often ill-equipped to make the decision without considerable data collection and modeling studies. Furthermore, access to data is often a daunting task and restricts informed decision-making. The Rapid Transit Mode Selection Tool helps cities conduct a rapid selection for bus or rail rapid transit modes with relatively accessible data points that are often available at local levels.

Disclaimer: The Transit-Orientated Development Implementation Resources & Tools knowledge product is designed to provide a high-level framework for the implementation of TOD and offer direction to cities in addressing barriers at all stages. As the context in low and middle-income cities varies, the application of the knowledge product must be adapted to local needs and priorities, and customized on a case-by-case basis.

© 2021 International Bank for Reconstruction and Development/ The World Bank

PURPOSE

This Rapid Transit Mode Selection Tool is intended to provide assistance on rapid transit mode selection to cities who are either (1) considering the introduction of a new rapid transit mode for an intended network at the city scale; or (2) in the process of evaluating rapid transit modes for operations along a corridor:

- **Initial Assessment**: This tab is intended to help cities make an initial assessment among a set of modes that should be considered for the Alternative Analysis. The tool is designed to use data that are readily available to assess potential rapid transit modes that differ by technology and right-of-way.

 The Initial Assessment may be used to inform the Assess Rapid Transit Tool (AS-H02)

- **Detailed Evaluation**: This tab is intended to help cities determine the most appropriate mode alternatives for a specific corridor. The tool is designed to use data that represent an informed opinion as to the extent of demand in the corridor with rapid transit in place. Please copy the tab for use for every different corridor. The final selection of Mode Alternative should be based on context-specific criteria, which can be more important than a small numerical difference in the Evaluation Score.
ASSUMPTIONS AND LIMITATIONS

1. The tool classifies the modes broadly under rail and bus and further classifies them based on the achievable speed and person-capacity. The classification based on speed is broadly defined by the degree of “separateness” from other traffic movement and conflict points. This degree is classified as ROW (right-of-way) Class A, B, or C, where ROW Class A denotes full separation either through grade separation or continuous barriers; Class B denotes partial separation either through discontinuous lane or grade separation, and Class C denotes mixed traffic movement (Vuchic 1981). Several physical and technological mechanisms can be used to achieve the ROW variations, including actual physical separation, but also including technological measures such as signal priority.

2. The rapid transit modes considered in this selection Tool include:
 a. Bus Rapid Transit (BRT) - is a high-quality bus-based rapid transit system, characterized by better quality and fuel-efficient buses, dedicated right-of-ways, and pre-boarding fare collection. Three types of BRT choices are available in this tool, differentiated mainly by the mode capacity and operating conditions:
 » BRT Rapid – is a BRT system using standard, articulated or double-articulated buses, designed to operate on a fully segregated corridor; either on an elevated or isolated busway or along physically separated bus lanes with continuous passing lanes delivering highly reliable, fast and comfortable services equivalent to Metro systems.
 » BRT Semi-Rapid 1 – is a BRT system using standard, articulated or double-articulated buses, designed to operate with high speeds and reliability on a dedicated bus lane with passing lanes at stations and physical segregation or signal prioritization techniques at junctions for faster movement of buses.
 » BRT Semi-Rapid 2 – is a BRT system using standard or articulated buses and designed to operate at higher than average speeds along a dedicated bus lane with general traffic turns allowed at signals.
ASSUMPTIONS AND LIMITATIONS

b. Light Rail Transit (LRT) - Light Rail Transit is an electric powered rail based transit system which is lighter than the conventional heavy rail system and characterized by its ability to operate short trains along dedicated lanes. LRTs exist in many forms, including streetcars, trams, and the more modern LRT systems. This tool only includes the option of the modern LRT with dedicated ROW features as described:

» LRT Semi-Rapid – is an LRT system using up to 4 train cars, with a physically segregated right-of-way and dedicated tracks at grade, allowing occasional traffic turns at junctions.

c. Metro /Rail Rapid Transit – Metro / Rail Rapid Transit is an electric powered rail-based transit system which is designed to operate in fully grade-separated corridors with closer station spacing than heavy commuter rail.

3. The following transit modes are not included in this tool

a. Local Bus – because it serves a local connector and feeder connection only and cannot be classified as “rapid”;
b. Streetcar or Mixed Traffic LRT – because it operates in mixed traffic more often and cannot be classified as “rapid”;
c. Commuter Rail – because it serves the regional transit function, not urban ‘rapid’; and
d. Monorail / Skytrain (suspension rail) / gondola cars – because it does not adapt itself to forming a network, an essential requirement for urban transit, but could be used as feeder lines in atypical topographies as deemed necessary.

4. The tool uses a higher and lower case assumption for computing potential travel demand for the given conditions. These higher and lower cases represent density variations within a city or along a city corridor. For a city or corridor where both extreme conditions are observed, a mode must be favorable under both conditions to be viable.

a. THE HIGHER CASE may be interpreted as the computed conditions for the denser core of the city.
b. THE LOWER CASE may be interpreted as the computed conditions for the sparsely developed suburban areas in the city.
5. The tool assumes capacities based on vehicle dimensions per TCQSM methods, using 6 persons per m2 of standee space and load diversity factors depending on train length. (Reilly and Levinson 2011). A load diversity factor is applied to derive optimum capacities, where peak capacities are defined as the maximum number of people that can be carried past a given location during a given time period under specified operating conditions, without unacceptable delay, hazard, or restriction, and with reasonable certainty. It is assumed that a system that operates at peak capacities at all times is over capacity. Typical frequencies for BRT are based on observed actual frequencies. (Global BRT Data n.d.)

6. The tool uses a cost per passenger-km unit to determine cost efficiencies as explained in the optimization model for technology selection developed by L. Moccia. (Moccia, Allen and Bruun 2018). The model uses a synthetic representation of the temporal and spatial variability of demand, and of several operational and design aspects.

7. The model is adjusted to show that planning for a faster technology can be more important than the choice between bus and rail per se, except at very low demand density, and that cost differences between technologies are small in a wide demand range. The social discount rate assumed in running this model is 7%.

8. The tool does not consider contextual parameters such as political preferences, costs of land acquisition and construction of supporting infrastructure.

10. This tool is applicable for municipalities, development agencies, transit agencies, private developers or any agency interested in proposing a transit system for the city.

ASSUMPTIONS AND LIMITATIONS

DATA SOURCES

- For Initial Assessment
 - Census information – area and population
 - Local bus usage data – in annual terms (multiple daily numbers by 300) and in spatial terms to identify the highest ridership observed at the peak hour at the peak loading point.

- For Detailed Assessment
 - Census information – population
 - Planned Corridor details – corridor length, projected ridership

- Use or add data to the Urban Transport Data Analysis Tool (Agarwal, et al. 2014)
HOW TO USE THE RAPID TRANSIT MODE SELECTION TOOL?

First, the user should read the User Guide Tab before using the spreadsheet. The application of the Rapid Transit Mode Selection tool consists of three basic steps:

THE TOOL INCLUDES:

- USER GUIDE
- INITIAL ASSESSMENT
- DETAILED EVALUATION
- ASSUMPTIONS & THRESHOLDS
- GLOSSARY

01 SELECTING THE APPROPRIATE TAB FOR YOUR NEEDS

- INITIAL ASSESSMENT: This tab is intended to help cities make an initial assessment among a set of modes that should be considered for the Alternative Analysis.

- DETAILED EVALUATION: This tool is intended to help cities determine the most appropriate mode alternatives for a specific corridor. Please copy the tab for use for every different corridor.

02 DATA INPUTS

Populate the Input Cells using readily available data

- ORANGE: Input Selection Box
- YELLOW: Input Entry Box

03 STEP 3: READ AND INTERPRET THE RESULTS
HOW TO INTERPRET THE RESULTS?

Initial Assessment: In this tool, the results are expressed as the degree to which a mode is favorable or competitive or unfavorable in terms of (1) the ability of the mode to manage peak passenger demand at higher and lower ranges of demand; and (2) the cost efficiency of the mode technology at higher and lower ranges of demand.

A city that is home to a high variation of population and employment densities, would need to consider the results for both higher and lower cases. On the other hand, a city that is characteristically closer to either the higher or lower end of the density range may use the results from the most applicable scenario. The results of the tool should be used not as direct recommendations but as preliminary guidance on appropriate mode(s) for the city, given prevailing conditions of population density and travel habits. For instance, if the INITIAL ASSESSMENT tool suggests that rail is COMPETITIVE for the whole network whereas bus is FAVORABLE, it may well be that part of the network would be better off as rail. Mixed results could be interpreted in some instances to indicate a mixed-mode solution warranting at least DETAILED consideration by corridor.

Detailed Evaluation: If passenger is known by segment/corridor, the DETAILED EVALUATION tool could be used to explore the particular segment that works better as rail. In effect, both tools together could be used to assign segments of a large notional network to either rapid (BRT or Metro) or semirapid (BRT or LRT).

In this tool, the results are expressed in terms of an Evaluation Score. The evaluation considers the following parameters:

a. Provides Adequate Capacity (Scored out of 3)

b. ROW Availability (Need vs. availability of dedicated corridors) (Scored out of 3)

c. Potential to Integrate Pedestrian Needs (Such as safe crossings) (Scored out of 2)

d. Potential to Improve Living Conditions in surrounding Development (Scored out of 2)

e. High Estimate of TAC per PKT (High Cost = Low Score) (Scored out of 3)

f. Low Estimate of TAC per PKT (High Cost = Low Score) (Scored out of 3)

g. Ease of Implementation with respect to: Familiarity with Technology (Scored out of 2)

REFERENCES

GLOSSARY

CAPACITY
The maximum number of people that can be carried past a given location during a given time period under specified operating conditions, without unacceptable delay, hazard, or restriction, and with reasonable certainty.

HISTORICAL DAILY PEAK HOUR FACTOR
The ratio of Peak Hour Peak Direction Passenger Demand for a typical route (i.e. representative of the system as a whole) to its total daily boardings in both directions. His factor helps to convert daily passenger flows into peak hour passenger flows. It should be ideally be determined by looking at historical data. Please note that this factor is usually higher for public transport as compared to total traffic.

LOCAL TRANSIT
Public transport operating on fixed routes with frequent stops (100-400 m apart), generally in mixed traffic on surface roadways, relying heavily on walk access and egress.

LOCAL TRANSIT BOARDINGS
The annual number of passengers boarding local transit vehicles, counting separately each boarding made in the course of single journey or trip between origin and destination. Also known as unlinked passenger trips (UPT). Boardings on regional services should not be included in city totals when using this tool.

LOCAL TRANSIT SERVICE AREA
The reasonably contiguous area served by the local transit network, not including regional services. Indicative extent would be the area within 1 km of regularly served local stops. This area does not include portions of the metropolis connected to the local service area solely by regional services.

MEAN LOCAL TRANSIT TRIP LENGTH
The average distance traveled by one public transit boarding passenger, calculated by dividing total local transit person-km by total local transit boardings.

NETWORK EXTENT
The number of kilometers of a route in a public transport network, without double-counting kilometers where routes share the same path.

PASSENGER TRAFFIC DENSITY (PTD)
The total number annual transit passengers passing the average point along a system or route in both directions combined, formed by dividing system PKT by network extent (for a system) or route PKT by route length (for a single route).

PASSENGER-KILOMETERS TRAVELLED (PKT)
The total distance traveled by passengers on transit vehicles (for a single route or a system), which may be determined by multiplying the number of unlinked passenger trips by the average length of such trips.

PEAK HOUR PEAK DIRECTION PASSENGER DEMAND (PHPD)
The number of transit passengers carried in the peak hour in the peak direction. This occurs almost universally on weekdays and is measured for a single route at its maximum load point.
PROJECTED ANNUAL RAPID TRANSIT PASSENGER BOARDINGS IN A CORRIDOR/ANNUAL CORRIDOR RIDERSHIP

The estimated or projected annual passenger boardings for a specific rapid transit corridor of known length. The estimate should be consistent with operating characteristics (such as average speed) for the available ROW.

RAPID TRANSIT

Public transport operating on fixed routes at a significantly higher average speed than local service, usually in exclusive rights-of-way and/or completely separated from surface traffic. Access depends on both walking and local public transport service. Stations are typically 800m-2km apart.

REGIONAL TRANSIT

Public transport operating on fixed routes within and outside the local service area, offering higher average speeds than even rapid transit, with average station spacings usually longer than 2 km. A large share of access may be by motorized transport.

RIGHT-OF-WAY

Land that is used for moving vehicles carrying passengers or goods, such as railways or highways. Rights-of-way may be identified, purchased, or reserved in advance for future transportation use, and may be required to construct elevated or underground rapid transit.

ROW CLASS

Classification of the type of operating environment of the RoW. ROW Class A = fully grade-separated ROW, Class B = at-grade lane separation, Class C = mixed traffic.

TOTAL ANNUALIZED COST

Total annualized cost is the annualized value of the total net present cost expressed in per PKT.

VEHICLE CAPACITY

The average number of people that a vehicle can be scheduled to carry at capacity (as defined herein).
AS-H01
HOW TO UNDERTAKE REAL ESTATE MARKET ANALYSIS

This tool aids in establishing the real estate knowledge required to carry out a successful TOD development. Through the use of the tool, the market area with the appropriate demand can be determined. It can also be better understood what development is most in demand, based on demographic, geographic and economic trends.

Type: Step-by-Step Guide
UNDERSTAND THE REGIONAL OR CITY-WIDE SETTING

To understand and compare the regional or city-wide economic trends with conditions along the TOD corridor or station area where the project is proposed.

DATA SOURCES
- City-level Census Information
- World Bank Open Data (https://datacatalog.worldbank.org/)
- Municipalities (Building Permit/Plan Approval Departments)
- Local Real Estate Industry Associations
- Interviews with local property brokers

DEMOGRAPHIC TRENDS: POPULATION | DENSITY | HOUSEHOLDS

EMPLOYMENT TRENDS: TOTAL NUMBER OF JOBS | UNEMPLOYMENT RATE | TOTAL NUMBER OF ESTABLISHMENTS

LARGEST AREA EMPLOYERS

CONSTRUCTION ACTIVITY: RESIDENTIAL AND NON-RESIDENTIAL

DELINATE THE TOD MARKET AREA BOUNDARY

To define the two boundaries of the TOD Market Area: Primary (3 mile/5 km) and Secondary Trade Area (5 mile/8 km) to understand the market’s potential size, catchment and expenditure potential. Factors that affect the size and shape include:

DATA SOURCES
- Satellite Imagery | Google Earth
- GIS data

NATURAL FEATURES
Lakes/ Rivers/ Mountains

JURISDICTIONS
Political boundaries | Neighborhood boundaries

DATA SOURCES
- GIS data
- Community Mapping

BUILT INFRASTRUCTURE
Railroad tracks | Highways | Airports | Large-scale Industrial

TRAFFIC
Traffic Volume | Congestion Data

DATA SOURCES
- Google Real-Time Traffic Data | General Transit Feed Specification | Commercial Ride sharing Application
- Mobility/ Transport Studies
- As per approved Master Plan/ Development Plan
03 CONDUCT A DEMAND & SUPPLY ANALYSIS

To understand the demand and supply within the TOD Market Area with respect to different development components. Create an economic profile to understand the purchasing power and prepare a competition analysis to understand the risk and revenue potential for different types of development components.

ECONOMIC INDICATORS/ SOCIOECONOMIC PROFILE
- Demographic trends: Age | Household Composition | Migration
- Economic trends: Household Income | Disposable Income (Retail)
- Tourism Data (Hospitality)
- Employment Trends: Job Growth (Office)

COMPETITION ANALYSIS
- Number of residential units and square feet of housing types
- Commercial built space supply
- Number of hotel rooms
- Land Values (Market & Assessed)
- Rental Yield Rates
- Approved & Planned Projects
- Absorption Rates / Occupancy Rates

DATA SOURCES
- Interviews with local city staff
- Building permit data
- Meetings with local real estate brokers
- City tourist traffic data
- Online property websites
- Crowdsourcing Apps
- Mail/Internet Surveys

04 DEFINE POTENTIAL AND DESIRED DEVELOPMENT MIX

Define the most appropriate development mix based on location, investment risk and revenue potential. Some other criteria to be considered in defining the development mix include:

- Zoning and Planning Regulations
- Local Political Willingness
- Land Ownership and Land Control Options
- Environmental & Infrastructure Conditions
- Size/Program Area
- Potential Synergies with surrounding land uses

DATA SOURCES
- Stakeholder meetings
- Community Workshops
- Collaboration with planning & design team

05 PREPARE A DEVELOPMENT PROFORMA

Prepare a Development Proforma that includes Development Costs, Potential Income and Cash Flow over the project timeline, presenting finally the Net Present Value (NPV) and Internal Rate of Return (IRR):

COSTS
- Land Acquisition | Site Improvements | Planning, Engineering & Design | Marketing | Property Taxes | General Overhead | Financing Costs

REVENUES
- Sales Revenue | Sales Percentage | Lease Revenue | Lease Percentage | User Fees | Grants & Loans

PROJECT TIMELINE
- Pre-Development | Construction Phase | Stabilization | Asset Management/Sale | Operations

DATA SOURCES
- Stakeholder meetings
- Community Workshops
- Collaboration with planning & design team

Prepare a Real Estate Market Analysis Report summarizing the key findings through the process. The proposed report structure is shown.

1. Real Estate Market Performance Trends.
2. Worker Travel Characteristics.
5. Recommended Development and Redevelopment Opportunities.
6. Profitability & Revenue Potential in NPV and IRR.
7. Recommended set of Incentives and Possible Finance Structures.
AS-H02
HOW TO UNDERTAKE RAPID TRANSIT ALTERNATIVES ASSESSMENT

An overall framework for identifying, evaluating and selecting the appropriate rapid transit alternative including alignment, mode and operating environment.

Type: Step-by-Step Guide
01 DEVELOP INITIAL RANGE OF ROUTE & MODE OPTIONS

Use **PRELIMINARY REFERENCE CRITERIA** to map initial corridors and collect feedback on it from political stakeholders, municipal & transit agencies and the public.
- People and Jobs Density
- Destinations and Land Uses
- Potential and Desired Connections
- Existing Recommendations
- Viable Modes

DATA SOURCES
- Satellite Imagery
- Statutory Policy and Plan Documents
- Existing Transport Studies
- Field Surveys
- Stakeholder Workshops

STAKEHOLDERS
- Primary: Transit Planning/ Urban Planning Agency
- Secondary:
 - Formal and Informal Transit Operators
 - Land Use Planners, Environmental Planners
 - Housing, Infrastructure, and Transportation Departments
 - Neighborhood/ Community Organizations

02 UNDERTAKE INITIAL SCREENING

Use **CORRIDOR SCREENING CRITERIA** to perform initial screening of the corridors identified in step 1
- City Vision and Goals
- Transportation Demand
- Ease of Implementation
- Community Building

DATA SOURCES
- Satellite Imagery
- Existing Census Data
- Population /Employment Projections
- Statutory Policy and Plan Documents
- Land uses and nodes along corridor

STAKEHOLDERS
- Primary: Transit Planning Agency
- Secondary:
 - Formal and Informal Transit Operators
 - Land Use Planners, Environmental Planners
 - Housing, Infrastructure, and Transportation Departments
 - Neighborhood/ Community Organizations

Disclaimer: The Transit-Orientated Development Implementation Resources & Tools knowledge product is designed to provide a high-level framework for the implementation of TOD and offer direction to cities in addressing barriers at all stages. As the context in low and middle-income cities varies, the application of the knowledge product must be adapted to local needs and priorities, and customized on a case-by-case basis.

© 2021 International Bank for Reconstruction and Development/ The World Bank
03-A UNDERTAKE DETAILED CORRIDOR SCREENING

Use CORRIDOR SCREENING CRITERIA to undertake detailed screening of the corridors shortlisted in step 2.
- City Vision and Goals
- Transportation Demand
- Ease of Implementation
- Community Building

03-B UNDERTAKE TECHNOLOGY/MODE REVIEW

Evaluate transit technology based on:
- Potential Ridership
- Mode Capacity
- Cost Comparison

Refer to AS-A04

DATA SOURCES
- Transit Ridership Projections
- Statutory Policy and Plan Documents
- Land uses and nodes along corridor
- Environmental Assessment Reports
- Capital and Operating Costs
- Stakeholder Workshops

STAKEHOLDERS
Primary:
- Transit Planning Agency
Secondary:
- Political Leadership / Appointed Executives
- State or Federal Departments
- Funding Agencies
- Formal and Informal Transit Operators
- Urban Planning Agencies
- Land Owners and Potential Real Estate Developers
- Academic Institutions, Advocacy Groups

04 UNDERTAKE BUSINESS CASE

Undertake DETAILED COSTING COMPARISON and develop a detailed Cost-Benefit Analysis

I Establish base and projected case
- Based on current and future demand

II List Benefits
- Including productivity savings, healthcare cost savings, regional economic and environmental benefits

III List Costs
- Including transit capital and operating costs, costs of changing institutional procedures and negative externalities

IV Monetize Benefits and Costs
- Assign $ value to as many benefits and costs as possible. Where needed, use an equivalence factor to assign $ value

V Calculate Net Present Value
- Annual net costs and benefits in each year to be discounted to current day dollars value; derive Benefit-Cost Ratio

DATA SOURCES
- Capital and Operating Costs
- Ridership and Total Trip Data
- Emissions and Fuel Data
- Public Expenditure Data

STAKEHOLDERS
Primary:
- Transit Planning Agency
Secondary:
- Political Leadership / Appointed Executives
- State or Federal Departments
- Funding Agencies
Develop a long list of alternatives, building upon the work previously undertaken by the city and incorporate additional consultation with various stakeholder groups. The following Criteria must be considered in defining the long list of alternatives.

<table>
<thead>
<tr>
<th>CRITERIA</th>
<th>MEASURE</th>
<th>IMPORTANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density of housing units and jobs identified through Census data and other surveys.</td>
<td>Areas with high population densities need Rapid Transit services to equitably fulfill mobility needs of all people.</td>
<td></td>
</tr>
<tr>
<td>Major trip generators within the city (weekdays & weekends) identified through destination mapping and land use maps.</td>
<td>Serving public destinations and high activity centers with Rapid Transit alleviates the potential for congestion and ensures optimum ridership.</td>
<td></td>
</tr>
<tr>
<td>Identification of existing and potential desired connections measured from travel data and people’s perception</td>
<td>Determine travel patterns using data from existing transit services or cab aggregators or congestion mapping.</td>
<td></td>
</tr>
<tr>
<td>Review recommendations from existing Plans and Policy Documents and ensure they are still relevant & valid</td>
<td>Ensure that existing (and relevant) studies are reviewed and recommendations are considered in transit planning e.g. Transportation Master Plan, Master Plan, etc.</td>
<td></td>
</tr>
<tr>
<td>Shortlist Viable Modes based on density thresholds</td>
<td>Carry out a quick assessment of the most viable transit technologies and operating environment options for the city</td>
<td></td>
</tr>
</tbody>
</table>

DATA SOURCES

- Google Earth, Satellite Images, GIS Data, Worldwind, Marble, Virtual Ocean, Ossimplanet, GeoMappApp, OpenStreetMap
- Statutory policy documents and relevant studies—Master Plan/Development Plans/Transportation Master Plan
- Data from existing transit/busways/private transit operators
- Field surveys
- Best practices
- Stakeholder workshops
- Public workshops
The intent of corridor-level screening is to evaluate the long list and short list of the corridor segment alternatives and advance those that demonstrate suitability for Rapid Transit. Corridor alignment alternatives need to be evaluated in parallel with mode and technology alternatives. The screening process described here is a two-step process, where initial screening criteria are suggested for evaluation of a long list of alternatives, followed by a detailed screening at a later stage of the shortlist of selected alternatives. Where required, cities may skip one level of screening depending on the availability of data and resources.

CITY VISION AND GOALS

<table>
<thead>
<tr>
<th>CRITERIA</th>
<th>INITIAL SCREENING MEASURE</th>
<th>DETAILED SCREENING MEASURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Growth Potential</td>
<td>Projected growth (10 year) within 500m in population density (person/ha) and employment density (jobs/ha).</td>
<td>Supports growth management to focus high-intensity, mixed-use development in strategic locations; Supports transit-oriented development (Transit Villages), compatible with incentives for development along Rapid Transit corridors and at transit stations.</td>
</tr>
<tr>
<td>Economic Development</td>
<td>Connectivity to major growth centers, existing or proposed, within 500m of the corridor.</td>
<td>Ability to attract and retain talent and influence long-term employment goals, improve business viability and attractiveness.</td>
</tr>
<tr>
<td>Mixed Use Development Potential</td>
<td>Areas that have a mix (2 or more) of land uses within a 500m buffer along the corridor.</td>
<td>Land availability and market acceptance for new mixed-use development or redevelopment opportunities.</td>
</tr>
<tr>
<td>Land Value Capture Potential</td>
<td></td>
<td>Property value uplift along the corridor, increased attractiveness to live along the corridors, changes to parking and access.</td>
</tr>
</tbody>
</table>

DATA SOURCES

- Google Earth, Satellite Images, GIS Data, Worldwind, Marble, Virtual Ocean, Ossimplanet, GeoMappApp, OpenStreetMap
- Census Data Existing
- Population/Employment Projections from Statutory Policy Documents & Relevant Studies
- Statutory Policy Documents & Relevant Studies – Master Plan / Development Plans / Transportation Master Plan
- Land Uses along corridor
- Key Nodes and Destinations
- Infrastructure Construction and Operating Costs
- Land Ownership Data
CORRIDOR SCREENING CRITERIA

TRANSPORTATION DEMAND

<table>
<thead>
<tr>
<th>CRITERIA</th>
<th>INITIAL SCREENING MEASURE</th>
<th>DETAILED SCREENING MEASURE</th>
</tr>
</thead>
</table>
| Transit ridership potential | Existing and projected population and job densities; existing transit ridership on existing services.
** indifference** | Opening day and longer-term forecast of transit ridership projections compared to transit system capacity (persons/hour) of all modes on the mobility network. |
| Travel time improvement potential | Route length; average auto delay; maximum V/C Ratio; travel time (Auto vs Existing Transit).
** indifference** | Forecasted travel times to major trip generators, balancing transit and auto should show substantive improvements in travel time by transit compared to auto. |
| Existing transit network integration | Transfer points with existing transit network.
** indifference** | Possibilities of integrating with local, rapid and regional transit systems, existing and planned, focusing on the highest potential for network reach and future expansion. |
| Transit service reliability | | Right-of-way characteristics affecting reliability, frequency, quality, and flexibility of Rapid Transit service, including: |
| Support active transportation | | Urban form characteristics that support active mobility choices such as walking, cycling and transit that are accessible and accommodate people of all abilities, including: |
| Safety of all corridor users | | Road characteristics that allow for improvement to intersections, crossing locations and emergency vehicle access. |

DATA SOURCES

- Statutory Policy Documents & Relevant Studies – Master Plan / Development Plans / Transportation Master Plan
- Existing Transit Ridership data - Boarding & Alighting Data
- Street Network in CAD, GIS, or any Transport Demand Modelling Software formats including ROW, Intersections, and Signalization Information
- Corridor Performance and/or Traffic Data
- Volume Data
- Data from Existing transit / busways / Private Transit Operators
- Accident Data
CORRIDOR SCREENING CRITERIA

EASE OF IMPLEMENTATION AND OPERATIONAL VIABILITY

<table>
<thead>
<tr>
<th>CRITERIA</th>
<th>INITIAL SCREENING MEASURE</th>
<th>DETAILED SCREENING MEASURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ability to Implement</td>
<td>Coordinated jurisdictional control under a single or few coordinated agencies.</td>
<td>Relative flexibility to implement the Rapid Transit network in stages.</td>
</tr>
<tr>
<td></td>
<td>FEWER COORDINATION CHALLENGES ARE BETTER</td>
<td></td>
</tr>
<tr>
<td>Ease of Construction</td>
<td>Availability of Right-of-Way (ROW) and minimal immovable barriers.</td>
<td>Number and complexity of construction challenges, including rail crossings, waterway crossings, sensitive or historical areas, sharp turns, right-of-way issues, utilities, or other construction challenges.</td>
</tr>
<tr>
<td></td>
<td>MORE SPACE IS BETTER</td>
<td></td>
</tr>
<tr>
<td>Financial Viability</td>
<td>Approximate annualized costs per person-km based on the type of operating environment and mode.</td>
<td>Rapid Cost-Benefit Analysis (CBA) comparing the cost of implementation and operations against revenue potential and quality of life benefits.</td>
</tr>
<tr>
<td>Property Impacts</td>
<td></td>
<td>Minimize the need for land acquisition or major land readjustment; undue negative impact on property ownership or property values.</td>
</tr>
<tr>
<td>Environmental Impact</td>
<td></td>
<td>Minimize impacts to designated environmentally significant areas, wetlands and provincially significant wetlands, fish habitat, woodlands and significant woodlands, significant valley lands, or environmentally sensitive areas, the habitat of endangered and threatened species and designated areas of natural and scientific interest</td>
</tr>
</tbody>
</table>

DATA SOURCES

- Statutory Policy Documents & Relevant Studies – Regional Plans, Environmental Studies
- Google Earth, Satellite Images, GIS Data, Worldwind, Marble, Virtual
- Ocean, Ossimplanet, GeoMappApp, OpenStreetMap for Natural Features
- Infrastructure Alignment Data and Future Plans in CAD, GIS or other such format allowing for overlay analysis and identification of overlaps, interferences
- Land Ownership Data
- Property Valuation Data
- Capital and Operating Costs
Corridor Screening Criteria

Community Building and Revitalization

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Initial Screening Measure</th>
<th>Detailed Screening Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supports Inclusive Growth Objectives</td>
<td>Low/ middle-income neighborhoods who can benefit from affordable mobility choices to access key nodes and destinations</td>
<td>Appropriate development potential with high affordability compared to planned growth, infill and intensification.</td>
</tr>
<tr>
<td>Connectivity to Neighborhoods and Business Areas</td>
<td>Higher neighborhood penetration and accessibility choices through a denser street network.</td>
<td>Improved access to community amenities (schools, libraries, hospitals etc.), while maintaining vehicular access to residential and commercial properties and minimize vehicular infiltration of adjacent neighborhoods.</td>
</tr>
<tr>
<td>Intensification Potential</td>
<td>Corridors designated for growth and intensification are preferable, as they have the potential to intensify over time (TOD) and support ridership potential.</td>
<td>Availability of land for intensification within a 500m buffer of the corridor, including:</td>
</tr>
<tr>
<td></td>
<td>HIGHER IS BETTER</td>
<td>o Parking lots,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>o Underutilized spaced</td>
</tr>
<tr>
<td></td>
<td></td>
<td>o Dilapidated/end of life-cycle buildings</td>
</tr>
<tr>
<td></td>
<td></td>
<td>o Transitional land uses, e.g. former industrial uses, etc.</td>
</tr>
<tr>
<td></td>
<td>HIGHER NO OF UNDERUTILIZED LOTS ARE PREFERRED</td>
<td></td>
</tr>
<tr>
<td>Public Space and Amenities</td>
<td></td>
<td>Allow greater use of the public realm and improved aesthetics, enhance community connections, support safety and security through design and minimize impacts on existing public and private trees.</td>
</tr>
<tr>
<td>Cultural Heritage Impacts</td>
<td>Minimize impacts to built cultural heritage features and archaeological resources.</td>
<td></td>
</tr>
<tr>
<td>Climate Resilience</td>
<td>Resiliency to global warming trends (e.g. floods, droughts) following urban densification principles; impacts on air pollution and greenhouse gas (GHG) emissions.</td>
<td></td>
</tr>
</tbody>
</table>

Data Sources

- Development Potential
- Property Valuation and Affordability Data
- Population /Employment Projections from Statutory Policy Documents & Relevant Studies
- Statutory Policy Documents & Relevant Studies – Master Plan / Development Plans / Public Realm Plan
- Community nodes and destinations
- Heritage or Archaeological Data
- Air Quality Data
- Stakeholder Workshops
Detailed Costing Comparison

Project Capital Cost

Capital costs are those required to install and launch each phase of the system and include equipment purchase, infrastructure cost and engineering and support costs.

<table>
<thead>
<tr>
<th>Hard Infrastructure Costs</th>
<th>Currency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Property Acquisition</td>
<td></td>
</tr>
<tr>
<td>Civil Works</td>
<td></td>
</tr>
<tr>
<td>Staging/Enabling Works</td>
<td></td>
</tr>
<tr>
<td>Maintenance Facility/Yard</td>
<td></td>
</tr>
<tr>
<td>Parking Facilities/Park & Ride Lots</td>
<td></td>
</tr>
<tr>
<td>Structures</td>
<td></td>
</tr>
<tr>
<td>Utility Relocation</td>
<td></td>
</tr>
<tr>
<td>Streetscape Improvements/Placemaking</td>
<td></td>
</tr>
<tr>
<td>Stations</td>
<td></td>
</tr>
<tr>
<td>Electrical Power, Lines & Substation(s)</td>
<td></td>
</tr>
<tr>
<td>Water Supply</td>
<td></td>
</tr>
<tr>
<td>Signaling</td>
<td></td>
</tr>
<tr>
<td>Operations & Control Centre</td>
<td></td>
</tr>
<tr>
<td>Sub Total A</td>
<td></td>
</tr>
<tr>
<td>Contingency A1</td>
<td>-10%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Soft Infrastructure Costs</th>
<th>Currency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engineering Design</td>
<td></td>
</tr>
<tr>
<td>Construction Management</td>
<td></td>
</tr>
<tr>
<td>Design Support (Construction Administration)</td>
<td></td>
</tr>
<tr>
<td>Operating Agency Costs</td>
<td></td>
</tr>
<tr>
<td>Program Management</td>
<td></td>
</tr>
<tr>
<td>Sub Total B</td>
<td></td>
</tr>
<tr>
<td>Contingency B1</td>
<td>-5%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vehicle Costs</th>
<th>Currency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capital Vehicle Costs</td>
<td></td>
</tr>
<tr>
<td>Sub Total C</td>
<td></td>
</tr>
<tr>
<td>Contingency C1</td>
<td>-5%</td>
</tr>
</tbody>
</table>

Total Cost

<table>
<thead>
<tr>
<th></th>
<th>Currency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grand Total (A+B+C)</td>
<td></td>
</tr>
<tr>
<td>Contingency Grand Total (A1+B1+C1)</td>
<td></td>
</tr>
</tbody>
</table>

Forecast Operating Cost & Revenues

Operating costs are the cost to operate and maintain the system. These include hiring employees for operational tasks, as well as maintenance costs including purchasing tools and spare parts, upkeep of software, etc.

<table>
<thead>
<tr>
<th>Hard Infrastructure Costs</th>
<th>Opening Year</th>
<th>Lifecycle Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daily Ridership</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annual Revenues</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annual Operations & Maintenance</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
AS-H03

INFRASTRUCTURE CARRYING CAPACITY ASSESSMENT

An overall framework for evaluating the infrastructure needs of the city

Type: Step-by-Step Guide
ABOUT THE ASSESSMENT TOOL

PURPOSE
Infrastructure serves as the foundation for planning sustainable and resilient cities (Pollalis 2016). The viability and sustainability of any TOD development must, therefore, include an assessment of infrastructure to ensure the current provision is adequate and has the capacity to support growth in the future.

In World Bank client countries, infrastructure capacities are often mismatched with current needs, largely due to unanticipated rapid urban growth. A TOD development without infrastructure carrying capacity considerations may further deteriorate living conditions. Such an assessment is essential before density changes are proposed.

As transit-oriented development requires major built form and transportation development, this tool assesses the capability of regions to support infrastructure needs. Based on current municipal deficits, strategies to offset the necessary capital investment required by additional or upgraded infrastructure are explored through the creation of a capital investment needs plan.

Disclaimer: The Transit-Oriented Development Implementation Resources & Tools knowledge product is designed to provide a high-level framework for the implementation of TOD and offer direction to cities in addressing barriers at all stages. As the context in low and middle-income cities varies, the application of the knowledge product must be adapted to local needs and priorities, and customized on a case-by-case basis.

© 2021 International Bank for Reconstruction and Development/ The World Bank

VARIATION IN INFRASTRUCTURE ASSESSMENT PROCESSES FOR DEVELOPMENT CONTEXTS

GREENFIELD

A greenfield project is one which is not constrained by prior work. It is constructing on unused land, where there is no need to remodel or demolish an existing structure.

URBAN/ SUBURBAN

Urban and suburban projects refer to site parcels within previously built areas. These areas are already served by public infrastructure and other utilities. It may also include converting an existing built property into another use.
THE INFRASTRUCTURE ASSESSMENT PROCESS

SITE SELECTION

GREENFIELD

No Connection to Ex. Service Area Available

Independent Source Required

Future Development Plan

Future Demand Analysis

Future Required Improvements

Assess Carrying Capacity

Sufficient

Capital Investment Needs Plan

Insufficient

Capital and Operating Cost Estimates

REDEVELOPMENT

Connection to Ex. Service Area Available

Ex. Infrastructure Inventory & Assessment

Ex. Demand Analysis

Future Development Plan

Future Demand Analysis

Future Required Improvements

Assess Carrying Capacity

Sufficient

Capital Investment Needs Plan

Insufficient

Capital and Operating Cost Estimates

Click on the Beige Boxes to view Detailed Processes
INFRASTRUCTURE ASSESSMENT GOALS

PHYSICAL INFRASTRUCTURE

Physical Infrastructure includes basic service delivery systems, such as water supply, sewage, solid waste management, energy, and landscape. Pedestrian and cycling infrastructure are also integral to physical infrastructure. These systems are high-cost investments and are vital to a city’s development (Pollalis 2016).

WATER SUPPLY

- To determine capital investment needs
- To identify the existing designed capacity and capability of serving additional densities.

SEWERAGE

- To determine capital investment needs.
- To determine the network capacity required to serve additional densities.

ENERGY

- To determine capital investment and secure energy supply.
- To assess and manage existing grid capacity.

SOLID WASTE

- To determine capital investment to treat, collect and transfer waste.
- To determine excess solid waste generation for additional densities

INFORMATION

- To determine capital investment and secure information needs.
- To determine information need increases for additional densities

LANDSCAPE

- To understand vulnerabilities and planning opportunities.
- To identify the ability of the landscape to provide functional requirements.
Social infrastructure is a subset of the infrastructure sector that typically includes assets that accommodate social services. It includes schools, colleges, universities, hospitals, prisons, police, fire stations, markets, etc. The quality of life in any urban center depends upon the availability of and accessibility to quality social infrastructure.

HEALTHCARE
- To determine zoning reservations and capital investment needs.
- To ensure the adequacy of medical facilities to serve the additional population.

EDUCATION
- To determine zoning reservations and capital investment needs.
- To ensure adequacy of educational facilities to serve the additional population.

RECREATION
- To determine zoning reservations and capital investment needs.
- To ensure sufficient recreational zones to serve the additional needs.

POLICE/ FIRE/ OTHERS
- To determine zoning reservations and capital investment needs.
- To ensure adequate emergency response services to serve the additional densities.

*Applicable at all scales

Greenfield Urban/ Suburban
EXISTING INFRASTRUCTURE INVENTORY

In distributing infrastructure, planned densities and population play the guiding role. Therefore, indications of population and densities served by a facility or service are considered when estimating the infrastructure needs.

INFRASTRUCTURE CAPACITY MEASURES

<table>
<thead>
<tr>
<th>Category</th>
<th>Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water availability</td>
<td>- Installed capacity (MLD)</td>
</tr>
<tr>
<td>Source of water supply</td>
<td>- Within city limits or no</td>
</tr>
<tr>
<td>Water coverage</td>
<td>- Area served by supply network</td>
</tr>
<tr>
<td></td>
<td>- Per capita supply (LPCD)</td>
</tr>
<tr>
<td></td>
<td>- Supply duration</td>
</tr>
<tr>
<td>Wastewater disposal</td>
<td>- Wastewater generated daily</td>
</tr>
<tr>
<td></td>
<td>- Disposal capacity (MLD)</td>
</tr>
<tr>
<td></td>
<td>- Present Operating Capacity (MLD)</td>
</tr>
<tr>
<td>Solid waste</td>
<td>- Waste generated daily (tonnes/day)</td>
</tr>
<tr>
<td></td>
<td>- Collection daily (tonnes/day)</td>
</tr>
</tbody>
</table>
Infrastructure demand is expected to increase with an anticipated increase in densities in TOD areas. This step is intended to quantify the needs of the respective city, corridor, station area or site.

Ex. Demand Analysis

- Identify existing Service demand
 - Agency Data
 - Records
 - Database
 - Field Assessment
 - Pump Data
 - Survey
 - Flow Metering

Analysis

Existing Service Capacity
NEW INFRASTRUCTURE SOURCE REQUIRED

WATER (Surface, Ground, Desalination)
- Yes → Contaminated, Not Enough Supply, Distance to acquire
 → Construct Pump Station, WTP (Transmission system)
- No →

Sewage
- Yes → Build WWTP - Discharge of Effluent: Reclaimed or Injected to Groundwater | Disposal of Organics: Incineration, Drying/Reuse
 → Outsource
- No → Build Power Plant - Solar Farm | Geothermal | Wind | Hydro
 → Outsource

Energy
- Yes → Build Information Node - Processing and Storage Capacity | Information Networks
 → Plan Integration of Information from various sources
- No →

Information
- Yes → Build Processing Plant - Sorting | Recycling | Composting | Build Landfill
 → Not Enough Land
- No →

Solid Waste
- Yes → Build Hospitals, Clinics
 →
- No →

Healthcare
- Yes →
- No → Transport to outside services

Education
- Yes → Build Schools - Home School | Online Learning
 →
- No →

Emergency Response
- Yes → Create Support Services - Employees or Volunteers Learning
 → Funding | Lack of volunteers
- No →

Roadways / Sidewalks / Transit
- Yes → Construct Roadway System | Connect to Existing Public Roadways
 →
- No → Lack of ROW (Right of Way)
FUTURE DEVELOPMENT PLAN

Validate the Future Infrastructure Development Plan with the Conceptual Site Plan by assessing if zoning needs and TOD targets are met. If TOD requirements are not met by the infrastructure plan, trade-offs must be decided that can allow for transit-supportive development while fulfilling infrastructure needs.
After calculating the infrastructure deficit, the infrastructure needs of the area must be defined with regards to new infrastructure, infrastructure upgrades and network expansion.

NEW INFRASTRUCTURE

In any greenfield project, new infrastructure has to be provided as per planned development. This requires heavy capital investment.

INFRASTRUCTURE UPGRADES

Upgrading infrastructure systems is required where the current capacity of the infrastructure is not sufficient enough for serving the estimated infrastructure needs. This can be undertaken where the expansion of the physical asset is costly or prohibitive due to broader physical constraints.

NETWORK EXPANSION

In any greenfield or redevelopment project that lacks the basic infrastructure, but is within the proximity of the existing infrastructure network, a network expansion should be proposed.
DETERMINE STRATEGIES TO OFFSET CAPITAL INVESTMENT (LOCAL/DECENTRALIZED FACILITIES)

When planning for future infrastructure needs for a TOD site area, it is necessary to consider facilities that are local or decentralized. These facilities not only reduce the pressure on the central distribution system/nodal facility, allow for higher densities and also offset/relax the heavy capital investment required for these critical infrastructure systems. The infrastructure demand can be effectively managed through the optimal use of resources and preventing/controlling any waste of resources.

DETERMINE STRATEGIES TO OFFSET CAPITAL INVESTMENT NEEDS?

01 Identify the critical infrastructure needs and shortage

02 Develop strategies for decentralization of facilities
 - Water Supply: Strategies that help reduce the consumption pattern, and produce more water resources
 - Wastewater: Strategies that help reduce wastewater generation and promote use of recycled wastewater
 - Energy: Strategies that help reduce energy consumption patterns and produce clean and renewable sources of energy
 - Solid Waste: Strategies that help reduce waste generation and help reuse/recycle it
 - Landscape: Strategies that minimize disruption of the natural landscape
 - Information: Strategies that serve as the foundation for the use of integrated information technologies
 - Social Infrastructure: Strategies that allow for multiplicity of functions in already built areas
 - Strategies that allow for reservation of land/BUA for social amenities in new developments

03 Estimate a realistic quantity that can be offset through decentralization

04 Create policy or zoning guidelines to mandate requirements for decentralized facilities by private developers

05 Create incentives for additional green building compliance (LEED or equivalent)
ASSESS CARRYING CAPACITY

Physical and social infrastructure provisions such as water treatment plants, sewage treatment plants, transformer stations, universities, hospitals, fire stations, etc. require a large portion of land. At times, land may be available, but resources may be scarce. Therefore, it is necessary to assess the land and resource capability of the region to support the city’s infrastructure needs. Identification of land for infrastructure development is an essential parameter. It is necessary to earmark land for critical infrastructural facilities in a city’s statutory plan.

Assess Carrying Capacity

- **Sufficient Required Sources**
 - Yes
 - Capital and Operating Cost Estimate
 - No
 - Modify Future Development Plan

ASSESS CARRYING CAPACITY

LAND

Is there enough land available within the study area, or in close proximity, to meet the infrastructure needs?

RESOURCES

Does the region fare sufficient in natural and human resources?

1. What are the available sources of water supply in the region?
2. Does the region receive sufficient rainfall?
3. Does the region have soil with high percolation capacity?
4. Does the region have a high water table?
5. Is the groundwater contaminated/not fit for use?
6. Does the region have any other alternate method of disposing waste?
7. Does the region have enough sources for energy production such as crude oil, petroleum, coal, natural gas, nuclear, wind, solar, geothermal, hydro, tidal energy, biomass, waste, etc.?
8. Is the region vulnerable to natural disasters?
9. Does the region have sufficient green spaces?
10. Does the region have sufficient professionals, such as doctors, teachers, etc.?
Capital investment planning is an evolving area of public management. A local government (LG) takes care of assets only if they are needed to provide municipal services to constituencies or to perform other mandatory obligations of the LG. Since the financial resources available to an LG for capital projects are limited, a process should be established to evaluate the competing needs of various municipal services to maximize the use of the financial resources in the areas of highest priority. Local financial policy needs to be formulated and enacted to define which assets to invest in, capital investment priorities and finance sources. The approach should be multi-year. Capital investment should be considered within the frameworks of life cycle costing and assessment of alternatives (for example, reducing demand for the service/facility, engaging the private sector).

<table>
<thead>
<tr>
<th>SECTOR</th>
<th>PROJECT</th>
<th>CAPITAL INVESTMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>YEAR 1</td>
</tr>
<tr>
<td>WATER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEWAGE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENERGY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOLID WASTE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HEALTHCARE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INFORMATION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EDUCATION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EMERGENCY</td>
<td>RESPONSE SERVICES</td>
<td></td>
</tr>
<tr>
<td>ROADWAYS/</td>
<td>TRANSIT/ SIDEWALKS</td>
<td></td>
</tr>
</tbody>
</table>
REFERENCES

AS-H04
HOW TO UNDERTAKE ROAD SAFETY ASSESSMENT FOR TOD AREAS

Measures for conducting a road safety assessment while assessing the TOD readiness of a city.

Type: Step-by-Step Guide

© 2021 The World Bank
For a road safety assessment, two types of data are required to be collected:

1. **Physical context data**

 Information about the existing context of the city and the station areas is required for the assessment. A road inventory data is a critical information required for a road safety assessment as it provides information of the physical conditions that may have led to a crash. The various kinds of information collected as part of the road inventory have been detailed out in **A PHYSICAL CONTEXT DATA**.

 Along with a road inventory, information regarding the larger urban fabric of the city and within the station area such as socio-economic demographics, urban density, land use, transportation network, traffic counts etc will also be collected to support the road safety assessment.

2. **Road crash data**

 Road crash data includes details specific to the road crash. These details include variables such as the date, time, location and type of crash, characteristics of the persons and vehicles (modes) that are involved in the crash, and the severity of the crash including injuries and fatalities. These have been detailed out in **B ROAD CRASH DATA COLLECTION**.
Many proactive tools for road crash risk assessment have been developed which provide a holistic assessment of the road by considering various physical and contextual elements present. These risk identification tools are adopted at different stages of implementation of a road design and may be undertaken for both new roads or modification to an existing road and help in identification solutions to the risks identified and prioritization of suggested interventions. These tools are designed for all kinds of roads, however, the assessment carried out is modified to cater to the context of TOD influence area within a framework to ensure functionality, homogeneity of volume of users, and predictability for all users using the roads and road network within the TOD area.

Following are four different tools that have been further elaborated in ROAD SAFETY ENGINEERING TOOLS:

1. Road Safety Impact Assessments or RSIA
2. Road Safety Audits or RSA
3. Road Safety Inspections or RSI
4. Different road assessment programs

The next stage of the road safety assessment is to analyze the data collected and identify trends and priority areas for interventions. The three types of analyses and their relevance to TOD readiness have been explained in DATA ANALYSIS.

In absence of reliable and/or sufficient data for assessment, a 'crash-conflict analysis' may be undertaken as alternative. It involves a count of all "near-miss" incidents that could potentially lead to a crash. This has been highlighted in CRASH CONFLICT ANALYSIS.
Evidence based advocacy helps in decision making and prioritization of funding and project implementation. Data collection and proper analysis of the same helps in gaining support from the community and various stakeholders and provides the basis for making relevant improvements. Data based analysis helps in advocating for decision making and prioritization for funding and project implementation, and most importantly generating support from the community and various stakeholders involved in the project. For undertaking a road safety assessment, it is essential to prepare a road inventory as basis for crash data analysis. This information may typically be sourced from the transportation department preferably as part of city-wide GIS data. A typical inventory includes:

<table>
<thead>
<tr>
<th>FUNCTIONAL ATTRIBUTES OF THE ROAD</th>
<th>PHYSICAL CHARACTERISTICS OF THE ROAD</th>
<th>USER AMENITIES ALONG THE ROAD</th>
<th>SURROUNDING SOCIAL AND URBAN CONTEXT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Type of road:</td>
<td>1. ROW:</td>
<td>1. Intersections</td>
<td>Apart from a road inventory, other information about the context, would help in supporting the road crash assessment and also assist in determining the TOD readiness of the place. These include:</td>
</tr>
<tr>
<td>- Arterial</td>
<td>- Width</td>
<td>- Signalized or unsignalized</td>
<td>1. Surrounding context:</td>
</tr>
<tr>
<td>- Connector</td>
<td>- Vehicle travel lane:</td>
<td>- Crosswalk width</td>
<td>- Greenfield</td>
</tr>
<tr>
<td>- Shared street</td>
<td>- Number of lanes and Directionality</td>
<td>- Availability of pushbuttons</td>
<td>- Suburban</td>
</tr>
<tr>
<td></td>
<td>- One-way or Two-way</td>
<td>- Universal accessibility</td>
<td>- Urban</td>
</tr>
<tr>
<td>2. Presence of NMT facilities:</td>
<td>- Width</td>
<td>and Tactile surfaces</td>
<td>2. Socio-economic demographic data</td>
</tr>
<tr>
<td>- Sidewalks</td>
<td>- Type of separator markings or medians</td>
<td></td>
<td>of the population within the station area –</td>
</tr>
<tr>
<td>- Bike lanes</td>
<td>- Width</td>
<td></td>
<td>- Population density</td>
</tr>
<tr>
<td>- Multi-use trails</td>
<td>- Type of median- raised, landscaped, barriers</td>
<td></td>
<td>- Income levels</td>
</tr>
<tr>
<td>3. Use of transit along the ROW and type:</td>
<td>- Walking infrastructure:</td>
<td></td>
<td>- Vehicle ownership</td>
</tr>
<tr>
<td>- Public transport- buses and feeder services</td>
<td>- Availability- none, on one side or both sides</td>
<td></td>
<td>- Mode choice etc</td>
</tr>
<tr>
<td>- BRT</td>
<td>- Width</td>
<td></td>
<td>3. Land use pattern to help understand movement patterns, identify activity generators etc</td>
</tr>
<tr>
<td>- Streetcars</td>
<td>- At grade or raised</td>
<td></td>
<td>4. Traffic count of the number of vehicles, cyclists, and pedestrians passing through</td>
</tr>
<tr>
<td>- Light rail</td>
<td>- Buffer type and width</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Mass transit- Metro, Commuter rail</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Availability- none, on one side or both sides</td>
<td>- Crosswalk width</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Type- shared lane, cycle lane, Contra-flow lane, Cycle track, Bi-directional track, multi-use trails etc</td>
<td>- Pushbuttons, HAWK beacons etc</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Width</td>
<td>- Universal accessibility</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- At grade or raised</td>
<td>and Tactile surfaces</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Buffer type and width</td>
<td>- At grade or raised</td>
<td></td>
</tr>
<tr>
<td>5. Transit infrastructure</td>
<td>3. Street amenities</td>
<td>- Any other types of crossing:</td>
<td></td>
</tr>
<tr>
<td>- Grade- Elevated, at-grade, underground</td>
<td>- Streetlights,utility boxes</td>
<td>- Foot-overbridge (FOB), underpass</td>
<td></td>
</tr>
<tr>
<td>- Dedicated lanes for transit or Shared lanes</td>
<td>- Landscape- trees, planters, furniture</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Width</td>
<td>- Information/ signage</td>
<td>- Information/ signage</td>
<td></td>
</tr>
<tr>
<td>- At grade or raised</td>
<td>- On-street vending</td>
<td>- On-street vending</td>
<td></td>
</tr>
<tr>
<td>- Buffer type and width</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Transit amenities:</td>
<td>4. Parking facilities:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Bus stops, BRT stops, train stations</td>
<td>- Bike racks, Bike share</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Ticket facilities</td>
<td>- Vehicular parking-parallel, angled</td>
<td>- Vehicular parking-parallel, angled</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Metered or free parking</td>
<td>- Metered or free parking</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Apart from a road inventory, other information about the context, would help in supporting the road crash assessment and also assist in determining the TOD readiness of the place. These include:

1. **Surrounding context:**
 - Greenfield
 - Suburban
 - Urban

2. **Socio-economic demographic data** of the population within the station area –
 - Population density
 - Income levels
 - Vehicle ownership
 - Mode choice etc

3. **Land use pattern** to help understand movement patterns, identify activity generators etc

4. **Traffic count** of the number of vehicles, cyclists, and pedestrians passing through
To understand road safety management, it is essential to acquire and analyze road crash data as they help in scientifically identifying concerns and equip stakeholders in decision making processes. Therefore, a robust dataset is required to assist in the analysis. Often road crash data that is collected is either insufficient to make assessments or are incomplete and may also have human errors during the collection and recording stages. A typical road crash data set contains different types of variables that must be collected. However, depending on the local context and the efficiency of collection agency, this information maybe basic or detailed.

Following is set of information that is collected as part of road crash data:

DATE & TIME

Recording of date and time variable allows for seasonal and hourly comparisons of the incidents. Frequent occurrences of road crashes during a time of the day can be compared with the local traffic data to establish if any correlation exists between the occurrences and traffic volumes. Seasonal variations also impact the occurrences of road crashes. For example, in cities where it snows, formation of black-ice can increase number of incidents. Some cities also have dense fogs during early hours in winters. This reduces visibility and leads to early morning crashes.

CHARACTERISTICS OF PERSONS INVOLVED

Crash data must include the number of persons involved in the incident and other basic information. Variables that need to be recorded about the persons involved in the crash include:
- Road user type (pedestrian, cyclist, vehicle driver, vehicle passenger etc)
- Age and gender
- Persons with special needs including disabled and pregnant women
- Physical condition of the users including level of alcohol in the body
- Details about use of any safety equipment such as protective gears, seat belts etc
- Type of injury sustained

This information helps in identifying the most vulnerable users and making a case for road safety. An area with higher number of seniors as vulnerable users may require interventions like longer crossing times or where minors are the most vulnerable users may require measures like wider or protected buffers. It also helps in understanding the risk factors.

CHARACTERISTICS OF VEHICLE

Data also should be collected about the vehicles involved in the crash including: type, age, country, safety equipment if any, date of last periodical technical check according to applicable legislation.

CRASH SEVERITY

Crashes are also defined by its severity – which is based on the impact on the persons involved:
- **Fatal injury**: any person killed immediately or dying within a stipulated number of days (varies based on country)
- **Serious injury**: Injury that requires admission to hospital for at least 24 hours, or specialist attention, such as fractures, concussions, severe shock and severe lacerations
- **Other/minor injury**: Injury that requires little or no medical attention (e.g. sprains, bruises, superficial cuts and scratches)
- **Property damage/non-injury**: No injury is sustained as a result of the crash but there is damage to vehicles and/or property

Not all crashes are fatal in nature. However, the severity of the crash can also be determined by the level of injury sustained. High frequency of similar type of minor crashes may require a smaller tactical intervention whereas frequent fatal crashes may require stricter measures.

(Continued.)
ROAD CRASH DATA COLLECTION

CRASH TYPE

Information on type of crash including modes involved for example vehicle-vehicle or vehicle-pedestrian or vehicle-bicycle etc during the crash needs to be recorded. Reasons for the crash can be collected through first-hand information from bystanders and from those involved. Additionally, photographs and closed-circuit television (CCTV) footage from nearby buildings and other means may help in placing the events of the crash. Other information that is required includes:

- Maneuver of vehicles during the crash
- Type of impact or collision
- Speed of vehicles

Understanding the events of the crash can help in determining the interventions necessary. For example, frequent crashes due to over speeding of vehicles or due to lack of mid-block crossings, both involve pedestrians however require different types of interventions. Similarly crashes with cyclists could be in due to different scenarios that could be due to narrow bike lanes, shared streets, or even lack of adequate buffers between the lanes. Higher frequency of a scenario would determine the necessary safety measures that have to be undertaken.

CRASH LOCATION (GEO-CODED)

Maintaining records of crash location over a period, will help identify black-spots and critical areas within the city. Higher the number of occurrences in an area would mean higher priority and a greater scope of implementing improvements. Geo-coding crash location eases the data processing and interpretation using GIS software. Also, this helps in linking different variables, that may be collected from various sources, to the single incident and reduce duplication of data.

These records also help determining the surrounding environments in which the crashes have happened. Different urban contexts i.e. intense urban to suburban, require different levels of interventions. The decision-making processes and the choices of interventions vary based on the context. High occurrences of crashes in an intense urban environment such as a Central Business District (CBD) may require re-routing of vehicles and identifying an area as pedestrian only. On the other hand, a similar situation in a suburban area may be mitigated by introducing road diets and speed reduction techniques such as speed tables.
Road crash data can be sourced from multiple agencies. However, each have their own challenges and limitations. The Road Safety Manual developed by PIARC ascertains that any single crash-injury database does not provide adequate information to give a holistic picture of road traffic injuries. Many countries have therefore started using both crash data collected by the police along with the health sector data.

DATA SOURCES

POLICE RECORDS
As the police are often the first to be informed of a crash, police reported data is the hence the primary source for crash data. A standard template report is created for each incident; the contents of which, will differ from country to country. Most reports will contain, at the very least, date & time of crash, location, vehicles involved and number of injuries & fatalities. In addition, the crash description may contain information about how the crash occurred, as inferred by the reporting officer, and as described by the involved parties and eyewitnesses. Some cities also mandate the inclusion of a crash diagram. Precinct-level data is then rolled-up and aggregated by the central police department, which is usually what is made available publicly. Some information tends to get omitted during this aggregation process, which may be important for analysis.

While this is the major source for many jurisdictions, it however, isn’t always the most accurate information – primarily due to human errors in the process of collecting and recording the data. One of the major challenges in acquiring accurate data is often attributed to discrepancies in definitions of the variables or the absence of the same. Also, only major crashes that cause serious injuries or fatalities or involve more vehicles get reported to the police. Minor crashes are often under-reported and thus do not always get included in this primary crash data source.

It is therefore recommended to complement police data with other secondary data sources.

HOSPITAL RECORDS:
This information is normally aggregated by the City Municipal Health Department. Hospital data is particularly useful in cases where there isn’t adequate follow-up by the Police to update their own records, when a road crash victim is initially reported as injured, but may have subsequently died after the police report was filed. Also, in some cases, a police report does not get filed, perhaps because the involved parties were unwilling, or unaware, or cajoled into not filing a police report.

VEHICLE INSURANCE RECORDS:
A third source for traffic crash data is vehicle insurance providers. Like with hospital data, this is a useful source to supplement police records, in cases where a police report was not filed. Insurance records tend to provide a more comprehensive description of vehicle damage information, which is useful in understanding the causes of the crash.

The variables collected as part of crash data should not be analyzed individually. As the examples discussed above, the differences in variables can determine the next steps for addressing the concerns. In case during assessment it is noted that the variables in the crash data aren’t robust enough, then steps must be taken by the concerned authorities to further strengthen the data at the source. Some steps in may be undertaken in this regard are:

1. Inclusion of variables in the primary survey and database
2. Having clarity in definition of variables
3. Ensuring proper recording of variables in a digital format
4. Capacity building of police officers and agencies in recording of data
DATA ANALYSIS

Based on the types of variables collected and its quality of detail, three different types of analyses may be undertaken, as explained:

BASIC TRENDS ANALYSIS

This analysis helps determine the important trends in traffic crashes in the city. It helps identify the most vulnerable modes, as determined by percentage share among crash victims. This data can also be relatively weighed against data on traffic mode share or vehicle-kilometers traveled, to get a more accurate description of crash risk for each mode group.

<table>
<thead>
<tr>
<th>DATA REPRESENTATION</th>
<th>RELEVANCE TO TOD ASSESSMENT</th>
<th>INFORMATION REQUIRED</th>
</tr>
</thead>
</table>
| Tables, graphs (pie-charts, bar-diagrams, line graphs) | This analysis helps determine risk vulnerability of transit commuters, either on transit, or while accessing transit and is useful in identifying temporal trends (spikes or drops) in the data during a particular time of the day or year. This is relevant for TOD assessment, if the high-risk time periods correspond to the peak commuting hours. | • Date & time of crash
• Characteristics of person(s) involved
• Characteristics of vehicles & modes involved
• Number of serious injuries and fatalities
• Location of crash
The data is recorded at the crash-level and corresponds to one unique crash. It is important to procure data normally between 5 and 10 years. Aggregated data is normally adequate for this analysis. |

CRASH FACTOR ANALYSIS

A crash-factor analysis is useful in understanding the underlying causes of traffic crashes. When conducted on a large number of cases, it provides enough data to determine trends and identify dominant crash factors (causes). Traffic crashes are a multi-factor, random event, and most crashes cannot be attributed to a single cause. It is a combination of different factors that contribute to the occurrence and severity of the crash, including human, vehicle and road infrastructure factors.

<table>
<thead>
<tr>
<th>DATA REPRESENTATION</th>
<th>RELEVANCE TO TOD ASSESSMENT</th>
<th>INFORMATION REQUIRED</th>
</tr>
</thead>
</table>
| Haddon Matrix | Such an analysis is costly and time-consuming, and not essential for the broad assessment of TOD-readiness of the city. Its utility comes into play during the assessment of TOD infrastructure at the planning and design stage. | It is often observed that the cause is often identified as an error on the part of the driver of the vehicle(s) involved. Moreover, only one factor is reported as “causing” the crash, and doesn’t take into consideration the multi-factorial nature of road crashes. For a crash factor analysis, it is important to analyze the detailed crash report recorded at the police precinct level, and not just rely on the aggregated dataset.
Data collected includes various non-behavioral factors, such as:
• Road design (part of a detailed road inventory)
• Characteristics of the vehicle(s) involved including vehicle failure
• Crash type |

The Haddon Matrix is a two-dimensional model which is commonly used to approach safety analysis at a site in a systematic fashion. It is completed through the evaluation of site and crash details, and applies basic principles of public health to motor vehicle-related injuries.
BLACKSPOT IDENTIFICATION

This analysis is useful in identifying black-spots; that is locations with a high crash risk, as determined by a high crash frequency. Crashes are classified into mid-block and intersection locations. Depending on the city density, crash locations within 50 to 150 meters of each other may be clubbed together as one spot. Usually, a frequency of major crashes (with fatality or serious injury) of more than 3 occurrences in 1 year is considered grounds for inclusion as a blackspot. However, this rule may differ from city to city, depending upon overall crash frequency.

<table>
<thead>
<tr>
<th>DATA REPRESENTATION</th>
<th>RELEVANCE TO TOD ASSESSMENT</th>
<th>INFORMATION REQUIRED</th>
</tr>
</thead>
</table>
| Thematic Map with transit alignment | This analysis is useful for TOD assessment as it helps to identify high priority locations within the TOD commuting zones. When black-spots are further categorized by mode type, it helps to determine the crash risk for the main access mode to transit. | Black-spots are locations with high crash risk, as determined by high crash occurrences. This analysis requires:
- Geo-coded location of each crash recorded as accurately as possible
- Date and time of crash
- Characteristics of person(s) involved
- Crash severity
Location information is particularly important in identifying priority areas for intervention and course correction. For instance, this analysis will help determine if there are any black-spots near an existing or planned transit corridor, which will affect the safety of access for transit commuters. |
CRASH CONFLICT ANALYSIS

Sometimes traffic crash data is inadequate in determining crash risk. At the site level, if there are not enough data points, then it is difficult to determine the extent of crash risk, or identify the key safety issues. A road safety inspection, to some extent, addresses this issue, as it relies on a qualified road safety expert to make this assessment. However, this may not always be a reliable strategy, because, sometimes, the occurrence of an issue is random, and may not take place during the time of the inspection.

A crash conflict analysis is one such measure to overcome the limitations of insufficient crash data. It involves a classified count of all incidents that could potentially lead to a crash during a given period of time. These incidents can be called near-misses; that is, situations that almost caused a crash. A near-miss includes incidents where the travel paths of two road users (vehicle-vehicle or vehicle-pedestrian) cross each other in a very brief fraction of time. It can also include the count of incidents where a road user undertook some form of evasive action to avoid a crash, such as abruptly braking or changing lanes at the last second; or suddenly darting across the street, (in the case of pedestrians).

Crash-conflict counts, today, are almost always, carried out with the aid of video cameras. These surveys have been gradually moving to automated systems in recent years, carried out with the aid of video cameras. The data is then fed into a computer program that is capable, through sophisticated algorithms, of automatically classifying vehicles, determining vehicular speeds, identifying intersection of travel paths, and identifying evasive actions by road-users.

The frequency of near-miss occurrences is then converted into a crash-risk frequency using predetermined coefficients of crash risk. These coefficients have been established over many years of scientific study of the correlation between crash-conflict risk situations and actual crash occurrences.

A crash-conflict study is useful in assessing crash risk on major nodes in the TOD zone. Normally, crash risk is the highest at major intersections, which is also, typically, the location where traffic video surveillance data is most easily available. This is, thus, a useful measure in determining site-specific crash-risk mitigation strategies.
There are four road safety checking tools -

1. Road Safety Impact Assessments or RSIA
2. Road Safety Audits or RSA
3. Road Safety Inspections or RSI
4. Different road assessment programs such as iRAP

The different road assessment programs are typically used to assess roads that are already in use and are an extension to the concept of RSA and RSI. They help estimating the risks for different street sections based on the road and roadside characteristics in the given context. While they may seem to be like each other, however they differ in their application and project cycle. The main distinction is in the timing and scope of the tools, as shown below.

As discussed earlier, these tools are applicable for all types of contexts and road types and help in determining the quality of the existing physical road infrastructure by identifying potential threats that may cause severe or fatal crashes in the future. However, for the purpose of road safety assessment for TOD readiness, their algorithms and considerations for assessments need to be modified for assessing roads and road network in a TOD. The roads and road networks with the TOD areas, need to be analyzed specific to the principles of TOD and the local socio-cultural contexts and need to be within an overarching framework designed specifically for requirements within a TOD, aligned with the Dutch ‘Sustainability Safety’ vision design principles. Based on this assessment, any future planning and design interventions may be determined along with implementation strategies.

The modifications of these tools should be made in such a manner that they are able to identify weaknesses in the network based on the principles of safety in a TOD and are able to provide solutions that would help in mitigating them. To begin with, the tools need to ascertain the functions within the street – whether it has a mix of transit in its ROW or a mix of vehicular and NMT modes, if it caters towards accessing a transit station, or connects to various activity generator areas in the network or is a local neighborhood street. This mix of functions would therefore help in determining the future impact to the area and carry out required inspections. It will also help in ascertaining the kinds of users that may be allowed to commute on certain streets which may thus require redistributing the ROW to segregate the modes depending on the volumes of users that may be using it. While it is easier to determine the behavior of users for mono-functional roads; the multi-functionality of roads in TOD require adequate measures to minimize conflicts. The tools modified for a TOD assessment will help identifying these conflict areas and provide design solutions so that users are able to recognize their allocated spaces within the ROW and behave accordingly.
ROAD SAFETY ENGINEERING TOOLS

ROAD SAFETY IMPACT ASSESSMENTS OR RSIA

It is a strategic comparative analysis of impact between different possible schemes of a new road design or any modifications to an existing network, to ensure the scheme is selected that has the best outcome for road safety for all users in the TOD area. This is carried out at the initial planning stage before detailed planning begins and helps in the decision-making process.

Road safety impact assessment highlights the road safety considerations and provides information for a cost-benefit analysis of different options or proposals that are based on the network planning principles for a TOD area and design safety design guidelines, along with the existing ‘business as usual’ scenario, which allows to compare the impact of the proposals on the safety performances for all road users. The RSIA typically has five main steps:

1. Establish the baseline situation (year zero) which measures existing traffic volumes, crashes per road type, risks, and other local conditions including topography, activity centers, weather conditions etc.

2. Determine the future situation without any implemented measures (“Do Nothing” scenario) that anticipates the impact by taking into considerations the current conditions and accounts for a future traffic growth.

3. Determine the future situation under each scheme for all road user by considering effect of the scheme per road type and function with respect to accessing station, orientations and movement of users within the larger road network in the TOD area.

4. Perform Cost-benefit analysis for each alternative and rank them by their individual effectiveness within the TOD.

5. Optimize the plans for each scheme to achieve optimal safety effect and best cost-benefit rating.

ROAD SAFETY AUDITS OR RSA

This is a formal detailed systematic and technical safety check performed to check that the selected scheme is designed and constructed in such a way as to yield the greatest road safety benefits, and to detect any potential hazards throughout all stages from planning to early operation. Usually a list of potential safety deficiencies and recommendations for improvement are included in the audit report.

The RSA process aims to identify and address any road safety issues under all operating conditions for all road users. It however does not check against design standards. As a cost-effective tool for identifying potential safety issues, it is typically undertaken at the earlier stages in order to adjust the design plans versus retrofitting features after implementation of the project. The European Union Directive on road infrastructure safety management states that such audits should be conducted at the draft design, detailed design, pre opening and early operation stages.

The RSA must be carried out by a skilled audit team with members having necessary skills and training to carry out road safety audit and must be independent of the design team and form the contractors. The auditors should also be aware of the local context and concepts of TOD and planning of road network with the station area. Certain countries have developed training for these purposes and maintain a list of qualified auditors. They have also prepared a checklists and guides for conducting audits (that may be adapted depending on the local contexts and specialized audits such as for a TOD area) to ensure key issues are considered during the process. More proactive audits have recently been developed based on the safe systems approach. These adopt a more holistic view of the issues and pay attention to reduction of fatal and serious crashes.

ROAD SAFETY INSPECTIONS OR RSI

These are periodical on-site review of the characteristics and defects, undertaken as part of an inspection of an existing road, or through maintenance procedures to detect potential crash risks. It is an independent, comprehensive and systematic assessment of an existing road by a qualified road safety expert, to identify locations or situations with the potential for crash risk, as well as to determine countermeasures to mitigate this risk. This crash risk within the TOD area is determined by the road safety expert’s perception of both the likely frequency of such an occurrence, as well as the likely severity of injury and damage if it happens. As the identification of each issue is accompanied by its corresponding countermeasure catered to conditions and requirements of a
TOD, it provides the city authority and the implementing agency with a clearly understandable road map of on-ground interventions. These measures can then be taken to the design team, where the design specifications can be developed based on the network planning principles and design guidelines for safety measures in a TOD. It must however be noted that an RSI is not equivalent to a periodical maintenance check. It however helps in identifying safety issues that are resulting from improper maintenance practices such as deteriorating surfaces, poor traffic signs, unclear line markings, inadequate street lighting etc.

The inspection may be carried out for the entire network or for specific segments that are considered at higher risks. These may then be prioritized using previous crash data. Crash data is however not required to conduct the actual inspection. A road safety inspection is particularly useful in assessing the trunk routes to the transit station, within the TOD zone. These routes warrant the additional attention, as they are expected to carry the bulk of commuters to and from transit.

ROAD ASSESSMENT PROGRAMS

These are typically undertaken on existing roads, these quantify the expected safety outcomes for a network, route or location. These are ‘surrogate’ measures, programmed to determine crash risk and priority locations.

The global umbrella organization known as iRAP, which stands for International Roads Assessment Programme (www.irap.org), has developed measures for Star Rating of road infrastructure based on crash risk assessment. Star Ratings are based on observation data that is usually captured by a video recorder mounted on top of a vehicle and driven along the road. Various aspects of road infrastructure are captured through this process, such as the presence of median dividers, footpaths, pedestrian crossings, speed humps, lane markings, etc. This data is then fed into a central database, where it is interpreted to determine crash-risk. The lower the safety risk for a particular road, the higher is its star rating. The star rating can be generated for different modes separately, such as for pedestrians, cyclists and motorists.

The iRAP Star Ratings tool is helpful in generating large volume of crash risk data for assessing roads within a TOD zone. Since the tool generates crash-risk by mode, it can be used to assess safety risk for access modes to transit. It can, thus, be used to determine priority areas of intervention for road safety improvement in the TOD zone. Moreover, the iRAP tool allows the user to see how the Star Rating for a road can be improved by adopting different interventions. It allows the user to determine the most appropriate combination of interventions to minimize risk and improve safety assessment.
The Tianjin Urban Transport Improvement Project is a World Bank funded project. The aim of the project is to prioritize and enhance the non-motorized transport systems – walking and cycling with respect the public transportation system to create “safe, clean, and affordable accessibility and mobility solutions” for the city. It consists of four components:

1. NMT Improvement in the Heping and Nankai Districts
2. Access Improvement to the Mass Transit System
3. Public Bicycle Sharing System Demonstration Project
4. Bus Terminals

Baseline assessment studies were carried out for the first two components using ChinaRAP assessment tool to evaluate section of existing roads around transit stations within the two districts. This assessment was carried out for all road users: Vehicle occupants, Pedestrians and Cyclists. The assessment for Motorcyclists wasn’t carried out as use of motorcycles is not allowed within the city limits.

The first component of NMT improvements aims at redevelopment of approximately 50 km of streetscape, covering 7.2 sqkm area, following the complete streets approach – re-prioritizing the street layouts to give more focus to the supporting biking and walking environments with respect to the public transport network especially metro lines. This will help reduce road safety hazards and challenges for the NMT network and all vulnerable users. Various types of improvements include:

1. **Street Pavement Updates and Drainage Improvement** which will involve lane redistribution and repaving of the ROW to include travel lanes, cycle and pedestrian infrastructure.
2. **Street Facilities** including lane markings, signage, on streetcar parking, bike parking, traffic signals, bicycle lane guide-rails, sidewalk bollards, pedestrian safety islands, bus stop sheds, and street lights.
3. **Landscapes Improvement** including street trees, installation of street furniture, and other landscape features.

The second component of the project evaluates streets leading to the various transit stations in the Heping and Nankai districts to increase and improve the catchment area to better support the transit system. Based on the existing land use, demand and availability of the spaces around the transit station various measures have been proposed. The transit stations have been typically categorized into four types:

1. ‘Transport Connection Stations’ that are located near planned bus terminals and car parking lots. The access improvements aim to improve the connections and transfers among different transport modes.
2. ‘Park Vitality Improvement Stations’ which are located close to parks, and the types of improvements aim at enhancing the parks, pedestrian environment connecting to those parks, and connection to other transport modes.
3. ‘Green Belt Vitality Improvement Stations’ are stations whose entrances are located near small landscaped or green areas. The intervention is to improve the environment surrounding the stations to enhance the attraction of Metro system.
4. ‘Other Stations’ have limited space surrounding them. Improvements aim to promote transfers with bikes and other transport modes.
Below is a snapshot of a typical star rating assessment carried out within the project area. Based on these assessment findings, different levels of improvements were suggested using the safe systems approach. These included:

- Reduction in vehicle speed
- Redistribution of space within the row to accommodate infrastructure and facilities for NMT needs including sidewalks, redesign, safer cycling services, local shared streets and public transport facilities including bus stops, vehicle parking
- Pedestrian crossings at intersections and mid-block, intersection design

Pages extracted from “Baseline ChinaRAP Assessment of Roads in Tianjin (2015)” showing star-rating of roads for all users around the Haiguangsi Station in Tianjin, China
REFERENCES

Austroads. 2012. Effectiveness of Road Safety Engineering Treatments, AP-R422-12, Austroads, Sydney, Australia

Speed management: a road safety manual for decision-makers and practitioners (Global Road Safety Partnership 2008)

INTRODUCTION

Real estate development presents a real opportunity for transit agencies and operators to monetize real estate assets as a means to increase their revenue streams. It breaks away from the traditional notion of separating transit and land use and different city functions. TOD allows for an effective synergy where transit investments increase the value of land and, on the other hand, denser development in close proximity to transit improves transit ridership. The case studies presented here demonstrate such attempts by transit authorities and redevelopment agencies in seeking this synergy to create new avenues for urban financing. Three cases are presented here:

- Revenue Maximising Study for the Mumbai Suburban Rail - This study is an attempt by the railway authority to identify real-estate assets across the network as a means to increase non-farebox revenue and subsidize transport fares.
- TOD of Dwarka Bus Station - this feasibility study is an attempt by the Visakhapatnam Municipal Corporation to utilize the existing bus station for a mixed-use development as a means to create more space for administrative needs and create a sustainable revenue stream.
- REALIS - A real estate market information tool. This tool provides information for the private sector to learn about the market opportunities and participate in potential transit-oriented developments.

Disclaimer: The Transit-Orientated Development Implementation Resources & Tools knowledge product is designed to provide a high-level framework for the implementation of TOD and offer direction to cities in addressing barriers at all stages. As the context in low and middle-income cities varies, the application of the knowledge product must be adapted to local needs and priorities, and customized on a case-by-case basis.

© 2021 International Bank for Reconstruction and Development/ The World Bank

REFERENCES:

REVENUE MAXIMIZING STUDY IN PARTICULAR FOR NON-FARE BOX REVENUES WITH AFFORDABILITY STUDIES

AUTHOR: PWC, India
CLIENT: Mumbai Railway Vikas Corporation Ltd. (MRVC)
LOCATION: Mumbai
YEAR OF STUDY: 2014

CONTEXT
The suburban railway system of the city is one of the most complex, densely loaded and intensively utilized systems in the world. It is the cheapest and fastest mode of transport in Mumbai. To sustain this service in the long-term, it is proposed that other sources of revenue, particularly in the non-fare box areas, are explored. The non-fare box revenues can be categorized in four broad categories- Advertisement, Station Rental, Indirect benefits and Real Estate Development. This section focuses on the concept plan of four stations to demonstrate enhancing of revenue potential through real estate development.

OBJECTIVE OF THE STUDY
• To identify ways to increase the revenue of the suburban train system, focusing on non-fare box revenue.
• To study and review the socio-economic profile of customers and examine the justification for financial cross-support from other economic agents, as well as the potential for fare adjustment in relation to affordability and service quality.
• To help strengthen knowledge in assessing non-fare box revenue through the study to MRVC and other agencies as appropriate (such as Mumbai Metropolitan Regional Development Authority, Ministry of Railways, Government of Maharashtra, Western & Central Railways).

APPROACH
In real estate, railway owned properties can be broadly classified into: Stations, operational assets (tracks), Operational plots (Workshops, car shed, store depot, parcel depot, open/vacant plots, etc), residential colonies, offices. The approach developed for potential estimation of different asset classes can be explained as follows:

01 DEVELOP FILTER CRITERIA
Filter criteria were developed to arrive at a list of assets which are commercially more viable. The factors considered for developing the criteria are listed below:
• Regulations
• Market conditions
• Inferences drawn from literature review
• Overall City Development Plan

02 SELECT SITES BASED ON THE FILTER CRITERIA
1. Favorable market conditions.
2. In and around the identified development nodes.
3. Stations with high ridership and strategic importance and possibility of TOD.
4. Existing Usage/trends and interference between operations and commercial development.
5. Age of assets/condition of the buildings in case of residential quarters
6. Site characteristics (Shape, size and accessibility)

03 ASSESS MARKET CONDITIONS AND REGULATIONS
The factors considered are:
• Market factors
• Absorption level
• Rental rates
• DCR regulations
• Permissible FSIs
• RLDA guidelines

04 ESTIMATE SITE POTENTIAL
Impact of densification considered on revenue potential through real estate development.
4 ESTIMATION OF REVENUE POTENTIAL BY REAL ESTATE DEVELOPMENT

The study includes an estimation of potential revenue that can be generated through real estate development of plots owned by the railways. It estimates the revenue that 25 stations, under prevailing conditions, would theoretically generate in the 5th year from the start of construction on an annuity basis. However, the study notes that the revenue potentials could be generated only if all the identified 25 stations were brought to the market simultaneously, which is not practically implementable.

![Figure 1: Annuity* at prevailing FSI](image1)

![Figure 2: Annuity at enhancing FSI](image2)

![Figure 3: Upfront Revenue](image3)

The study identifies barriers to monetization of real estate assets, including DCR regulations, existing site conditions and institutional arrangements. In order to maximize value capture through real estate development, the study suggests enhancements to site conditions to ease the implementation process and timely phased release based on market conditions. The study recommends engaging with the municipal authorities for favorable regulations and enhancing institutional arrangements to make them more conducive for property development.

*Annuity- The payment received at regular interval after making a lumpsum investment.
The existing conditions are assessed with regard to:

- Existing situation and land use regulation
- Future Transit Access
- Climatic Analysis

Different variables were created adhering to TOD principles

Review of micro-market rates for residential (sale), commercial-office (both sale and rental), commercial-retail (both sale and rental), hospitality and recreation, around the RTC Complex to understand the expected return of the project.

The anticipated rough order of magnitude construction costs for the redevelopment of the RTC Complex and GVMC site were listed down. The unit costs for construction in India were informed by verified sources.

The preliminary cash flow analysis is based on average revenue assumptions based on land use, a 3 year construction period, and a debt repayment period of 12 years.

The project is financed through private capital through a Private-Public-Partnership model.

The purpose of this project is to study the feasibility of redeveloping Visakhapatnam’s Dwaraka Bus Station (RTC Complex), and the adjacent administrative offices of GVMC into an improved bus station, new GVMC administrative offices, and new mixed-use transit-oriented development.

The project is financed through private capital through a Private-Public-Partnership model.
PROJECT COST ESTIMATION AND ECONOMIC ANALYSIS

ESTIMATION OF PROJECT COST

The study included a detailed assessment of market condition across various asset classes - residential, office, retail, hospitality and recreational.

ASSET CLASS - RESIDENTIAL

Traditionally, Visakhapatnam’s residential activity was concentrated around the CBD areas of the city, comprised of micro-markets such as Siripuram, Beach Road, Lawson’s Bay, Waltair Uplands, etc. However, due to an increasing population, escalating land values in established residential hubs, growth of IT/ITeS segment in the Madhurawada, Pendurthi and Gajuwaka regions, the real estate development activity in the residential segment is witnessing a gradual transition from central areas to suburban areas, and subsequently to the peripheral areas of the city. Most of the residential developments are 20 – 50 dwelling units (DU) in size; however, the city has seen several large-scale developments (in excess of 100 DUs) in recent years.

The increase in larger proposed developments is likely to gain momentum in the coming years, due to an influx of larger/national developers to the region. About 60% of the total residential supply has been introduced in the past 2 years—Madhurwada and Yendada micro-markets have been major contributors.

Micro-Market Overview

The average price for residential apartments in the micro-market around RTC complex ranges from Rs 3,000 – Rs 5,800 per sqft ($USD44 - $USD84), as illustrated in the table below:

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Locality</th>
<th>Average Sale Price (Rs per sqft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CBM Compound Road</td>
<td>5,600</td>
</tr>
<tr>
<td>2</td>
<td>Swetharlapeta Road, Dwaraka Nagar</td>
<td>5,000</td>
</tr>
<tr>
<td>3</td>
<td>Ramakoti Road</td>
<td>5,100</td>
</tr>
<tr>
<td>4</td>
<td>Ram Nagar</td>
<td>3,000</td>
</tr>
<tr>
<td>5</td>
<td>Jaganadhapuram</td>
<td>3,500</td>
</tr>
<tr>
<td>6</td>
<td>Lalitha Nagar</td>
<td>5,800</td>
</tr>
</tbody>
</table>

ASSET CLASS - COMMERCIAL (OFFICE)

Most of the organized activity in the commercial segment in the city is concentrated in the IT/ITeS segment. The city is home to prominent IT/ITeS companies such as Wipro, Tech Mahindra, etc. Two of the more prominent commercial markets in the city are Asilmetta – Waltair Uplands and the IT hub of Madhurawada – Rushikonda. Non-IT building supply mainly driven by BFSI, Telecom, and Technology Segment in Visakhapatnam. Increase in IT/ITeS activity is expected to have a spillover effect on non-IT activity as well. Limited land availability has led to high capital values for land in the region.

Micro-Market Overview

The Micro-market around RTC complex is one of the prominent markets of the city in terms of Grade-A developments for Office spaces. Asilmetta houses about 52% of the city’s Grade-A developments while the rest is spread through NAD Road, Waltair Uplands and Ramnagar. Limited land availability in this region has led to higher capital values of land which in turn has resulted in higher sale and rental prices. The current supply of Grade-A Office spaces is very low in the micro-market around the RTC complex. (Source: Discussion with CBRE Representative) The available inventories of Grade-A Office spaces in the micro-market around the RTC complex have average sale price ranging from Rs 6,500 – Rs 8,200 per sqft as illustrated in the table:
The preliminary cash flow analysis is determined with average revenue assumptions, based on land-use, a 3 year construction period, and a debt repayment period of 12 years.

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Locality</th>
<th>Average Sale Price (Rs per sqft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Dwaraka Nagar</td>
<td>8,200</td>
</tr>
<tr>
<td>2</td>
<td>Asilmetta</td>
<td>6,500</td>
</tr>
<tr>
<td>3</td>
<td>Daba Garden Road</td>
<td>7,600</td>
</tr>
<tr>
<td>4</td>
<td>Siripuram</td>
<td>7,000</td>
</tr>
</tbody>
</table>

Source: www.magicbricks.com

The average rental pricing for the available inventories of Grade-A office spaces in the micro-market around RTC complex ranges between Rs 50-55 per sqft per month as illustrated in the table below:

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Locality</th>
<th>Average Rental Price (Rs per sqft per month)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Dwaraka Nagar</td>
<td>65</td>
</tr>
<tr>
<td>2</td>
<td>Asilmetta</td>
<td>50</td>
</tr>
<tr>
<td>3</td>
<td>CBM Compound Road</td>
<td>56</td>
</tr>
<tr>
<td>4</td>
<td>Siripuram</td>
<td>50</td>
</tr>
</tbody>
</table>

Source: www.quickre.com www.magicbricks.com

ASSET CLASS - COMMERCIAL (RETAIL)

Retail developments in Visakhapatnam are typically part of larger mixed-use developments. Organized retail activity has seen a marginal increase in the last few years, however, the same is still in its nascent stages in this market. Two retail malls (Visakhapatnam Central and Chitrakaya Mall) have recently been added to the Daba Gardens-Jagdamba junction micro-market.

Micro-Market Overview

Dwaraka Nagar and Waltair Uplands micro-market which includes regions such as Asilmetta, Ramnagar, Telugu Talli Flyover Road, VIP Road, etc are predominately characterized by organized retail/big box retail. The stretch near RTC complex (between Asilmetta Junction and Telugu Talli Flyover) is regarded as a prominent commercial and retail hubs, owing to its strategic location at the center of the city. This high street retail hub is characterized by the presence of a mix of local, national and international brands. CMR Central, the biggest retail mall in Visakhapatnam lies within the micro-market. The current supply of retail spaces is almost negligible in the micro-market around the RTC complex. The average rental pricing for the available inventories of retail spaces in the micro-market around RTC complex ranges between Rs 60-65 per sqft per month as illustrated in the table below:

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Locality</th>
<th>Average Rental Price (Rs per sqft per month)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Dwaraka Nagar</td>
<td>65</td>
</tr>
<tr>
<td>2</td>
<td>Akkayapalem</td>
<td>60</td>
</tr>
<tr>
<td>3</td>
<td>Siripuram</td>
<td>65</td>
</tr>
</tbody>
</table>

Source: www.magicbricks.com

PRELIMINARY FINANCIAL AND ECONOMIC ANALYSIS

The preliminary cash flow analysis is determined with average revenue assumptions, based on land-use, a 3 year construction period, and a debt repayment period of 12 years.

Accuracy of costs estimate is +/- 50%
REALIS—A REAL ESTATE INFORMATION SYSTEM FOR TRANSPARENT MARKET DATA

SOURCE: Urban Redevelopment Authority
LOCATION: Singapore
YEAR OF STUDY: 2006

CONTEXT
To keep track of the rapidly changing real estate market in the country of Singapore, the Urban Development Authority released a database of real estate information to private developers and other interested stakeholders and citizens. The tool, REALIS, provides data on price, availability, market conditions, and stock of residential, commercial and industrial properties in Singapore.

OBJECTIVE OF THE STUDY
- To encourage private investors to participate in the real estate market, with an improved awareness of market conditions and trends.
- To study and review the trends in the real estate market to predict future trends and inform sustainable development.
- To ensure the real estate market is transparent and inclusive, with a simplified tool for receiving up-to-date information on market conditions.

APPROACH
REALIS is a subscription-based web tool for private developers and citizens to engage with live and daily updated real estate market data.

01 **DEVELOP AN OPEN SOURCE REAL ESTATE INFORMATION SYSTEM**
Create an easily accessible tool that provides citizens and private developers with an intuitive way to track real estate market conditions. The tool should be:
- Open Source, Intuitive and Transparent
- Easy to Access via the Internet
- Regularly Updated

02 **ALLOW CITIZENS AND PRIVATE DEVELOPERS TO SUBSCRIBE AND RECEIVE UPDATES ON MARKET TRENDS**

03 **REGULARLY UPDATE AND SHARE CHANGES IN MARKET CONDITIONS WITH PRIVATE DEVELOPERS AND INVESTORS TO ENCOURAGE THEIR PARTICIPATION IN THE MARKET**
AS-P01

REAL ESTATE ANALYSIS TERMS OF REFERENCE

Template for a city to hire a real estate consultant to perform targeted demand analysis along a specific corridor

Type: TOR Template
BACKGROUND
The Terms of Reference for a Real Estate Market Study should provide the following background material:

A. **Study Area**: The TOR must define the approximate area for which the Real Estate Analysis (REA) is to be developed. The study area must coincide as far as possible with jurisdictional boundaries for which population and employment data is readily available. The Background should also summarize the factors that have historically influenced real estate demand in the study area.

B. **Existing Plans and Proposals**: The Background section should also provide information on previous or ongoing studies that are expected to influence the REA Study.

C. **Bibliography of Reference Plans, Policies and Studies**

D. **List of Project Stakeholders**

OBJECTIVE OF THE ASSIGNMENT
The overall objectives of the TOD REA Study are to better understand the economic environment in which the City/Urban Areas can plan for TOD, and to develop specific strategies related to the types and intensities of uses that are appropriate for the specified scale and context. Specifically, TOD Strategies provides preliminary actions for the areas with the highest potential, including:

- Design and use themes
- Market niches
- Potential development programs (e.g. activity type, amount, mix).

The Market Study must support the desired outcomes of TOD, including:

- Create transit-supportive densities that provide an optimal ridership base for the City
- Create a variety of mixed use, mixed-income neighbourhoods and greater employment opportunities within easy access of stations
- Provide supporting infrastructure as needed
- Create opportunities for non-fare revenue generation through land value capture and available public financing mechanisms.

SCOPE OF ACTIVITIES
The scope of activities for the Real Estate Market Study primarily consists of the tasks described below. The proposer is encouraged to provide suggested refinements to the work plan and schedule based upon experience with similar economic and market studies, and in compliance with national and state policies, where applicable.

1. **Project Initiation and Identification of Market Area Parameters**: The selected Consultant will schedule a kick-off meeting with the Client’s project management team to present the regional context setting and identification of TOD Market Area Delineation parameters. The regional context should be defined for the corresponding geographic or jurisdictional areas. It should include the entire transit catchment area. The Consultant will define market selection parameters using historic observations of how socio-economic and physical factors influence travel patterns.
The Consultant will review all existing documents and plans before the kick-off meeting, synthesize the findings and propose potential refinements to the work plan so as to mitigate any anticipated challenges to the project. The Consultant will also review and refine the initial problem statement, goals, and objectives of the study.

a. Client responsibility: Identify key stakeholders and assist in coordinating schedules for kick-off meeting.

b. Deliverables: Inception Report including Existing Issues and Goals, Objectives and Study Parameters.

2. **Market Area Definition**: The Consultant will delineate the TOD Market Area based on the parameters selected in the kick-off stage. Some of these parameters that may be considered include: natural features, physical infrastructure, travel patterns, population densities, jurisdictions, development types and scales. In many cities, the type and fabric of development and nature of the real estate market varies considerably even in adjoining neighbourhoods. For e.g., some areas may demonstrate higher walkability and/or higher rent sensitivity compared to others. Where micro levels of detail is available, the Consultant should break up the study area into different “zones” or blocks to allow for a finer grained study. Preferably, the break-up of zones or blocks should correspond with population census data collection blocks.

a. Client responsibility: Provide data at macro and micro scales.

b. Deliverables: Market Area Definition Report including delineation of TOD market area and break up of zones with primary characteristics.

3. **Market Demand and Supply Analysis**: The Consultant will prepare an inventory of existing real estate development types, businesses and summary of characteristics and performance metrics for housing, retail, office, and other commercial (e.g. type, class, square footage, typical rents, vacancy rates, lease terms, location, business size with respect to number of housing units and employees, and their relationship to economic clusters in the greater area). The Consultant will synthesize the information to develop a current and forecasted demand and supply assessment for various types of real estate development within and directly adjacent to the study area. The Consultant may conduct surveys, interviews or use existing data to prepare the assessment. Some types of data include: socio-economic indicators that influence demand such as income; historical trends of real estate project launches and sale transactions from land registration agencies or real estate agents; types of upcoming development projects and their absorption rates or sales/year through developer interviews.

a. Client responsibility: Facilitate access to land transaction records and organize discussions with private developers and real estate agents.

b. Deliverables: Market Area Demand and Supply Assessment Report including description of different types of real estate products, their supply and demand numbers, including historic trends.

4. **Identification of Market Opportunities**: The Consultant will prepare a fiscal analysis of project area zones/blocks, including prevalent conditions of the real estate market and their economic relationship to the possible transit project. It is also important to understand how the economy of the transit nodes or corridors is, or could be, linked to commercial clusters of retail and office in the larger study area. The market opportunities shall also determine the potential for multi-family residential at various densities, retail, mixed use, office, institutional, and other land uses and land use mixes that support transit ridership and/or benefit from transit proximity. It should also identify
opportunities for redevelopment or urban infill that can help fill existing gaps in key industries, types of services, amenities, and/or leasing space that is lacking in area to service demographic profile. This should address the status of neighborhoods or areas serving retail, businesses, and emerging or shrinking employment sectors. The Consultant should also identify and describe opportunities and barriers to developing, leasing, or opening businesses in the TOD market area.

a. Client responsibility: Provide inputs.
b. Deliverables: Market Opportunities Report including potential for different types of real estate products, gaps in existing land use mix, and challenges in real estate development.

5. Preparation of Financial Feasibility Assessment: The Consultant will prepare a financial feasibility assessment for many of the opportunities identified in Task 4. The feasibility assessment should map the local investment climate and evaluate access to financial capital before carrying out the feasibility analysis. The Consultant should compare and select the best project funding structure in collaboration with the Client. A typical real estate proforma (as provided in the sample World Bank knowledge products) should be developed to determine the total return on investment.

c. Client responsibility: Provide inputs.
d. Deliverables: Real Estate Financial Proformas.

6. Community, neighborhood and stakeholder outreach: A comprehensive approach should be developed to engage relevant agencies, corridor neighborhoods and businesses, key stakeholders, and the general public throughout the process. The outreach program will include policy and technical advisory committees, public meetings, presentations at neighborhood and business associations, websites and social media, a variety of communication tools, and direct outreach to non-traditional populations and organizations. Stakeholder workshops and/or public open houses will be held at key points in the study process including, at a minimum: (1) the discussion of problems, goals, objectives, study findings and opportunities; (2) definition of project proposals and financial feasibility assessments; and (3) proposed development mix and catalyst projects. Project information should be translated, as appropriate, to allow for effective outreach.

At a minimum, the Consultant will:

- Prepare a stakeholder engagement plan.
- Prepare presentation materials for advisory committee meetings, public meetings, and other stakeholder presentations.
- Prepare and provide logistical support including organizing, scheduling, notifying and participating in all meetings and preparing summary notes for all meetings.
- Track public comments and response and provide to Client upon project completion.
- Prepare content for the project website, to be maintained by Client upon project completion.
- Prepare a draft and final report summarizing the stakeholder engagement process and stakeholder feedback.

a. Deliverable: Stakeholder engagement plan; stakeholder engagement summary report; newsletters, website content, presentation materials, public meetings, advisory committee meetings, meeting notes, translation services, and other engagement tools identified in stakeholder engagement plan.

7. Preparation of Desired Development Mix in TOD Area: The Consultant will create a desirable product mix in the TOD Area, along with a phased plan of implementation based on the financial
feasibility assessment. The phased plan of implementation should include identification of catalyst projects and project structuring for the same. A Capital Investment Plan should also be prepared to support the phased development plan.

a. Client responsibility: Provide inputs.

DELIVERABLES

<table>
<thead>
<tr>
<th>TASK</th>
<th>DELIVERABLE</th>
<th>TIMELINE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Memo #1: Inception Report</td>
<td>M + 2 weeks</td>
</tr>
<tr>
<td>2</td>
<td>Memo #2: Market Area Definition Report</td>
<td>M + 1 month</td>
</tr>
<tr>
<td>3</td>
<td>Memo #3: Market Area Demand and Supply Assessment Report</td>
<td>M + 3 months</td>
</tr>
<tr>
<td>4</td>
<td>Memo #4: Market Opportunities Report</td>
<td>M + 4 months</td>
</tr>
<tr>
<td>5</td>
<td>Memo #5: Real Estate Financial Proformas</td>
<td>M + 5 months</td>
</tr>
<tr>
<td>6</td>
<td>Memo #6: Stakeholder Engagement Summary Report</td>
<td>M + 6 months</td>
</tr>
<tr>
<td>7</td>
<td>Memo #7: TOD Area Proposed Development Mix</td>
<td>M + 7 months</td>
</tr>
</tbody>
</table>

QUALIFICATION OF CONSULTANTS

The Consultant Team must have experience in at least

A. One similar Real Estate Analysis Study for a TOD project

OR

B. At least two studies, which included a real estate market assessment and development proforma for a mixed use development

The Consultant Team must include the following key expertise:

<table>
<thead>
<tr>
<th>Key Experts</th>
<th>Years of Experience</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Project Manager and Real Estate Expert</td>
<td>15 years</td>
</tr>
<tr>
<td>2 Real Estate Analyst</td>
<td>5-10 years</td>
</tr>
<tr>
<td>3 Urban Planner/ Designer</td>
<td>5-10 years</td>
</tr>
<tr>
<td>4 Infrastructure Specialist</td>
<td>5-10 years</td>
</tr>
<tr>
<td>5 Affordable Housing Specialist</td>
<td>5-10 years</td>
</tr>
</tbody>
</table>

Disclaimer: The Transit-Orientated Development Implementation Resources & Tools knowledge product is designed to provide a high-level framework for the implementation of TOD and offer direction to cities in addressing barriers at all stages. As the context in low and middle-income cities varies, the application of the knowledge product must be adapted to local needs and priorities, and customized on a case-by-case basis.

© 2021 International Bank for Reconstruction and Development/ The World Bank
AS-P02
TRANSIT ALTERNATIVES ANALYSIS TERMS OF REFERENCE

Template (with estimated consultant time required) for a city to perform a major transit investments alternatives analysis

Type: TOR Template
BACKGROUND

The Terms of Reference for a Rapid Transit Alternative Analysis Process (RTAAP) should provide the following background material:

A. **Study Area**: The TOR must define the approximate area for which the RTAAP is to be developed. The study area must coincide as far as possible with jurisdictional boundaries for which population and employment data is readily available. The Background should also summarize the envisioned corridors and populations that Rapid Transit will intend to serve.

B. **Existing Transit Services**: The Background section should provide a summarized description of current transit services, including any information on current ridership and expected ridership for the new service. Existing challenges and opportunities should also be discussed.

C. **Other Studies and Initiatives**: The Background section should also provide information on previous or ongoing studies that are expected to influence the RTAAP. Other transportation initiatives, such as construction of highways or pedestrian and bicycle facilities should be discussed.

D. **Bibliography of Reference Plans, Polices and Studies**

E. **List of Project Stakeholders**

OBJECTIVE OF THE ASSIGNMENT

The goals and objectives of the study must be defined clearly. These objectives may be considered further in the study as the basis of development of evaluation criteria. A sample is as follows:

The purpose of the Rapid Transit Alternative Analysis Process (RTAAP) is to evaluate the comparative benefits, costs and impacts of implementing a transit network among a list of alternative routes and corridors and among a choice of rapid transit technologies. The Study must recommend a locally preferred alternative (LPA) for transit services in the City.

The desired outcomes of the Rapid Transit Service, if implemented, are to:

- Increase ridership through high-quality, frequent and reliable transit service
- Enhance connections with the region’s existing transport system and regular route bus service
- Improve mobility by offering more attractive transportation choices in the most viable corridor
- Catalyze transit-oriented development along key corridors.

SCOPE OF ACTIVITIES

The scope of activities for the RTAAP is described in this section. The proposer is encouraged to provide suggested refinements to the work plan and schedule based upon experience with similar transit planning studies, and in compliance with national and state policies, where applicable.

1. **Project Initiation and Development of Evaluation Criteria**: The selected Consultant will schedule a kick-off meeting with the Client’s project management team and identify relevant issues for the RTAAP process based upon a review of existing documents and existing conditions. A tour of the possible corridors may also be included in the initial or follow-up meeting. The proposer will synthesize relevant issues and identify how these issues are to be addressed in the RTAAP work plan, including potential refinements to the work plan.
The Consultant will also review and refine the initial problem statement, goals, and objectives and define evaluation criteria based upon the RTAAP Framework. The evaluation criteria may be single-step or multi-step as appropriate and corresponding to the stage of the Rapid Transit Planning Process. The Consultant will present and further refine this information during the kickoff meeting. The problem statement, goals, objectives and evaluation criteria will create the framework for the development and evaluation of alternatives and the content of the Alternatives Analysis.

a. Client responsibility: Identify key stakeholders and assist in coordinating schedules for kick-off meeting.

2. Develop Initial Range of Route and Mode Options: The Consultant will be required to review and summarize the findings of all relevant policy and plan studies, and existing data to understand travel patterns and identify potential transit route alternatives. In addition, the Consultant will review other transportation and land use resources from the area to estimate potential demand for the proposed transit system. The Consultant will identify transit alternatives, including at a minimum a no build alternative, an enhanced transit service alternative, and two or more rapid transit mode and route alternatives. The enhanced transit service alternative will include the considerations for changes to routing, service frequencies, or integration of ITS upgrades such as transit signal priority or real-time arrival prediction systems that can lead to marginal improvements in transit performance. The new route and mode alternatives should be conceptualized to enough detail to include proposed route alignments, and basic choice of modes.

a. Client responsibility: Provide access to previous plans, policies and studies.
b. Deliverables: Technical memorandum summarizing conceptual network of initial route options.

3. Community, neighborhood and stakeholder outreach: The consultant team shall engage relevant agencies, corridor neighborhoods and businesses, key stakeholders, and the general public throughout the process. The outreach program will include policy and technical advisory committees, public meetings, presentations at neighborhood and business associations, websites and social media, a variety of communication tools, and direct outreach to non-traditional populations and organizations. Stakeholder workshops and/or public open houses should be held at key points in the RTAAP process including: (1) discussion of problems, goals, objectives, evaluation criteria and alternatives, and data gathering (2) evaluation of alternatives, (3) presentation of the draft AA, and (4) selection of the locally preferred alternative. Project information should be translated, as appropriate, to allow for effective outreach. At a minimum, the Consultant will:

- Prepare a stakeholder engagement plan.
- Prepare presentation materials for advisory committee meetings, public meetings, and other stakeholder presentations.
- Prepare and provide logistical support including organizing, scheduling, notifying and participating in all meetings and preparing summary notes for all meetings.
- Track public comments and response and provide to Client upon project completion.
- Prepare content for the project website, to be maintained by Client upon project completion.
- Prepare a draft and final report summarizing the stakeholder engagement process and stakeholder feedback.

a. Client responsibility: Facilitation of Public involvement process.
b. Deliverable: Stakeholder engagement plan; stakeholder engagement summary report; newsletters, website content, presentation materials, public meetings, advisory committee meetings, meeting notes, translation services, and other engagement tools identified in stakeholder engagement plan.
4. **Undertake Initial Corridor Screening**: The Consultant will evaluate the initial set of transit route and mode options based on Intensification Capacity, Transportation Capacity and Mobility, Ease of Implementation and Operational Viability, and the potential for Community Building. The development and definition of project alternatives is expected to be an iterative process. The initial set of corridor alternatives developed will most likely include a broad range of options defined in very conceptual terms. Initial activities under this task will focus on narrowing this set of alternatives based on the evaluation criteria. The goal will be to evaluate and refine the alternatives as needed to identify those options that have a high feasibility for implementation.

 a. Client responsibility: Input and guidance.
 b. Deliverable: Technical memorandum defining the evaluation of initial alternatives, including assessment of barriers and opportunities.

5. **Conduct Detailed Corridor Assessment**: It is expected that several cycles of analysis and review will take place during this task as the stakeholders build consensus on the assessment results. At this stage, the Consultant should develop preliminary operating plans and ridership estimations for each alternative. The operating plans will define the frequency and span of service, stop locations (spacing), fare collection system, traffic operations (such as queue jumping and signal priority), and other factors that would impact operating speed, boarding and dwell times, service reliability, and overall service quality. Initial forecasting will be completed using any existing travel demand model for forecasting.

 a. Client responsibility: Provide information on existing transit operating conditions and existing ridership figures for existing transit services.
 b. Deliverable: Technical memorandum describing operation plans and ridership estimations for each alternative.

6. **Undertake Technology/Mode Review**: Concurrent with Task 5, the Consultant will evaluate the transit technologies, including vehicle type, size, and operating environment, that will most likely fit the needs of the corridor. The transit technologies should be evaluated based on capacity, quality of service, impact on the surroundings and cost. The best mode for each alternative should be selected for a more detailed costing and environmental assessment in the future steps. This will be an iterative process with Task 5. As mode preferences are known, they will need to be fed into the operational plans and ridership forecasts under preparation for Task 5.

 a. Client responsibility: Provide input on preferences.
 b. Deliverable: Technical memorandum describing mode and technology review and reasons for selected the final mode.

7. **Prepare capital cost and operating and maintenance cost estimates**: The Consultant will prepare capital cost estimates and operating and maintenance costs based on the operating plans prepared previously for the alternatives. For all alternatives, the Consultant will complete a condition assessment to determine if complete street/track reconstruction is required in any segments. The assessment will also identify any physical constraints or special needs that would have a significant impact on capital cost, as well as any needed right-of-way acquisition. Cost estimates will be prepared utilizing up-to-date unit costs. Unit costs will be adjusted to the targeted year-of-opening based on anticipated annual inflation rates. Costs will include track work, roadway/paving, infrastructure modifications, signals and communications, stations and shelters, equipment, utilities, structures, vehicles, maintenance facility, modifications to existing facilities (for example, intersections), project development/design, project administration, and all other items necessary for design and construction of each alternative.

 a. Client responsibility: Share knowledge of existing vehicle costs and operating costs.
 b. Deliverable: Technical memorandum documenting capital and operating and maintenance cost estimates and methodology.
8. **Assess environmental, historic and community issues:** An initial assessment of potential environmental impacts will be undertaken for the corridor including air quality, noise, vibrations, traffic, energy consumption, cultural and historic resources, native plants and animals, parklands, floodplains, wetlands, lakes, water resources, stormwater management, environmental justice, land use, TOD potential and other significant environmental, social and/or economic impacts. Key impacts that should be studied include: traffic/parking impacts and potential impacts to bicycle and pedestrian mobility.

 a. Client responsibility: Input and guidance.

 b. Deliverable: Documentation of these elements and a concept mitigation plan, including an examination of the impacts that each alternative would have to key socio-cultural and environmental characteristics.

9. **Evaluation of alternatives:** The Consultant will evaluate the alternatives based on the evaluation criteria defined in Task 1, utilizing the technical and cost data developed in the previously described work tasks. The comparison of alternatives will be vetted through the public involvement process described in Task 4.

 a. Client responsibility: Input and guidance.

 b. Deliverable: Memorandum documenting evaluation of alternatives methodology and results.

10. **Prepare final Transit Business Case Report:** The Consultant will prepare draft and final Business Case Report documenting the business case for final selection of the rapid transit alternative. The Business Case will be communicated to the public and stakeholders along the finally selected corridor. The Final Report will incorporate the feedback received from stakeholders, advisory committees and the public.

 a. Deliverable: Final RTAAP Business Case Report
DELIVERABLES

<table>
<thead>
<tr>
<th>TASK</th>
<th>DELIVERABLE</th>
<th>TIMELINE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Memo #1: Inception Report including Existing Issues and Goals, Objectives and Evaluation Criteria</td>
<td>M + 2 weeks</td>
</tr>
<tr>
<td>2</td>
<td>Memo #2: Technical memorandum summarizing conceptual network of initial route options</td>
<td>M + 1 months</td>
</tr>
<tr>
<td>3</td>
<td>Memo #3: Stakeholder engagement plan</td>
<td>M + 1 months</td>
</tr>
<tr>
<td>4</td>
<td>Memo #4: Shortlist of alternatives, including assessment of barriers and opportunities.</td>
<td>M + 2 months</td>
</tr>
<tr>
<td>5</td>
<td>Memo #5: Detailed Corridor Assessment with operation plans and ridership estimations for each alternative</td>
<td>M + 4 months</td>
</tr>
<tr>
<td>6</td>
<td>Memo #6: Mode and Technology Review</td>
<td>M + 4 months</td>
</tr>
<tr>
<td>7</td>
<td>Memo #7: Capital and Operating and Maintenance cost estimates and methodology</td>
<td>M + 5 months</td>
</tr>
<tr>
<td>8</td>
<td>Memo #8: Summary of environmental, historic and community issues with concept mitigation plan</td>
<td>M + 5 months</td>
</tr>
<tr>
<td>8</td>
<td>Memo #9: Evaluation of alternatives results and methodology, including stakeholder engagement summary report</td>
<td>M + 5 months</td>
</tr>
<tr>
<td>9</td>
<td>Draft RTAAP Business Case Report</td>
<td>M + 6 months</td>
</tr>
<tr>
<td>10</td>
<td>Final RTAAP Business Case Report</td>
<td>M + 7 months</td>
</tr>
</tbody>
</table>
QUALIFICATION OF CONSULTANTS

The Consultant Team must have experience in at least:

A. One similar Rapid Transit Alternative Analysis Study
OR

B. At least two studies or project reports which included at least two of the following components: Transit Corridor Concept Plans, Transit Operating Plans, and Transit Ridership Estimates
OR

C. At least two Transit Feasibility Studies

The Consultant Team must include the following key expertise:

<table>
<thead>
<tr>
<th>Key Experts</th>
<th>Year of Experience</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Project Manager and Senior Transportation Planner</td>
<td>15 years</td>
</tr>
<tr>
<td>2 Public Transport Specialist</td>
<td>5-10 years</td>
</tr>
<tr>
<td>2 Transport Modeller</td>
<td>5-10 years</td>
</tr>
<tr>
<td>3 GIS expert</td>
<td>5-10 years</td>
</tr>
<tr>
<td>4 Land Use Planner</td>
<td>5-10 years</td>
</tr>
<tr>
<td>5 Environmental Planner</td>
<td>5-10 years</td>
</tr>
<tr>
<td>6 Transportation Engineer</td>
<td>5-10 years</td>
</tr>
<tr>
<td>7 Social Safeguards Expert</td>
<td>5-10 years</td>
</tr>
</tbody>
</table>

Disclaimer: The Transit-Orientated Development Implementation Resources & Tools knowledge product is designed to provide a high-level framework for the implementation of TOD and offer direction to cities in addressing barriers at all stages. As the context in low and middle-income cities varies, the application of the knowledge product must be adapted to local needs and priorities, and customized on a case-by-case basis.

© 2021 International Bank for Reconstruction and Development/ The World Bank
AS-P03

INFRASTRUCTURE ASSESSMENT TERMS OF REFERENCE

Template terms of reference (with estimated consultant time required) to conduct infrastructure analysis

Type: TOR Template
BACKGROUND

The Terms of Reference for a Physical and Social Infrastructure Assessment should provide the following background material:

A. **Study Area**: The TOR must define the approximate area for which the Assessment is to be developed. The study area must coincide as far as possible with jurisdictional boundaries for which population and employment data is readily available. The Background should also summarize the transportation and transit services and other details of the TOD Plan.

B. **Existing Development**: The Background section should provide a summarized description of existing development and ongoing activities, including any information on critical infrastructure shortages.

C. **Benchmarks and Guidelines**: The Background section should also provide information on resources that a consultant is expected to refer to while preparing the assessment, specifically including Global or National Benchmarks or Guidelines.

D. **Bibliography of Reference Plans, Polices and Studies**

E. **List of Project Stakeholders**

OBJECTIVE OF THE ASSIGNMENT

The objective of this assignment is to undertake a capacity and needs assessment for various Infrastructure services including but not limited to physical infrastructure such as water supply, electricity provision, solid waste management, sewerage treatment, sidewalks, bike lanes, landscape infrastructure and information systems; and social infrastructure such as education facilities, healthcare facilities, recreational and community facilities. The intended outcome of the assignment is a Feasibility Report that recommends a clear plan for construction, management, rehabilitation, or augmentation of infrastructure services as per the Client’s requirements in a clear and predictable manner with a view to ensuring:

(i) efficient, economical, and integrated systems or schemes;

(ii) reliability and security of services to all of the population equitably;

(iii) efficient operation and maintenance of the systems/schemes;

(iv) minimal adverse impact on the local population and environment;

(v) minimal additional acquisition of land;

(vi) improving the financial viability of the TOD Project consistent with the need to minimize disruptions to services provided to existing populations and to eliminate constraints in a cost effective manner; and

(vii) phased development of the Project on techno-economic considerations, till the final year of TOD implementation.
SCOPE OF ACTIVITIES

The scope of activities for the infrastructure assessment is described in this section. The proposer is encouraged to provide suggested refinements to the work plan and schedule based upon experience with similar studies, and in compliance with national and state policies, where applicable.

1. **Project Initiation and Development of Methodology:** The selected Consultant will schedule a kick-off meeting with the Client’s project management team and identify relevant issues for the capacity and needs assessment process based upon a review of existing documents and existing conditions. A tour of the project area may also be included in the initial or follow-up meeting. The proposer will synthesize relevant issues and critical needs and identify how these issues are to be addressed in the work plan, including potential refinements to the work plan. The Consultant will also review and refine the initial problem statement, goals, and objectives and define key infrastructure services for which the study will be carried out. The Consultant will prepare a basic assessment of study needs for each of the infrastructure service defined, and propose factors to be used for each of the study methodologies, including population forecasts or similar. The methodologies should consider factors in a manner that they capture the demographics in different distribution and collection zones, as the case may be, of the Project Area. The problem statement, goals, objectives, study needs and methods should be submitted as part of the Inception Report.
 a. Client responsibility: Identify key stakeholders and assist in coordinating schedules for kick-off meeting.
 b. Deliverables: Inception Report including problem statement, goals, objectives, study needs and methods.

2. **Develop population forecast and assessment of demand:** The horizon years for the population forecast should be set at approximately 10 and 20 years from the year of study, aligned as far as possible to parallel Master Plans or Development Plans. The Consultant shall determine the extent of the area for which new infrastructure or augmentation needs to be planned. For the present and prospective area to be served by the infrastructure systems, the Consultant shall also review the past records of population growth to forecast the population by using the methodologies and factors determined under Task 1. These population forecasts shall be compared with any other study(s) conducted by any other agency with a view to recommending the population forecast for adoption in the two planning horizons. The Consultant shall also assign suitable population densities for different zones/sections/areas as per the TOD Plan for assessing the infrastructure demand. The Consultant shall calculate the demand using national standards for per capita or per household needs. If such data does not exist, the Consultant may use global standards from countries of comparative economies and validate it through a small sample survey of actual consumption or production and demand for different purposes. Based on the forecasts of aggregate demand for physical infrastructure such as water, electricity and waste management, and social infrastructure such as education and healthcare, and the topographical and existing developmental features of the Project Area, the Consultant shall recommend suitable sub-divisions to formulate distribution/collection zones for each infrastructure need.
 a. Client responsibility: Provide access to population data, previous plans, policies and studies.
 b. Deliverables: Technical memorandum summarizing existing and projected infrastructure demands.
3. **Assessment on the sufficiency of existing physical infrastructure capacities (not required for greenfield context):** The Consultant shall review the existing reports prepared by the relevant public infrastructure departments with the intent to evaluate the existing infrastructure capacities. The Consultant will be expected to meet stakeholders from relevant agencies to identify if the current infrastructural capacities are sufficient for the project needs, and if not, how much of the excess need can be fulfilled through pre-existing augmentation plans.

 a. **Client responsibility:** Sharing existing reports and facilitation of stakeholder meetings.

 b. **Deliverable:** Technical memorandum summarizing sufficiency of capacity of existing and planned systems.

4. **Identify Land and Resource Capability of the Project Area:** The Consultant will evaluate area-specific land and resource constraints that are a barrier in meeting the projected demand, primarily related to availability of land and resources. Examples of critical constraints include:

 a. **Water Supply:** Water shortage, if any, due to insufficient rainfall or depleting ground water reserves.

 b. **Electricity:** Shortage of renewable sources to harness for power, or shortage of land to establish distribution centers.

 c. **Sewerage or Solid Waste Management:** Shortage of land to establish treatment centers or landfills.

 d. **Landscape Infrastructure:** Shortage of land or soil fertility to develop landscape infrastructure.

 e. **Information Infrastructure:** Lack of means to distribute information and real-time data efficiently.

 f. **Social infrastructure such as schools or hospitals or police centers:** Shortage of public land to build necessary developments.

 In areas of constraint, the Consultant will evaluate potential strategies to increase resource availability where possible. For example, the Consultant may identify land amalgamation or acquisition needs to fulfill land demands, or identify water recharge strategies to augment ground water reserves. If the constraints are too large and cannot be overcome through any means, the Consultant may be required to suggest changes to suggested population forecasts or planned densities.

 a. **Client responsibility:** Input and guidance.

 b. **Deliverable:** Technical memorandum summarizing the current land and resource constraints and potential strategies to overcome them.

5. **Identify Strategies and Mechanisms to Reduce Consumption:** The Consultant will also define strategies for reducing consumption where possible. In cases where larger developments of high density are proposed, it is possible to leverage the potential of resource sharing and thereby reducing overall demand. For example, larger developments may be able to accommodate grey water recycling plants to meet all non-domestic needs, or they may be able to install smart meters to monitor and reduce electricity consumption. The Consultant will recommend statutory and regulatory mechanisms or financial incentives that can be implemented to reduce consumption.

 a. **Client responsibility:** Input and guidance.

 b. **Deliverable:** Technical memorandum describing statutory, regulatory, or financial incentives to reduce consumption.
6. **Prepare indicative designs and layout plans for development or rehabilitation of physical infrastructure:**
The Consultant will prepare conceptual layouts for any new infrastructure proposed, including central facilities and distribution systems. The Consultant should also prepare conceptual designs for the rehabilitation of facilities of augmentation of networks where applicable. In addition, the Consultant will also be required to prepare design guidelines for decentralized physical infrastructure systems, where appropriate (e.g. recycled water system, waste segregation and composting center, minor solar installations). National standards or global best practices must be followed in design preparation.

 a. Client responsibility: Input and guidance.

 b. Deliverable: Technical memorandum describing indicative designs and layout plans and guidelines.

7. **Conduct Social and Environmental Impact Assessment (including impacts of land acquisitions, etc):**
The Consultant will prepare a social and environmental impact assessment to document the possible impact of building or enhancing infrastructure systems on the local population and environment in the short, mid and long term. In particular, social impact of any displacement due to land acquisition, and environmental impact of building large facilities or landfills shall be studied. The Consultant should work alongside the Client to propose strategies to mitigate impacts as far as possible.

 a. Client responsibility: Input and guidance.

8. **Prepare capital cost and operating and maintenance cost estimates:** The Consultant will prepare capital cost estimates and operating and maintenance costs based on the layout plans and designs proposed in Task 6. Cost estimates will be prepared utilizing up-to-date unit costs. Unit costs will be adjusted to the targeted year-of-opening based on anticipated annual inflation rates. Costs will include land acquisition costs, land clearing costs, facility construction costs, laying of pipelines or conduits along roadways, vehicles, maintenance facility construction, modifications to existing facilities, project development/design, and project administration. Costs of financial incentives will also be included in the estimates.

 a. Client responsibility: Share knowledge of existing infrastructure and utility construction costs.

 b. Deliverable: Technical memorandum documenting capital and operating and maintenance cost estimates and methodology.

9. **Prepare Final Infrastructure Assessment and Feasibility Report:** The Consultant will summarize the entire assessment and cost estimation process in the Final Infrastructure Assessment and Feasibility Report.

 a. Deliverable: Final Infrastructure Assessment and Feasibility Report
DELIVERABLES

<table>
<thead>
<tr>
<th>TASK</th>
<th>DELIVERABLE</th>
<th>TIMELINE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Inception Report including problem statement, goals, objectives, study needs and methods</td>
<td>M + 2 weeks</td>
</tr>
<tr>
<td>2</td>
<td>Memo #1: Existing and projected infrastructure demands</td>
<td>M + 1 months</td>
</tr>
<tr>
<td>3</td>
<td>Memo #2: Sufficiency of capacity of existing and planned systems</td>
<td>M + 1 months</td>
</tr>
<tr>
<td>4</td>
<td>Memo #3: Current land and resource constraints and potential strategies to overcome them.</td>
<td>M + 2 months</td>
</tr>
<tr>
<td>5</td>
<td>Memo #4: Recommended statutory, regulatory, or financial incentives to reduce consumption</td>
<td>M + 4 months</td>
</tr>
<tr>
<td>6</td>
<td>Memo #5: Indicative designs and layout plans and guidelines</td>
<td>M + 4 months</td>
</tr>
<tr>
<td>7</td>
<td>Social and Environmental Impact Assessment Report</td>
<td>M + 5 months</td>
</tr>
<tr>
<td>8</td>
<td>Memo #6: Summary of capital and operating and maintenance cost estimates and methodology</td>
<td>M + 6 months</td>
</tr>
<tr>
<td>9</td>
<td>Draft Infrastructure Assessment and Feasibility Report</td>
<td>M + 7 months</td>
</tr>
<tr>
<td>10</td>
<td>Final Infrastructure Assessment and Feasibility Report</td>
<td>M + 8 months</td>
</tr>
</tbody>
</table>
QUALIFICATION OF CONSULTANTS

The Consultant Team must have experience in at least:

A. One similar Infrastructure Assessment Study

OR

B. At least two studies or project reports which included at least two of the following components: Infrastructure Demand Assessment, Resource Capability Assessment, Social and Environmental Impact Assessment of Infrastructure Plans

OR

C. At least two Infrastructure Feasibility Studies

The Consultant Team must include the following key expertise:

<table>
<thead>
<tr>
<th>Key Experts</th>
<th>Year of Experience</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Project Manager and Senior Infrastructure Planner</td>
<td>15 years</td>
</tr>
<tr>
<td>2 Physical Infrastructure Specialist</td>
<td>5-10 years</td>
</tr>
<tr>
<td>2 Urban Planner</td>
<td>5-10 years</td>
</tr>
<tr>
<td>3 Municipal Infrastructure Engineer</td>
<td>5-10 years</td>
</tr>
<tr>
<td>4 Environmental Planner</td>
<td>5-10 years</td>
</tr>
<tr>
<td>5 Social Safeguard Specialist</td>
<td>5-10 years</td>
</tr>
<tr>
<td>6 Municipal Finance Specialist</td>
<td>5-10 years</td>
</tr>
</tbody>
</table>
ENABLE

INTRODUCTION

Highlights policy, barriers and mechanisms that can enable the TOD planning process.
ABOUT ENABLE

The ‘Enable’ step of the TOD Framework is developed to focus on setting up an enabling environment that allows successful implementation of TOD projects. The two most commonly held TOD hurdles in World Bank client cities are (1) the lack of an empowered institution that is able to work across various scales, levels of government, and planning sectors towards a TOD solution; and (2) the lack of a TOD-supportive policy framework, including pedestrian-friendly laws, efficient and inclusive regulations and market-friendly financial tools. Some of the key barriers for successful TOD in World Bank client cities are identified in the Transforming Cities with Transit –World Bank publication (Suzuki, Cervero and Iuchi 2013). Primarily these include factors related to Governance, Regulatory support and Coordination across sectors and jurisdictions.

Most of these challenges deal with coordinated and institutionalized planning behavior. The Enable step largely focuses on addressing these challenges. The ultimate goal of this step is to build local capacity (human resources and processes) to plan, finance, and implement sustainable and inclusive TOD. This capacity can be institutional (public officials, civil servants, etc.), within the private sector, or at the civil society level. The knowledge resources within this step, will provide techniques and tools to decision makers at various levels to better engage. These tools can to be used throughout the course of the project but must be ideally considered for use during project initiation itself.

The sustainability of a TOD strategy, as for any other long-term planning strategy, is contingent upon the institutionalization of
the process and objectives. The WB/WRI TOD Corridor Course (World Bank; WRI (World Resource Institute) 2015) suggests key building blocks to set up and institutionalize an enabling environment for TOD. These building blocks are introduced here along with key barriers faced by World Bank client countries:

1. **Leadership and Vision:** Since TOD is a long-term, transformative process, one of the most essential enabling factors is a strong leadership and vision. Leadership involves developing a strong-long term vision, creating empowered, inclusive, and transparent institutions and planning processes, setting priorities in allocating resources, and promoting the vision to the public. However, many cities in World Bank client countries depending on their governance framework, suffer from challenges related to temporal continuity of leadership and lack of a consistent vision across scales because of jurisdictional priorities.

Singapore, with its advantage of being a city-nation, offers one of the most successful examples of leadership and vision-setting. Their transformation into a transit-friendly city over the last decade is evidence of such successful leadership. Other similar transformations in cities such as Bogota and Curitiba were experienced during the period when TOD-supportive mayors were in office, but have suffered periodically from a change in city leadership. In Indian cities on the other hand, where power is largely concentrated at the federal and state levels, TOD is difficult to implement by city governments.
2. Robust Institutional Structure: In addition to a strong leadership, successful TOD needs a robust institutional structure that has representation from all the essential sectors, and has the required powers to influence a transformation. A robust institutional structure ensures that an enabling environment for TOD is maintained even through leadership changes. The institutional structure should be contextually relevant to the socio-political and legal setting. Some of the most widely used TOD implementation institutions include collaborations between Development and Transport Authorities, or TOD Steering Committees formed with public sector and civil society organizations, or Public-Private Partnerships (PPP). Who should be involved within the institutional structure depends on the level of influence of the public, private and civil society organizations in terms of political structure, land ownership structure, financial capabilities and legal mandates that can influence large-scale land amalgamation and redevelopment projects. Defining the appropriate institutional structure that complements a strong leadership and allows for high levels of coordination and investing it with the appropriate degree of powers, is the biggest challenge witnessed in many cities in World Bank client countries.

3. Effective Coordination between Governmental and Participating Agencies: The Transforming Cities with Transit publication (Suzuki, Cervero and Iuchi 2013) notes lack of coordination as one of the foremost challenges to TOD implementation. Vertical coordination between different levels of government is a key challenge in large countries such as India, Brazil, and China, where regulatory and financial power is largely concentrated at the top of the jurisdical hierarchy. At the same time challenges in horizontal coordination between the different sectors of planning and city building is common across all cities. Development and transportation decisions are taken in isolation, often in retrospect as a measure to address specific challenges such as lack of affordable housing or severe traffic congestion. Such decisions are rarely informed by plans created for other sectors and rarely made in compliance with a long-term vision. The tool EN-H01 provides guidance on influencing leaders, identifying the appropriate institutional structure, bringing agencies from all sectors together, developing coordination mechanisms and aligning the vision across different scales and planning sectors. EN-R01 provides the typical roles and the responsibilities of different stakeholders in the TOD planning process.

4. Inclusive and Effective Community Engagement: Finally the most important enabling factor is an inclusive and effective community engagement process. Community engagement should not only aim to inform, but also educate the community about the benefits of a TOD-based vision. It should be able to build human capacity needs to promote the goals of TOD. The example of the failure of the TOD Plan in Mumbai in 2016 after a massive backlash from residents who felt slighted and excluded from the planning process, demonstrates the importance of an effective engagement exercise in building successful TOD. The tools EN-C01 and EN-C02 provide tools that will aid the community engagement process.
COMMUNICATION

- EN-C01 Making a Case for TOD to the Public-Communication Strategy (Ref Doc.)
- EN-C02 The TOD Role-Out - A Stakeholder Engagement Game (Ref Doc.)

‘HOW-TO’ GUIDES

- EN-H01 “How-to” Build Institutions and Enable Intergovernmental Coordination (Step-by-Step Guide)

RESOURCES

- EN-R01 Roles & Responsibilities Of Stakeholders (Ref Doc.)

PROCUREMENT

- EN-P01 Communications Strategy Terms Of Reference (TOR Template)
REFERENCES

EN-C01

MAKING A CASE FOR TOD TO THE PUBLIC– COMMUNICATION STRATEGY

A creative guide to disseminate information to public and regional bodies and express the importance and benefits of TOD

Type: Reference Document

© 2021 The World Bank
ABOUT THE ENABLE TOOL

One key enabling issue around TOD is the difficulty of cross-sectoral integration; without it, transport, housing and land-use policies are developed in isolation and when aggregated in an attempt at TOD, the nuances of the trade-offs between sectors are lost. As TOD happens at different scales under many jurisdictions, it is essential that practitioners understand the motives of each stakeholder, possible trade-offs, and how interests can be better aligned for successful implementation.

In addition, much of TOD planning and implementation relies on public and private institutions with little public participation, beyond the election of public officials in developing countries. In practice, building ownership and developing buy-in from the general public, with a strong sense of commitment from the political leadership, makes the difference between the success and failure of TOD initiatives. Before embarking upon the public participation process, it is important to identify project champions who can influence public opinion. Ineffective and untimely engagement of influencers can lead to the breakdown of the TOD planning process, as was seen in Mumbai during the public review and consultation of the TOD-based Development Plan.

Participatory planning mechanisms offer opportunities to citizens (such as voting, public hearings, etc.) to have a role in the governing and decision-making processes in their neighborhood, their city and beyond. The improvement of the quality of life of current and future residents is a core value of Inclusive TOD. However, there is a need for public participation and stakeholder engagement to increase the inclusiveness of TOD and ensure that the beneficiaries’ concerns are addressed and they are convinced of the personal and city-wide benefits TOD brings. (WB/WRI 2015)

Disclaimer: The Transit-Orientated Development Implementation Resources & Tools knowledge product is designed to provide a high-level framework for the implementation of TOD and offer direction to cities in addressing barriers at all stages. As the context in low and middle-income cities varies, the application of the knowledge product must be adapted to local needs and priorities, and customized on a case-by-case basis.

© 2021 International Bank for Reconstruction and Development / The World Bank
Project champions can be found not just in local politics, but also in the local community. Finding champions helps to ensure that your TOD project is perceived as a civic project that is aligned with community interests, rather than being imposed from the top-down. It also encourages a project’s longevity, particularly in light of the inevitable changes in political leadership or project management over the life of a project. Project champions can be local civic workers, landowners, leaders of community groups, academic institutions, media representatives or other well-known public figures in a particular community. Project champions should be someone that:

• Is known for bringing people together, rather than dividing a community
• Has strong relationships within the community that, ideally, span socio-economic classes, professions, and political beliefs
• Is able to speak articulately about the issues that have inspired the project and that may arise during the TOD process

To be successful advocates, project champions must be personally convinced of the benefits of TOD initiatives before they can speak on behalf of the project. Project champions should be involved throughout the entirety of the planning process to ensure complete ownership and commitment to the TOD outcomes.

Project champions play an important role in the TOD process by bringing community members together in support of TOD through participation in community events, social networking and partnership creation. As highly involved and connected members of the community, they can address public grievances early on and rally support and community buy-in. For example, if a project champion observes that community members are very concerned about project-induced traffic, they can relay this information to your TOD team and simultaneously provide concerned citizens with one-on-one attention and dialogue, before the issue impedes with the project. Empower your project champion with the project understanding, facts and figures that support the plan, and provide them with the support required to successfully communicate with the public. Strong project champions can drive the success of a TOD project and ensure the inevitable concerns of the public are managed throughout. Making strategic use of these valuable stakeholders is, therefore, essential to a successful project.
“Good TOD plans are 50% professional best practices and 50% local knowledge. You can only access local knowledge through concerted public outreach.”

1. IDENTIFY THE STAKEHOLDERS
From internal to external, from directly related to merely interested, it’s key to know who’s who.

2. HAVE A PLAN TO ENGAGE THEM
Public engagement needs to be orchestrated carefully while allowing for flexibility. All stakeholders need not be engaged together. They can be divided into target groups to bring about better collaboration.

3. USE THE BEST COMMUNICATIONS TOOLS
Use the right tools at the right moment for the right target group.

4. ASK THE RIGHT QUESTIONS
Different project stages – issues, ideas, concepts, solutions – need different feedback.

5. NOT EVERYBODY WANTS TO ENGAGE THE SAME WAY
Interest, time availability and issue relevancy varies from person to person.

6. MOST PEOPLE ONLY WANT TO BE INFORMED
A broad information campaign should reach people through different channels.
Outreach Methodologies

You can only access local knowledge best practices and 50% local knowledge through concerted public outreach.

“Good TOD plans are 50% professional...through concerted public outreach.”

1. Identify the stakeholders.
2. Have a plan to engage them.
3. Use the best communications tools.
4. Ensure two-way communication.
5. Not everybody wants to engage the same way.
6. Most people only want to be informed.
7. A FEW PEOPLE WANT TO ENGAGE DIRECTLY
Curated direct participation events are necessary too, even in a digital world.

8. COMBINE PLANNING AND OUTREACH
Specially designed formats such as charrettes shorten timelines and increase buy-in.

9. INCLUDE FUN EXERCISES
Custom-tailored activities and games make it fun and meaningful for stakeholders to interact.

10. SOME PEOPLE DO NOT HAVE TIME TO ENGAGE
An online/social media engagement strategy can capture their (otherwise lost) input.

11. MAKE IT VISUAL
In a time-starved and attention-limited world, visually appealing, intuitive content is a must.

12. ENSURE TWO-WAY COMMUNICATION
Stakeholder outreach is as much about listening as it is about talking.

13. MAKE SENSE OF THE FEEDBACK
Stakeholder engagement is useless unless you connect the dots in a systematic way.

14. DON’T OVERDO IT – BE STRATEGIC
Outreach needs to be effective, cost-efficient and relevant for all participants.
TOOLS-CHARRETTE

A charrette is a creative burst of energy that builds momentum for a project and sets it on a course to meet project goals. It can transform a project from a static, complex problem into a successful, buildable plan. Usually, it is an intensely focused, multiple day session that uses a collaborative approach to create realistic and achievable designs that work."

Planning / Design Charrette: A multiple-day, collaborative workshop lead by the core planning team that brings together residents, developers, and policymakers to create a feasible and “85% ready” TOD Community Concept Plan based on four feedback loops: VISIONING, IDEAS, CONCEPTS, AND SOLUTIONS.

FIRST DAY
• Team introductions; “Gains & Pains” word exercise (a more up-to-date and participatory take on “SWOT” analysis);

SECOND DAY
• Fundamentals of TOD (both design and economic); playing of the “TOD Board Game”, a hands-on exercise in which community residents layout a series of land use icons – streetscape improvements, lanes, transit service, etc. (the “T” of TOD); parks and plaza, public art, etc., and other “Open Space” attributes (the “O” in TOD; and townhouses, apartment buildings, retail shops, and schools (the “D” of TOD), into a series of competing alternative plans.

THIRD DAY
• A playback of “What We Heard” at the TOD board game, complete with real-time electronic voting for preferred options of the TOD component plans.

FOURTH DAY
• The unveiling of the TOD Community Concept Plan, the result of a marathon production run of 36 hours, normally culminating in a 100-slide presentation, shored up by twenty-to-thirty full size presentation boards and, always a community favorite, a time-lapse photo visualization of a select street/area within the TOD plan that illustrates the evolution of the “now” to the “next”.

(Source: © IBI Group)
TOOLS - INTERACTIVE ACTIVITIES

How do you liven up discussions around TOD, get participants thinking outside the box & get people to take a holistic & inclusive approach to community planning around stations?

Why not try a game?

TOD projects frequently involve the cooperation of multiple stakeholders with varying objectives and preferences for an optimized solution. Finding a mutually agreeable solution is of paramount importance in order to assure the successful completion of these projects; particularly when different stakeholders are splitting the costs because none can afford to finance the transit/land use development projects on their own.

Games are emerging as a useful platform for fostering meaningful dialogue on today’s most pressing urban development issues. Through simulations, role-playing and even the use of LEGO blocks, interactive urban development and planning games can provide a fun and engaging way of bringing disparate groups of stakeholders to the table. These games remove the threatening atmosphere often felt in more formal meetings, and allow participants to casually communicate with one another while collectively evaluating different paths of development.

Games can help simplify complex and seemingly insurmountable problems by detangling components and breaking them down into smaller, more comprehensible pieces. Furthermore, games that require role-playing can force participants out of their comfort zone helping them to begin to understand and view problems from a different perspective, such as through the eyes and experiences of a bicyclist, thus bringing light to issues they may normally overlook.
Some of the examples of Interactive games that force public and private sector stakeholders (including public) in planning and implementing TOD, role-playing, priority setting and balancing trade-offs, develop solutions and align interests in a non-threatening environment are outlined below. These games are used as Global best practices and have been used by the project team for TOD projects developed and developing countries alike.

Most of these games are organized as sessions/downtime activities as a part of TOD Charrettes (typically organized as a one/two-day activity). An overview of the TOD charrette process is also presented at the end to identify where these gaming sessions can be accommodated in the charrette agenda.

Activity 1: Card Game - Play your best Hand
Activity 2: Ideas/Projects cost Money
Activity 3: Speed Networking – Hear & Share your stakeholders/your Issue under 5 minutes, & jointly devise a solution
Activity 4: Issues & Ideas Wall
Activity 5: Preference Boards
Activity 6: TOD Interactive Board-game
Activity 7: Road Safety Workshop
Other Virtual Games
ACTIVITY 1: CARD GAME - PLAY YOUR BEST HAND

INTENT:
Identification of key priorities/issues.

WHO ARE THE PLAYERS:
- Typically limited to Public Sector/Agency Stakeholders.
- Can be extended to select Private stakeholders such as NGO’s/Developers/ Business Improvement Groups.
- Mayors and political decision-making stakeholders often participate in developing countries.

FORMAT:
Workshop/Charrette Setting. Stakeholders are sitting around a table in random groups of 6 to 8 people.

IDEAL ENGAGEMENT SIZE:
Maximum 50-75 Stakeholders. Gathering feedback and reporting becomes time-consuming beyond this size of stakeholders.

TYPICAL TIME:
30 minutes (10 minutes to play the game and 20 minutes to discuss reporting).

DESCRIPTION:
- A suit of cards (similar to a suit from a deck of cards) 12 cards with an additional Wild Card (similar to the Joker from a deck of cards) is pre-prepared with each card representing one key issue facing the community.
- The list of priorities/issues is pre-curated with the assistance of the Client prior to the workshop.
- Each stakeholder is asked to “play their best hand” i.e. lay 3 cards on the table which represent their three priority issues.
- The stakeholders also have the option of writing their own issue on the wild card in case the 12 cards don’t represent priority issues.
- The cards form each stakeholder are collected and the scores are tallied (while other components of the workshop/ charrette are in process) by the Project team.
- A member of the project team then reports back on the ranking of the priorities.

OTHER SUGGESTIONS
- The Wild Card may carry the photo of the Project Champion/Political leader of the Community/City.
- The rest of the 9 cards are carried back by the Stakeholders as workshop souvenirs. Information related to the project, key contacts etc. can be provided on the back of the card.
Workshop Reporting on Priorities identified by Stakeholders

Ranking of Priorities

(Source: © IBI Group)
ACTIVITY 2: IDEAS/PROJECTS COST MONEY

INTENT:
Prioritizing projects based on the availability of municipal funds. Prioritizing Projects/Ideas

WHO ARE THE PLAYERS:
- Typically limited to Public Sector/Agency Stakeholders.
- Can be extended to select Private stakeholders such as NGO’s/Developers/Business Improvement Groups.
- Mayors and political decision-making stakeholders often participate in developing countries.

FORMAT:
Workshop/Charrette Setting. Stakeholders engage in this activity during break/downtime of a charrette.

IDEAL ENGAGEMENT SIZE:
Maximum 50-75 Stakeholders. Gathering feedback and reporting becomes time-consuming beyond this size of stakeholders.

TYPICAL TIME:
30 minutes (10 minutes to play the game and 20 minutes to discuss reporting).

DESCRIPTION:
- Multiple Boxes or jars representing Capital projects/projects ideas are provided on a table as a part of the workshop. Short description in the form of a sentence or two of each idea/Capital projects is also written on the box/jar.
- Cost of each project/idea is also written on the jar. Costs for projects may vary depending on the nature of projects. Cost figures are kept arbitrary but relative to each other. E.g. LRT Transit Project Value may be assigned 3$ while BRT Transit Value may be assigned 2$ while existing bus fleet upgrade may be assigned 1$ only.
- Each Stakeholder is handed mock money (say 10 coins/paper currency/10$) representing limited municipal funds available to spend on capital projects.
- Each stakeholder is asked to spend the funds (say 10$) on the projects that they see fit and how they see fit.
- The amounts are tallied in each box (while other components of the workshop/charrette are in process) by the Project team.
- A member of the project team then reports back on the ranking of projects/ideas.

OTHER SUGGESTIONS:
- List of projects/ideas should not be overwhelming and represent relevant solutions for the community. Generally, this game is played well into the project process when a basic idea of the solutions/projects/ideas are known.
- The list of projects/ideas is pre-curated with the assistance of the Client prior to the workshop.
- The game can also be employed to set project goals/priorities.
ACTIVITY 3: SPEED NETWORKING | HEAR & SHAPE YOUR STAKEHOLDER’S / YOUR ISSUE UNDER 5 MINUTES, & JOINTLY DEVISE A SOLUTION

INTENT:
Break the ice. Meet multiple Stakeholders attending a charrette in a one on one setting. Hear and share concerns jointly devise solutions for issues.

WHO ARE THE PLAYERS:
- Typically limited to Public Sector/Agency Stakeholders.
- Can be extended to select Private stakeholders such as NGO’s/Developers/Business Improvement Groups.
- Mayors and political decision-making stakeholders often participate in developing countries.

FORMAT:
Workshop/Charrette Setting. Stakeholders engage in this activity in a one on one setting.

IDEAL ENGAGEMENT SIZE:
Maximum 50-75 Stakeholders. Gathering feedback and reporting becomes time-consuming beyond this size of stakeholders.

TYPICAL TIME:
45 minutes.

DESCRIPTION:
- Rather than/in addition to each stakeholder introducing themselves at the start of the charrette, Speed networking is an ice-breaking activity between various stakeholders.
- In addition, this also ensures that charrette is dominated by a few individuals, preventing the ‘softer’ voices to be heard.
- This timed game is played much similar to a speed dating format, where during a seven-minute period, stakeholders have the chance to meet a fellow stakeholder/charrette attendee and exchange information on who they are, what work they do, and their key issues they face (related to the project). The intent is also to jointly devise a solution to the issues.
- After the seven-minute period, a bell will ring to signal the start of a new round. Stakeholders then move seats and begin again, for a total of say six rounds (45 minutes).
ACTIVITY 4: ISSUES & IDEAS WALL

INTENT:
To understand the values, concerns and aspirations of the public/ stakeholders related to the specific project.

WHO ARE THE PLAYERS:
- Open to Public/ Public Sector/ Agency Stakeholders.
- Mayors and political decision-making stakeholders often participate in developing countries.

FORMAT:
Open house Setting.

IDEAL ENGAGEMENT SIZE:
Open to public activities generates broad interest. Generally, 100 to 150 people atypically attend these.

TYPICAL TIME:
45 minutes.
INTENT:
An interactive preference selection exercise of the different concepts for key sectors within the station area using precedent images.

WHO ARE THE PLAYERS:
• Open to Public/ Public Sector/Agency Stakeholders.
• Mayors and political decision-making stakeholders often participate in developing countries.

FORMAT:
Open house Setting. Public/Stakeholders engage in this activity during break/downtime of the charrette.

IDEAL ENGAGEMENT SIZE:
Open to public activities generates broad interest. Generally, 100 to 150 people atypically attend these.

TYPICAL TIME:
30 minutes.

DESCRIPTION:
• Members of the public/stakeholders use red (not preferred)/green (highly-preferred)/yellow (somewhat preferred) dot stickers on boards with precedent images grouped under various categories.
• Categories could range from types of open spaces, furniture preferences, types of streetscape treatments, building facades, types of parking solutions etc.
• Highly preferred precedent images then set the tone for Station Area Concepts/Plans and are used as preferred precedent images to explain ideas for the project.
• The boards with stickers are included as a part of workshop documentation “what we heard” report as a part of the project.

OTHER SUGGESTIONS:
• This game is played well into the project process when a basic idea of the solutions/projects/ideas is known.
• The precedent images are pre-curated with the assistance of the Client prior to the workshop.
• The game can also be employed to set project goals/priorities.
ACTIVITY 6: TOD INTERACTIVE BOARD-GAME

INTENT:
Use Lego/Foam boards to develop a concept for the Station Area/TOD.

WHO ARE THE PLAYERS:
• Typically limited to Public Sector/Agency Stakeholders.
• Can be extended to select Private stakeholders such as NGO’s/Developers/Business Improvement Groups.
• Mayors and political decision-making stakeholders often participate in developing countries.

FORMAT:
Workshop/Charrette Setting. Stakeholders engage in this activity in a one on one setting.

IDEAL ENGAGEMENT SIZE:
Maximum 50-75 Stakeholders. Gathering feedback and reporting becomes time-consuming beyond this size of stakeholders.

TYPICAL TIME:
90 minutes.

DESCRIPTION:
• One potential risk of a charrette is that the process is dominated by a few individuals, preventing the ‘softer’ voices to be heard. To overcome this constraint, the exercises of each of the charrette rounds were designed so that this was minimized.
• The board game uses pieces of foamboard representing land uses over a base map to overcome the effect of one individual taking over the verbal conversation and the effect of only the people who can draw being able to contribute to the design ideas.
• Stakeholders are divided into groups of 8 - 10 ensuring that all disciplines are represented at each table and are provided with the foam board and the base maps as building blocks of the concepts.
• Station Area concepts developed are then presented at the end by each group to the rest of the audience.
• These concepts become the basis for preliminary concepts that are refined and presented back to the community.
LEGO AND LEGO-BASED INTERACTIVE BOARD GAMES

Lego sets, a set of interlocking plastic blocks, are a staple of children’s toys around the world. They are extremely minimal, flexible, and non-sequential, allowing them to represent the shape or form as desired by its user. They have been found to be effective tools to encourage creative thinking, freeform expression, and logical problem-solving. The blocks are found in vivid ranges of primary colors, with a range of function-specific symbolic blocks (street lamps, a patch of lawn, etc.) and extensions. While they have been primarily used to help children build shapes and forms (established and freeform), they have also been adapted to foster creativity through product lines such as Lego Mindstorms (with hardware and software to create programmable units). Increasingly, these qualities have been sought by planners and architects, as well. CTS-EMBARQ Mexico has developed a DOTS Kit to use these qualities, in conjunction with its TOD manuals, in capacity building. More broadly, the Massachusetts Institute of Technology (MIT) and its partners are exploring how Legos can be used to create a collaborative planning platform. Planning processes, set up to bring in an active participation from its various stakeholders, benefit from bringing in Lego blocks to the table. Blocks are indicative, and might not provide representative models built to scale. However, visualized spaces (buildings or neighborhoods) might initiate conversations among stakeholders. In a participatory planning activity, this outcome is desired. As Lego blocks are small and adaptable, they allow for a number of people to use them at once. This feature makes them useful to designers of a participatory planning activity. They also allow planners to immediately test their many proposals real time in space and gauge stakeholder reactions to them. Such simple scenario visualizations tools can be used to simulate design problems pertaining to several aspects of creating a TOD neighborhood such as the makeup of a street with respect to pedestrians or vendors, built-up area around a transit node, access to transit nodes and other services, or use patterns of a neighborhood.
ACTIVITY 7: ROAD SAFETY WORKSHOPS

INTENT:
To sensitize participants about road safety challenges faced by
the vulnerable road users, and create awareness on both the risk
factors as well as the solutions, covering infrastructure, traffic
management and urban planning.

WHO ARE THE PLAYERS:
• Typically limited to Public Sector/Agency Stakeholders
• Can be extended to select Private stakeholders such
 as NGO’s/Developers/Business Improvement Groups/
 Community members

FORMAT:
Workshop/ Charrette Setting. Stakeholders participate in
random groups of 6 to 8 people.

IDEAL ENGAGEMENT SIZE:
Maximum 40-60 Stakeholders.

TYPICAL TIME:
4-5 hours (including site visit).

DESCRIPTION:
• Select a busy street or intersection within the TOD area. It is
 important that this location has a variety of road users and a
 complex set of road safety challenges
• Randomly divide participants into groups of 6-8 individuals
 and visit the area selected
• The participants make an inventory of all the street elements
 and make a note of inadequate infrastructure from the
 perspective of pedestrians and non-motorized transport
 users, that they feel is missing or under-provided
• The participants are also asked to observe road user
 behavior and identify potential conflict points and situations
• Participants return to the workshop hall and discuss their
 findings. Each group is asked to list down their observations
 on road safety conflicts and discuss solutions to mitigate
 these risks
• Participants then draw out their solutions on a large base
 drawing outline of the street/intersection in question
• Each team then presents their solutions to the larger
 audience. Commonalities and variations across the groups
 are noted down

LIMITATIONS
• The experience of participants may vary depending on
 the time and day of the site visit. For example, challenges
 observed during peak hours on a weekday will be different
 from off-peak hours or a weekend. Similarly, activities on
 the street will also be different during daytime and night
 time. However, depending on the target audiences and
 considering it is predominantly a capacity building exercise
 the workshops, the visits will most likely happen during a
 typical weekday working hours. The site visits usually take
 1-2 hours and is supported by information collected in a
 pre-workshop visit done by moderator/ presenter.
• Detailed multi-scenario visits and robust data collection
 should be conducted by the implementation agency prior to
 the design development phase for actual implementation.
Road Safety Training under the “Mobilize Your City” program with Ahmedabad Municipal Corporation and UMTC in India (12th February 2020)
(Source: © WRI India)
OTHER VIRTUAL GAMES

Virtual techniques increasingly are being applied both in traditional and lifelong learning environments. Using virtual gameplay allows participants to explore new ideas and solutions in different situations. These video-based city planning games can be general, like SimCity—considered the first video game in this area—or explore a specific aspect, such as the Lincoln Institute’s Exploring Density. This section gathers some of these games and explores how they can be used in capacity-building and the exploration of the application of TOD concepts.

MIT CITY SCOPE

http://cp.media.mit.edu/city-simulation

MIT City Scope defines its scope of work as developing “...augmented reality decision support systems (ARDSS) that facilitate non-expert stakeholder collaboration within complex urban environments.” They have been able to create a range of decision-making tools used to simulate, prototype, and abstract real-time data, spatial data, and user feedback to provide observable results for alternative scenarios of design problems. Their approach uses a combination of data visualization, analysis, and scenario building to inform stakeholders’ possible consequences of their particular decisions. An example of the decision-making potential of such simulation models can be found below. The larger goal of such an exercise was to make the planning process less “technocratic,” and introduce an element of participation, and “co-creation.” Researchers at MIT, in collaboration with the Barr Foundation, created a model replica of Dudley Square, a neighborhood in the greater Boston area, with Lego blocks. The blocks were used to build the physical components of the neighborhood as well as to represent its inhabitants. It was created to understand the impacts of introducing bus rapid transit (BRT) services in the area. It was accompanied by a Lego-built 3-D model of a Boston street, and a touchscreen interface to present the possible impacts of specific planning decisions made by stakeholders. These simulations, in the form of an exhibition, were open to the public. The touchscreen interface offered various parameters, such as access to transit routes, cost of provision, access to jobs in the city, or the mode of public transit. These parameters were gathered together from publicly available data. By changing a specific parameter, any user could understand how those decisions could impact their specific commuting routes and habits for any given location. They were also able to influence the quality of the service by interacting with specific Lego blocks representing bus stops for said services and observe the impacts to the cost and quality of the service provided to them.
In planning environments where data is not readily available, it becomes difficult to use simulation models to initiate a conversation about broader planning policies or their consequences. In such conditions, it is crucial to devise a method to simulate a proximate representation of scenarios under consideration. The city game, originally developed by Dr. Juval Portugali of Tel Aviv University, was later adapted at the Next Generation Infrastructure Laboratory in Bangalore. It was designed to explore urban form and gather either an individual’s or a community of people’s response to design decisions and preferences for the direction of the city’s growth. This active game asks its participants to take turns and provide the city with a service/amenity, often as a reaction to another player’s decision. This game, while simple and devoid of complex analytical prowess, introduces an element of interactivity and dynamic growth that is often found missing in orthodox means of participatory planning methods. The game provides different frameworks to teams to create their realities of preferred development alternatives. The game also accommodates the introduction of policies and development regulations, and help organizers observe and compare the effects of such policies on different development patterns.

Similarly, there are many games that help stakeholders visualize and consider the trade-offs between different elements of TOD. Some of these are recommended here:

URBAN LAND INSTITUTE’S URBAN PLAN BUILDING BLOCKS: A DENSITY GAME
Source: www.lincolninst.edu/subcenters/visualizing-density/blockgame/index.aspx

EXTREME EVENT GAME
Source: https://toolkit.climate.gov/tool/extreme-event-game

WHAT IS ZONING?
Source: http://welcometocup.org/Store?product_id=62

WHAT IS AFFORDABLE HOUSING?
Source: http://welcometocup.org/Store?product_id=20

MINI METRO
Source: http://dinopoloclub.com/minimetro/
NEW TECHNOLOGIES IN THE OUTREACH PROCESS

In addition to traditional methods of outreach, including workshops, community meetings, and hearings, utilizing emerging and digital technologies, such as mobile apps, virtual open-houses, live chat sessions, and community comment forums should be strongly considered in your project engagement strategy. Technological methods can help to extend the reach of the transit-oriented engagement, connecting with people that are traditionally overlooked in the consultation process, for reasons varying from an inability to attend public meetings to being uncomfortable providing their opinion in large engagement sessions. Online and virtual mediums of outreach allow for information to be disseminated more broadly and ultimately improves the reach of public information and consultation opportunities. This section contains references to applications and websites that serve as examples of the many technology-based engagement mediums available today. A variety of examples are included to provide the ability to explore the many engagement options currently available and find an option that best suits your community and consultation strategy.

Browsing websites like NextDoor (https://nextdoor.com/), allow neighbors to connect and share ideas, monitoring the satisfaction around transit project areas. Websites like Neighborly (https://neighborly.com) and Citizen Investor (http://www.citizinvestor.com), simplify the often daunting task of budgeting and investing for transit-oriented projects and provide citizens with the opportunity to have a say in financial choices. Some of these engagement options consult with constituencies during the decision-making process, while others gauge the overall values of the community related to budgeting and apply those priorities afterward. Several map-based tools make it possible for people to leave comments on a map, for example, CrowdMap (https://crowdmap.com/welcome) or Community Remarks (http://www.communityremarks.com). The mapping component of these platforms is especially useful for a transit area-level planning project to provide citizens with a visual understanding of TOD-related changes. Applications like Textizen (https://www.textizen.com) allow you to send, receive, and analyze citizen questions through SMS text messages. Moreover, web-oriented platforms like Crowdbrite (http://www.crowdbrite.com, Neighborland (https://neighborland.com), and MindMixer (http://app.mysidewalk.com) help your community craft websites and portals for community engagement, including online surveys, forums and feedback, while also providing detailed project information in one online location. Poll Everywhere (https://www.polleverywhere.com), allows you to create polls on mobile devices that encourage citizens to engage as they experience transit-oriented development firsthand (while riding transit, for example).
EN-C02
STAKEHOLDER ENGAGEMENT GAMES

Interactive games for cross-agency coordination and visioning of TOD and safe access to mass-transit stations within a TOD

Type: Reference Document

© 2021 The World Bank
INTRODUCTION
TOD ROLE-OUT

Disclaimer: The Transit-Orientated Development Implementation Resources & Tools knowledge product is designed to provide a high-level framework for the implementation of TOD and offer direction to cities in addressing barriers at all stages. As the context in low and middle-income cities varies, the application of the knowledge product must be adapted to local needs and priorities, and customized on a case-by-case basis.

© 2021 International Bank for Reconstruction and Development / The World Bank

OBJECTIVE:
The TOD ‘Role-Out’ is a stakeholder engagement tool, to be conducted in the form of a game. The game allows for collaborative decision-making with various stakeholders to make them understand each other’s motives, possible trade-offs and how individual interests can be better aligned for successful implementation.

FORMAT: WORKSHOP

TYPICAL TIME: Two hours for a quick process or a half-day session for a thorough discussion.

SESSIONS:
The game includes two sessions:
» Conduct SWOT Analysis
» Develop Station Area Programming Alternatives and Concept Plan

AUDIENCE(S):
Invite participants from across the project’s organizational spectrum to ensure thorough stakeholder mapping.
» Primarily involves public sector/agency stakeholders
» Can be extended to select private stakeholders such as NGO’s and developers, as well as mayors and political decision-making stakeholders

IDEAL ENGAGEMENT SIZE:
Maximum 40-50 stakeholders. Participants are sitting around a table in groups of 8-10 people. Groups can be created by randomly picking up participants, however, a diverse team is recommended to broaden the view and understand the tradeoffs more accurately. Provide 1 facilitator to guide the discussion.
Print the pre-prepared suit of cards on 4.1 x 5.8 in

The cards are organized similarly to a suit from a deck of cards—9 cards, with each card presenting a stakeholder responsible in a coordinated TOD implementation programme.

Each card includes a list of priorities (differing motives of various stakeholders), trade-offs (to understand the motives of each stakeholder) and incentives (how interests can better be aligned for successful implementation).

MATERIAL REQUIRED

1. City Transportation Planner
 TOD Brainstorming Game

2. Chief Town Planner
 TOD Brainstorming Game

3. Real Estate Consultant (City)
 TOD Brainstorming Game

4. Private Developer
 TOD Brainstorming Game

5. Resident
 TOD Brainstorming Game

6. Non-Profit Activist
 TOD Brainstorming Game

7. Representative: National/State level Transport Agency
 TOD Brainstorming Game

8. Engineer: State Level Public Works / Infrastructure
 TOD Brainstorming Game

9. Elected Official (MAYOR)
 TOD Brainstorming Game

DOWNLOAD HERE
MATERIAL REQUIRED

Print the pre-prepared worksheets preferably on 8.5x11 inches or 11x17 inches. The game includes two worksheets in a standardized format. The first worksheet summarizes the Strengths, Weaknesses, Opportunities and Threats (SWOT) from the perspective of all the stakeholder roles being played out. The second worksheet is to be used to develop the programming for the Station Area.

WORKSHEET 1
S.W.O.T. ANALYSIS

List minimum five − favorable conditions that need to be built upon (Strength); unfavorable conditions that need to be considered (Weakness); potential improvements and favorable conditions that will help the project achieve the goal (Opportunities); and potential barriers that may impede the realization of project goals (Threats).

WORKSHEET 2
STATION AREA PROGRAMMING & CONCEPT PLAN

Select one scenario based on what is allotted to the group to decide how the TOD Station Area may evolve over time:

SCENARIO 1
PRIORITIZING TRANSPORTATION
The different transportation modes (transit, walking, bicycle, cars, taxis, etc.) and the infrastructure and amenities (lanes, parking spots, land uses, stations, sidewalks, etc.) that allow residents to travel safely, conveniently, and comfortably whichever mode they choose.

SCENARIO 2
PRIORITIZING PUBLIC SPACES
The public spaces (plazas, patios, parks, sidewalks, etc.) that form the transition between transportation facilities and buildings, also known as ‘the spaces between’ where the life of the city plays out. Can be public or private property, but should be designed to be accessible, friendly, and fun for all.

SCENARIO 3
PRIORITIZING DEVELOPMENT
The built-up areas, primarily private parcels, where different human activities occur that support varied housing, employment, shopping, and other uses. In the TOD model, buildings should relate to and activate surrounding open spaces and support travel by providing alternative routes.
A large base map (preferably 33.1x46.8 inches or 23.4 x 33.1 inches) that includes:

» Transit station location with 400m (5min walk) and 800m (10min walk) radial circle centered on the station
» Existing road network
» Natural environment systems including greenways, waterways and open spaces
» Existing building footprints, including developments and destinations

Reference Base Map
MATERIAL REQUIRED

MATERIAL REQUIRED:

Visual Aids:
A visual library of examples to describe TOD scenarios to be considered during the game:
- Presentations
- Annotated pictures to orient people to the TOD area
- Videos
- Printouts

Documentation:
- Flip-chart paper for listing audience’s priorities
- Sticky notes of different colors, markers and pens for working on the base map
- Camera to capture the results
ACTIVITY 1: SWOT ANALYSIS

» Each group is given five minutes to describe and characterize the core elements or unique abilities of the station area. The players can use the working sheets to write their ideas and sticky notes to mark the ideas spatially on the map. Repeat the process for all four headings (SWOT).

» After 20 minutes, initiate a group discussion with the goal to create a summary of SWOT and identify top 10 under each heading.

ACTIVITY 2: STATION AREA PROGRAMMING & CONCEPT PLAN

» With a strong understanding of the strengths and problems of the area, each group is handed over a scenario to decide how the TOD Station Area may evolve over time.

» Each group is given 1.5 hrs of time to come up with the programming and to sketch a concept plan on the base map.

» A member of the project team then reports back on the ranking of projects/ideas based on their scenarios.

» At the end of the activity, project goals and priorities are summarized for all three scenarios. Reoccurring key issues/ideas are taken forward to guide the project.

HOW TO PLAY

Begin the game with a clear definition of the study area. Write both the tasks boldly on the flip-chart, making it easy for the audience to time themselves and orient with the agenda.

Start team introductions and ask each participant to draw a pre-prepared card from the deck, with each card presenting a different role. The participant from then till the final discussion needs to play the role on the card and act according to the unique requirements and rules mentioned. For example, an environmental activist and a real estate investor can make different decisions, due to their different roles in the game.

Participants are then divided into groups of 8-10, ensuring that all disciplines are represented at each table and are provided with the sticky notes, worksheets and base maps.
THE TOD ROLE-OUT’

Supporting tools - Cards
01 City Transportation Planner
TOD Brainstorming Game

02 Chief Town Planner
TOD Brainstorming Game

03 Real Estate Consultant (City)
TOD Brainstorming Game
PRIORITIES

- Enforce existing planning & development regulations
- Increase formal supply of mixed-income housing stock
- Promote enhanced accessibility
- Placemaking through urban design interventions
- Encourage mix of uses & equitable development
- Permitting development in greenfield vs. redevelopment of gov’t sites in TOD area
- High-value market-rate housing vs. affordable housing
- Blanket FAR vs. differential FAR along the transit corridor
- Increased congestion at concentrated areas vs. balanced distribution of jobs and residents regionally
- High-rise building vs. context-specific design

TRADE-OFFS

- Minimize impacts of traffic congestion
- Boost transit ridership
- Promote walkability and cycling
- Create a seamless integration between transit modes

INCENTIVES

- Discouned infrastructure charges by managing development growth
- Private sector contribution in improving access to public realm improvements
- Streamlined development approvals
- Funding for transit and street improvements
- Private sector investment in the public realm
- Preserve the environment

PRIORITIES

- Minimize impacts of traffic congestion
- Boost transit ridership
- Promote walkability and cycling
- Create a seamless integration between transit modes

TRADE-OFFS

- Higher property values vs. mixed-income housing
- Owner-occupied housing vs. renter-occupied housing
- Short-term returns vs. long-term market creation

INCENTIVES

- Increased opportunities in attracting development interests within TOD areas
- Access to a more robust market and upgraded building stock for future investments
- Opportunities to build long-term government contracts to realize TOD visions

PRIORITIES

- Ensure highest and best use of city owned properties within the TOD area
- Economic benefits resulting from development through land value capture
- Land monetization through redevelopment of vacant/underdeveloped parcels in close proximity to transit station
- Destination creation and enhancing market value of the TOD area

TRADE-OFFS

- Economic benefits resulting from development through land value capture
- Land monetization through redevelopment of vacant/underdeveloped parcels in close proximity to transit station
- Destination creation and enhancing market value of the TOD area

INCENTIVES

- Increased opportunities in attracting development interests within TOD areas
- Access to a more robust market and upgraded building stock for future investments
- Opportunities to build long-term government contracts to realize TOD visions
Private Developer
TOD Brainstorming Game

Resident
TOD Brainstorming Game

Non-Profit Activist
TOD Brainstorming Game
PRIORITIES

- Ensure social equity in neighborhoods
- Preserve the environment
- Minimize impacts of traffic congestion
- Promote walkability and cycling
- Limit sprawl & related costs of infra.
- Ensure mixed-income housing

TRADE-OFFS

- Preserve environment vs. economic growth
- Income equality vs. increased investment
- Integrate marginalized sections vs. improve investment image
- Maintain affordability near transit vs. higher land values

INCENTIVES

- Community participation in decision-making
- Integration of social infrastructure and services in TOD projects
- Mandatory affordable housing provisions in market-rate housing
- Provision of open space

PRIORITIES

- Preserve neighborhood character & identity
- Improve the overall quality of life with environmental, social and cultural investments
- Reduce resident commuting times
- Maintain affordability in the area
- Ensure safety and security in the neighborhood

TRADE-OFFS

- Remove blight and deterioration vs. resistance to change through redevelopment
- Invest in public realm infrastructure upgrades vs. resistance to increased user costs for better services

INCENTIVES

- Community participation in decision-making
- Integration of community facilities
- Inclusion of public spaces
- Promotion of local businesses

PRIORITIES

- Receive financial return on investment
- Availability of land in close proximity to transit
- Public realm infrastructure in place

TRADE-OFFS

- Long-term investment in TOD projects vs. short-term returns on automobile-oriented uses
- High-value market-rate housing vs. affordable housing
- Open Space

INCENTIVES

- Increased FARs allowed by right
- Site assemblage and land banking
- Impact fees and tax waivers and long-term tax subsidies
- Expedited development approval in TOD areas
- Discounted infrastructure charges
- Relaxation of development controls
01 Representative: National/State-level Transport Agency
TOD Brainstorming Game

02 Engineer: State-level Public Works/Infrastructure
TOD Brainstorming Game

03 Elected Official (Mayor)
TOD Brainstorming Game
PRIORITIES
- Create more jobs
- Reduce transportation costs for constituents
- Increase municipality’s tax base and property values
- Distribution of benefits across society
- Improvements to public realm
- Ease of doing business

TRADE-OFFS
- High-density development vs. infrastructure capacity
- Attractive development vs. affordable housing
- Environment quality vs. intense development
- Displacement of informal settlements vs. in-situ redevelopment

INCENTIVES
- Land monetization tools
- Increased private sector investment
- Private sector contribution in improving access to public realm improvements
- Streamlined development approval

PRIORITIES
- Reduce peak period traffic congestion
- Encourage transit and non-motorized travel
- Reduce per capita vehicle travel
- Improve access & reduce need for travel
- Upgrade aging infrastructure, especially in urban infill/redevelopment areas

TRADE-OFFS
- Right-of-way dedicated for additional lanes vs. public transit
- Reduction in regional vehicle miles traveled (long-term) vs. traffic congestion in areas with concentrated densities (short-term)
- Investment in aging infrastructure vs. new infrastructure in greenfield/semi-urban TOD areas

INCENTIVES
- Impact fees or value capture mechanisms to fund infrastructure improvements
- Cross-sector coordination to avoid duplication of projects

PRIORITIES
- Increase transit ridership
- Maximize land value capture opportunities
- Maintain flexibility in station standards and multi-modal integration
- Increase revenues from non-fare box sources

TRADE-OFFS
- Maximize coverage vs. high ridership
- Reduced parking vs. park-and-ride
- Fare-box revenues vs. affordable transit

INCENTIVES
- Joint Development with private sector
- Permissible development above stations (air rights)
- Increased densities allowed based on transit ridership
List a minimum of five—favorable conditions that need to be built upon (Strengths); unfavorable conditions that need to be considered (Weaknesses); potential improvements and favorable conditions that will help achieve project goals (Opportunities); and potential barriers that may impede the realization of project goals (Threats).

<table>
<thead>
<tr>
<th>STRENGTHS</th>
<th>WEAKNESSES</th>
<th>OPPORTUNITIES</th>
<th>THREATS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Thinking Points

- Urban Design & Placemaking
- Land Use Attributes
- Access to Transit
- Pedestrian and Cycle Mobility
- Parking Management
- Housing Diversity
- Development Context: Redevelopment/Greenfield
Select one scenario, based on what is allotted to the group, to decide how the TOD station area may evolve over time:

SCENARIO 1
PRIORITYING TRANSPORTATION

The different transportation modes (transit, walking, cycling, cars, taxis, etc.) and the infrastructure and amenities (lanes, parking spots, transit stops, stations, sidewalks, etc.) that allow residents to travel safely, conveniently and comfortably, whichever mode they choose.

SCENARIO 2
PRIORITYING PUBLIC SPACES

The public spaces (plazas, patios, parks, sidewalks, etc.) that form the transition between transportation facilities and buildings, also known as ‘the spaces between,’ where the life of the city plays out. Can be public or private property, but should be designed to be accessible, friendly and fun for all.

SCENARIO 3
PRIORITYING DEVELOPMENT

The built-up areas, primarily private parcels, where different human activities occur that support varied housing, employment, shopping and other uses. In the TOD model, buildings should relate to and activate surrounding open spaces and support transit ridership by adequate density.
INTRODUCTION
SAFE ACCESS ROLE-PLAY

OBJECTIVE:
The Safe Access role-play activity provides awareness about the importance of safe and equitable access for all street/public space users and helps derive implementable solutions for the station area that have been prioritized through a collaborative and interactive decision-making process.

SAFE ACCESS TO MASS TRANSIT
The Safe Access Role-play activity is based on the “Safe Access Manual – safe access to mass transit stations in Indian Cities” with the aim of identifying and addressing issues of safe access to mass-transit stations in a participatory manner. The manual offers strategies, case studies, and guidelines for enabling safe access to mass transit stations in Indian cities. It aims to serve as a guide to planners and authorities while building mass transit infrastructure to make cities safer by design.

The manual provides guidance on providing seamless, safe and affordable commuting options to mass transit station areas by all modes, and thus creating vibrant public spaces to serve the communities’ needs – typically in developing countries such as India.

The manual has four objectives:
1. Use of participatory process to integrate the planning, implementation, maintenance and evaluation of station areas.
2. Promote use of streets as public spaces, NMT safety and infrastructure, women’s security and universal accessibility.
3. Develop institutional structures and financing mechanisms to facilitate timely implementation of station accessibility plans.
4. Develop performance indicators and evaluate station area for accessibility planning, implementation and maintenance.

The Safe Access approach is based on five principles. These principles are chosen such that people of all genders and physical abilities are given the highest priorities and are able to make the most of the public services provided to them.

1. Pedestrian and Cyclist Priority
Providing the necessary infrastructure for pedestrians and cyclists to move safely and conveniently around the city. This includes continuous, safe and comfortable pedestrian and cycling networks connecting the station to other areas in the city.

2. The Public Realm
Enhancing public spaces by making streets safer, comfortable and imageable. This includes accessible design in the public realm around the station, and convenient and easy signage that highlights different types of street activity and its uses.

3. Feeder Services
Increasing the connectivity of the system as a whole, by enhancing coordination between feeder buses and other public transport at the station. This includes minimizing waiting times and demarcating access to last mile connectivity modes like auto-rickshaws, cycle rickshaws and taxis.

4. Parking Management
Creating a parking management plan to increase the supply of parking spaces, in addition to managing the existing parking load.

5. Safety and Security
Creating safer, comfortable and convenient station areas for commuters through traffic calming measures, safe crossings, and reducing conflict points between pedestrians and cyclists.
5 People-centered principles of safe access
(Source: © WRI India)

Or Visit the link below to download the manual.
www.wriROSScities.org/research/publication/safe-access-mass-transit-manual
FORMAT: Workshop

TYPICAL TIME: 3 hours including 45 minutes for presenting concepts of Safe Access and its five principles.

SESSIONS:
The game includes two sessions:
» Presentation of Safe-Access principles
» Participants play different roles in the role playing activity to make a case for each role. This gives a fresh perspective to participants and makes them aware of the needs of other road users.

AUDIENCE(S):
A list of stakeholders (but not limited to) of the station area who can participate are mentioned below:
» Residents and users of the station area
» Representatives of Associations – RWA (Residence Welfare Association), shop associations, market associations, business owners and others
» Institutional representatives, i.e. schools, colleges, hospitals and others
» Traffic and transport representatives, e.g. traffic police, wardens, etc.
» Elected representatives, decision makers and experts in the area
» Government officials

Note: The participants of the activity should be chosen, such that they represent the diversity of the population/users in the station area. This can be achieved by identifying the nature of activities in the station area and identifying representatives from the same.

IDEAL ENGAGEMENT SIZE:
30-40 participants. Minimum 12.
Print the pre-prepared interactive board (A1 or 24”x36”)

The interactive board contains the 5 principles of safe access and options for choosing strategies for respective principles under assigned roles.

Strategies for each principle are mentioned in a separate color against each principle.

Each principle on the board has 2 sets of recommendations with 3 options for each. The different columns indicate the roles that are assigned to each participant. Every group member will mark the recommendation that is relevant to the role assigned to them.

Each participant shall mark their choices for the strategies as per their assigned roles, and then discuss within the group to arrive at a final choice.

<table>
<thead>
<tr>
<th>Principle</th>
<th>Strategies (set 1)</th>
<th>Individual Choices</th>
<th>Collaborative Choices</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Recommendations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I.</td>
<td>A. Provide and maintain universally accessible amenities (bus stand, drinking water fountains, street benches, toilets) in the station area</td>
<td></td>
<td></td>
</tr>
<tr>
<td>II.</td>
<td>B. Provide basic amenities at lower costs with no special considerations given to vulnerable groups in the station area</td>
<td></td>
<td></td>
</tr>
<tr>
<td>III.</td>
<td>C. Provision of minimal amenities (only public toilets) in the station area</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV.</td>
<td>D. Provide designated vending points distributed at key vantage points in the station area</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V.</td>
<td>E. Restrict venders to one location in the station area</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Strategies (set 2)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MATERIAL REQUIRED

2 Print the Role-play cards
Each team (with minimum of 6 participants) gets
6 role play cards for the participants. The participant
is not only playing the assigned role but also
representing that category of people in a real world
scenario. Hence, he or she should remain biased
towards the concerns of the role assigned.
A presentation is made to the participants to set out the principles and strategies of safe access. The coordinators also explain the role-play activity to the participants.

Coordinators divide the participants into groups of six and assign a moderator to each group. Maximum number of groups that can be there is five.

Each team is provided with the interactive board. They are then asked to choose one out of the five principles as stated on the board.

Each team moderator now randomly distributes the role-playing cards amongst the team members. The team members stick to the roles assigned till the end of activity.

The participants then choose a set of strategies from the 2 subsets i.e. one strategy from each set INDIVIDUALLY. Moderators facilitate the discussions and ensure that participants are taking decisions based on the roles chosen.

The participants now choose a set of strategies from the 2 subsets COLLECTIVELY. Moderators facilitate interactions between the participants and help ‘Government’ take the final decision for strategies.

At the end of the session, the participant with a government role in each group presents the collective choices and the justification for the strategies chosen, followed by any Q and A session.
SAFE ACCESS ROLE-PLAY

Supporting tools - Interactive Board and Cards
Woman using a wheelchair
- Travel safely and quickly in the city
- Be able to move independently in all parts of the city
- Be able to access public spaces such as parks, transit stations etc.
- Be able to avail economical modes of travel

A Grandfather
- Travel safely and in a self-reliant manner in the city
- Have safe public spaces to gather in
- Have access to adequate amenities such as drinking water, seating spaces, toilets in public spaces

Teenager with a cycle
- Be able to cycle safely in the city
- Have safe and secure spots to park cycle
- Have safe cycle-friendly spaces to gather in

Public at Large
- You are a part of the citizenry
- By living & working in the city you generate economic activity
- You demand adequate infrastructure & mobility options for your needs
- You demand clean air & a safe environment to live a healthy and prosperous life
- Day to day activities take up your time & you can only focus on your needs

Public at Large
- You are not able to spend time studying or solving the needs of other city dwellers
- You demand adequate infrastructure & mobility options for your needs
- You demand clean air & a safe environment to live a healthy and prosperous life
- Day to day activities take up your time & you can only focus on your needs

Public at Large
- You are a part of the citizenry
- By living & working in the city you generate economic activity
- You demand adequate infrastructure & mobility options for your needs
- You demand clean air & a safe environment to live a healthy and prosperous life
- Day to day activities take up your time & you can only focus on your needs

Public at Large
- You are not able to spend time studying or solving the needs of other city dwellers
- You demand adequate infrastructure & mobility options for your needs
- You demand clean air & a safe environment to live a healthy and prosperous life
- Day to day activities take up your time & you can only focus on your needs
Car-Owner
- Travel safely and quickly on roads in the city
- Find adequate parking spaces at destination
- Have shortest possible walk from parking space to destination

Private Business
- You are a private business such as auto drivers association, bank, contractor, hotel owner, private bus corporation, real estate developer, taxi aggregator, taxi cab service, telecom service provider
- You provide a service or product to the city or to private citizens at a fee
- Profit is your primary motive
- You also want to sustain yourself financially over a long term

Government Authority
- You are a government authority like the urban development body, Municipal Corporation or traffic police
- Your charge is to provide services and infrastructure in the city which are usable and accessible to all citizens
- You engage with the public at large to understand the needs and requirements of the people
- You engage with private businesses to negotiate benefits for the city and its citizens
- You must balance the demands of smaller yet powerful groups with the needs of the majority of users
CREATING A LIVABLE STATION AREA

An interactive activity on 'Enabling Safe Access to Mass Transit'

What is a station Area
Influence zone
0.75 - 5 km radius
Station area
0.3 - 0.75 km radius

How to play the 'SAM game board'
Step 1: Choose a principle from 5 given principles
Step 2: Pick your role play card
Step 3: Pick 1 of each set of 3 strategies individually
Step 4: Pick 1 of each set of 3 strategies collectively
Step 5: Apply these strategies to the chosen station area

SAFE ACCESS WORKSHOP
<table>
<thead>
<tr>
<th>Recommendations</th>
<th>Government</th>
<th>Private</th>
<th>People</th>
<th>Final Collaborative Choices</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Provide universally accessible footpaths and optimal carriageway in the station area</td>
<td></td>
<td></td>
<td>W</td>
<td>Q</td>
</tr>
<tr>
<td>b. Focus on ensuring adequate carriageway for smooth movement of traffic and also provide adequate footpath which may not be universally accessible in the station area</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. Provide maximum carriageway with minimal footpaths in the station area</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d. Provide segregated and protected bicycle lanes with dedicated signals at junctions in the station area</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e. Provide cycle lanes by marking on existing carriageway but not necessarily dedicated signals at junctions in the station area</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f. Cyclists are required to share carriageway with the traffic in the station area</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>Government</th>
<th>Private</th>
<th>People</th>
<th>Final Collaborative Choices</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Designate immediate station area as no parking zone for automobiles in the station area</td>
<td></td>
<td></td>
<td>W</td>
<td>Q</td>
</tr>
<tr>
<td>b. Allow only paid parking in the station area</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. Allow free on-street car parking in the station area</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d. Provide safe and secure bicycle parking within the station area</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e. Provide free bicycle parking only at the station entrance</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f. No designated bicycle parking in the station area</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>Government</th>
<th>Private</th>
<th>People</th>
<th>Final Collaborative Choices</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Provide and maintain universally accessible amenities [bus stands, drinking water fountains, street benches, toilets] in the station area</td>
<td></td>
<td></td>
<td>W</td>
<td>Q</td>
</tr>
<tr>
<td>b. Provide basic amenities at lower costs with no special considerations given to vulnerable groups in the station area</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. Provision of minimal amenities (only public toilets) in the station area</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d. Provide designated waiting spaces distributed at key vantage points in the station area</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e. Insure vendors to one location in the station area</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f. Designate the station area as a smoking free zone</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>Government</th>
<th>Private</th>
<th>People</th>
<th>Final Collaborative Choices</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Design streets to reduce automobile speeds (speed tables, speed bumps, signal etc.) in the station area</td>
<td></td>
<td></td>
<td>W</td>
<td>Q</td>
</tr>
<tr>
<td>b. Focus on only regulating speed in station area</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. Allow unobstructed flow of traffic in the station area</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d. Create active street edges with adequate illumination to improve safety for all especially women and elderly groups in the station area</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e. Create street edge with adequate illumination but no activity in the station area</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f. Allow high compound walls and on-street parking for safety and convenience of private property owners in the station area</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>Government</th>
<th>Private</th>
<th>People</th>
<th>Final Collaborative Choices</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Provide segregated bus lanes in station area</td>
<td></td>
<td></td>
<td>W</td>
<td>Q</td>
</tr>
<tr>
<td>b. Buses share road space with mixed traffic in the station area</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. Restrict the movement of buses in the station area</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d. Provide dedicated drop-off, pick-up points and stands for autos and cycle/motorbikes in the station area</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e. Provide dedicated drop-off point near station entrance but no stand</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f. Allow autos and cycle/motorbikes to stop anywhere on the side of the road for flexibility in the station area</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
EN-H01

HOW TO BUILD INSTITUTIONS AND ENABLE INTERGOVERNMENTAL COORDINATION

A step-by-step guide to identify project champions that can make TOD happen and ensure road safety within existing planning and development framework.

© 2021 The World Bank
INTRODUCTION

The success of TOD depends entirely on the abilities of the agency involved to create change. To enable these agencies to work towards TOD goals, it is imperative to consider defining a complete framework that will support their work and enable greater coordination and more effective TOD interventions. This tool will help define the key requirements for an enabling framework, largely from the point of view on institutions and how they can work together for better results. The TOD Corridor Course (WB/WRI 2015) and Transforming Cities with Transit (Suzuki, Cervero, Iuchi 2013) formed the basis for identification of the key enabling factors that are covered in the tool:

- Influencing Leaders - This involves educating leaders about the benefits of TOD to ensure political support
- Build an Effective TOD Organization - This may be at the scale of a city or a station area. An organization with a well-defined structure will allow better coordination and buy-in for TOD goals across all city departments and the public.
- Aligning the Vision across scales - This is needed to ensure that TOD plans at one scale are not hindered by policy barriers at other scales. The planning process must allow for TOD to be possible at any scale.

Disclaimer: The Transit-Orientated Development Implementation Resources & Tools knowledge product is designed to provide a high-level framework for the implementation of TOD and offer direction to cities in addressing barriers at all stages. As the context in low and middle-income cities varies, the application of the knowledge product must be adapted to local needs and priorities, and customized on a case-by-case basis.

© 2021 International Bank for Reconstruction and Development / The World Bank

REFERENCES:

INFLUENCING LEADERS WITH THE BENEFITS OF TOD

Successful TOD relies heavily on the political capital of the city or jurisdiction’s leadership. Irrespective of the type of leadership structure within a city, it is evident now that a well-informed and committed leader can help push the concept of TOD in order to improve the everyday lives and experiences of citizens, while also building resilience. For a TOD planner, the very first step to building an enabling environment is to convince the leadership of the benefits TOD can bring to the citizenry, environment, and public sector finances.

Ultimately, TOD can be contextualized to focus more on the specific needs of a city. For example, for a city with a flooding problem, TOD benefits may be focused more towards creating climate resilience through the strategic distribution of density and transport investments, such that least possible number of people are at risk during flood events. As a starting point, some benefits are listed here, adapted from the TOD Guidance Document (MOUD, India 2016).

SOCIAL BENEFITS

Increased mobility choices for all: Compact, walkable communities linked by transit. TOD provides much-needed mobility options, including options for young people, the elderly, the poor, and people who do not own cars or prefer not to use a car;

Improved economic accessibility: Increasing the reach of transit systems through TOD will enable more people to access economic opportunities that were inaccessible before;

Increased disposable household income: TOD can effectively increase disposable income by reducing the need for one or more car and reducing commuting costs;

Increased health benefits: TOD promotes a healthy lifestyle by making it convenient to walk and by providing the infrastructure that supports walking and bicycling;

Increased road safety for all: TOD promotes walking and bicycling; hence road safety measures are essential for a safe and secure user experience;

Increased public safety and security: TOD encourages “24-hour” activity in a mixed-use environment and provides “eyes-on-the-street” that increases one’s overall sense of security and safety in an area; and

Increased housing choices for all: Encouraging high-quality diverse housing products (mixed income, owner-occupied, rental and workforce housing) within TODs is an important goal. TOD can contribute to the affordable housing supply by offering incentives to the private sector such as density bonuses and location efficient loans in transit-served sites in exchange for lower cost housing products.
ENVIRONMENTAL BENEFITS

- **Conservation of resource lands and reduced urban sprawl**: Provision of more compact patterns of growth at urban infill sites conserves agricultural and natural lands that would otherwise be consumed by sprawling development;

- **Climate Resilience**: Compact development patterns will allow the city to avoid developments in climate-affected areas and enable the city to concentrate on climate mitigation measures within a smaller area;

- **Reduced rates of vehicle kilometers traveled (VKT)**: Savings in travel times and unit vehicular operating and maintenance costs;

- **Space efficiency**: Less land is required to move a small number of transit vehicles relative to a large number of automobiles carrying the same number of people;

- **Energy efficiency**: Less energy is needed to move one person by transit than by automobile, assuming normal transit vehicle loading conditions; and

- **Better air quality**: Since less energy is required to move people, fossil fuel-based transit vehicles emit smaller amounts of smog-forming and climate change-inducing pollutants, thereby reducing air pollution rates.

- **Safe urban environments**: TOD projects encourage implementation of complete streets and universally accessible public spaces leading to creation of green networks and safe spaces for all users.

ECONOMIC AND FISCAL BENEFITS

- **Improve economic efficiency**: A city developed based on TOD principles enhances interactions between people and firms leading to agglomeration benefits.

- **Increased land values and property tax revenues**: Access to transit results in a significant increase in the property values of nearby properties, provided the transit system has good regional connectivity and frequency of service;

- **Increased transit ridership**: Placement of more people close to transit and providing mixed-use amenities and safe access to transit justifies higher service frequencies and promotes high ridership levels (including attracting new riders that may otherwise choose to drive), enabling transit to be more competitive with the automobile;

- **Increased opportunities to cross-subsidize transit**: Monetization of land parcels in close proximity to transit for income-earning activities such as real estate development, retail lease, and/or paid parking, can create an additional revenue stream for transit operators;

- **Reduced costs on road infrastructure**: TOD can effectively reduce the need for major road projects such as flyovers and expressways, which have low person/road km usage but very high construction and maintenance costs; and

- **Reduced costs on municipal infrastructure**: TOD can help reduce the need for new infrastructure costs (such as water, sanitary, sewer and roads) for local governments and property owners by limiting the extent of sprawl that needs to be serviced. While initial infrastructure improvements may be necessary to support additional density and ensure road safety in resource-constrained locations, utilizing decentralized infrastructure services in higher density areas will lead to self-sufficiency in the long term.
Cities that decide to commit to large TOD projects should enact, through law or other appropriate official decision, the creation of a special body (task force, committee or agency) that, from inception, has deep ties to the TOD Plan. This organization must be held accountable to the public and operate with a very clear transparency and mission. The organization will promote the development of planning research, design master plans and regulations, oversee implementation and continued adaption of systems and coordinate with planning guidelines and professionals from different levels of government and the private sector. It is crucial that this agency exists outside of the political sphere to ensure long-term ownership, management, and security of singular vision. To further ensure legitimacy, the organization should receive its budget from a percentage of the revenue garnered from the TOD. This motivates continued dedication to creating and maintaining the effectiveness of the system. A funding mechanism built into the TOD revenue streams will also ensure its exemption from political budgetary issues and protect the government from further economic stress.

PURPOSE
Establish clear roles and responsibilities for the TOD Organization to facilitate partnerships and coordinate implementation activities in a structured manner. This tool provides a step-by-step guide for identifying project champions at the individual and organizational levels, preferably city staff, representatives from NGOs or local advocacy groups, that will remain engaged throughout the planning process.
IDENTIFY MANDATE OF TOD ORGANIZATION DEPENDING ON SCALE

MANDATE AT DIFFERENT SCALES

CITY/ REGIONAL SCALE TOD

POLICY AND REGULATORY ORGANIZATIONS
- Engage with political leaders and other decision-makers in goal setting and vision building for establishing transit supportive development policies
- Collaborate with other agencies to take an active role in addressing policy-level barriers to TOD

TECHNICAL PROJECT-SPECIFIC ORGANIZATION

CORRIDOR/ STATION AREA SCALE

TECHNICAL PROJECT-SPECIFIC ORGANIZATION
- Define project-specific planning processes and mechanisms that can make TOD happen within the existing planning and development framework
- Provide both technical and financial assistance, as well as oversee implementation to evaluate progress and quality of work

IDENTIFY KEY PARTICIPANTS

CITY/ REGIONAL SCALE TOD

PRIMARY PUBLIC SECTOR PARTICIPANTS
- Who owns and operates city/regional transit services? Include ALL agencies
 AND
- Who creates regional growth/economic strategy? Include ALL agencies/departments
 AND
- Who creates and enforces development control regulations? Include ALL agencies from all local jurisdictions
 AND
- Government organization(s) involved in affordable housing/heritage preservation/environmental protection/road safety.

SUPPORTING PARTICIPANTS/ COMMITTEES
- Non-profits involved in affordable housing/social safeguards/heritage preservation/environmental protection.
 AND
- Private sector associations/trusts involved in real-estate development/business and commerce.

CORRIDOR/ STATION AREA SCALE

PRIMARY PARTICIPANTS
- Who owns and operates transit services? Include primary corridor transit agency
 AND
- Who owns majority land around stations?
 - Private individual landowners
 - Private large landowners
 - Public large landowners
 Include:
 - Non-Profit representing landowners
 AND
 - Who creates and enforces development control regulations? Include specific agencies
 AND
 - Who provides infrastructure services? Include all agencies, including water, energy, drainage, road safety

SUPPORTING PARTICIPANTS/ COMMITTEES
- Real estate developers (3-4 may be invited through tendering)
 AND
- Transit feeder service operators (including ride-sharing services if applicable)
 AND
- Experts in affordable housing/heritage preservation/environmental protection as needed.
03 DEFINE TYPE OF INSTITUTIONAL STRUCTURE

TYPES OF STRUCTURES

<table>
<thead>
<tr>
<th>CITY/ REGIONAL SCALE TOD</th>
<th>CORRIDOR/ STATION AREA SCALE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regional/Metropolitan Policy Committee - to review and formulate policy changes</td>
<td>Technical TOD Task Force - to conceptualize TOD Plan with road safety provisions, seek funds, and implement the proposals</td>
</tr>
<tr>
<td>Metropolitan/City Regulations Formulation Committee - to formulate transit-supportive regulations</td>
<td>Public + Non-Profit Coalition - to oversee TOD planning and implementation against goals and targets</td>
</tr>
<tr>
<td>Public + Non-Profit Coalition - to lobby for TOD supportive policies in legal framework</td>
<td>Public-Private Partnership - to finance and implement TOD projects</td>
</tr>
</tbody>
</table>

04 DEFINE COORDINATION MECHANISM

- Decide frequency of meetings with primary participants and with supporting participants and committees.
- Define mode of documenting and recording meeting minutes and medium of communicating them to the public.
- Decide timelines/ frequency of public meetings or workshops to ensure continuous communication with the public.
- Define coordination needs with other agencies not participating in the TOD organization at federal or other jurisdictional scales or from other planning sectors.

05 NOTIFY THE APPOINTMENT OF THE ORGANIZATION

- Follow the city’s existing protocol for notifying the organization.
- Notify the mandate of the organization and the TOD-specific goals for the city or project as relevant.
- Notify the yearly budget needs of the organization and source of funding. As far as possible the source of funding should be continuous and reliable and not dependent on political factors.
- Notify the inter-agency coordination and assistance requirements from various inter-government agencies to achieve the specific goals of the organization.
ALIGNING THE TOD VISION

A strong long-term vision must allow the flexibility of accommodating short-term goals, without compromising the values for a long-term transformation. As cities across the globe continue to grow and encounter new challenges, they are faced with the challenge of addressing local concerns within the legal and policy framework set by federal or state authorities. TOD, a new and innovative concept in many parts of the world, challenges the traditional planning paradigm of car-oriented cities, cemented during the early 70s and 80s. To enable a TOD-supportive environment, then one must identify and target larger legal and policy barriers that impede successful TOD. Some of the typical legal and policy barriers that should be tackled include:

- **Policy encouraging car ownership** - This is true of countries on the high-income scale such as the US to low-income countries such as India. Car manufacturing and sales is a huge industry and many countries incentivize car sales for the sake of national profits. Fuel is also subsidized so that car ownership and driving in incentivized over public transport. There is a need for more awareness about the ill-effects of private automobiles and non-renewable fuel at the national level and local level lobbying must aim to contribute to such awareness campaigns. While this is a long-term process, many cities such as London and Singapore levy a congestion charge, to discourage car movement in dense city areas.

- **Parking is considered a free right** - Parking in many countries is considered a basic right and is also supported by legal precedents. In such cities, prohibiting parking or charging a price for parking generates public conflict. This, in turn, makes it difficult to get public buy-in for TOD projects. Parking prohibition must, therefore, be tackled in a context-sensitive and phased manner, so as to maintain public interest in TOD goals.

- **Land ownership and development rights are absolute** - In countries such as Brazil, India, Mexico, land ownership and development rights are absolute. This makes it very difficult for public agencies to acquire land for transit or TOD investments. Such rights would need to be looked at within the legal context to identify ways of making TOD

- **Public transport is not considered a public service** - In many cities the high cost of fuel and tolls, along with no provision of public subsidy, make it very difficult to maintain public transport operations. There is a need to educate leaders about the social and economic benefits of subsidizing public transport.

- **Road safety is not considered crucial in the planning and implementation process** - It is often believed that road safety is more a matter of human behavior than a matter of infrastructure. There is a need to encourage and consider road safety as an important component of TOD to ensure safe road environments are created for safe behaviors from all types of road users.

- **Urban Planning Standards at federal and state levels promote single-use sprawled planning conventions** - Many regional, state or federal planning guidelines promote sprawling planning standards in terms of minimum road widths and block sizes that discourage compact development plans. There is a need to improve standards to allow for high density, compact development patterns.

- **Rent Control or Land Ceiling Acts** - such acts, if not revised periodically based on city-specific conditions unfairly tweak the real estate market, causing major speculation and an unaffordable real estate market. Many dense cities such as Hong Kong SAR, China and Mumbai were not able to leverage real estate opportunities at the right time due to rent-control measures.

- **Planning Acts are not flexible** - This is one of the biggest challenges in many cities. The process followed for statutory planning must adhere to the relevant acts, which in many cases does not allow for an integrated land use and transport planning approach. This discourages the probability of land use and transit planners working together and deriving the combined benefits of TOD.
The example of the Singapore Planning Model below illustrates a well-structured Planning Framework that allows for collaboration between different planning sectors and enables flexibility between long-term and short-term goals.

- The Concept Plan is a strategic land use and transportation plan that guides Singapore’s development over the next 40-50 years. Reviewed every ten years, the Concept Plan outlines the strategies to provide the physical capacity to sustain a high-quality living environment.

- The Master Plan is a statutory plan that guides the development over 10 to 15 years. It translates the broad, long-term strategies of the Concept Plan into detailed plans for implementation by specifying the permissible land uses and densities. It is reviewed once every five years. The planning strategies to achieve the vision for Master Plan are presented through six key focuses: Housing, Transport, Economy, Recreation, Identity, and Public Spaces. The Land Transport Authority prepares and updates the Land Transport Master Plan, which informs the Master Plan.

- The release of State land for development is carried out through the Government Land Sales (GLS) programme which releases State land for development by private developers. To facilitate timely development of new, selected large-scale areas, Urban Redevelopment Authority (URA) also works with other government agencies to ensure that basic infrastructure and utilities are provided.

Planning A agencies

- **Urban Redevelopment Authority** along with other government bodies

Planning Framework

- **Concept Plan**
 - 40-50 Years Plan
 - Revisions at every 10 years

- **Spatial Master Plan**
 - Divided into 5 Planning Regions
 - 5 Planning Regions divided into 35 Planning Area
 - 35 Planning Areas are divided into 323 Subzones

- **Master Plan**
 - 10-15 Years Plan
 - Revisions at every 5 years

- **Government Land Sales (GLS) Programme**
 - Every 6 months

Planning Process

1. Initial Review of previous plans
 - Identity development directions, land use requirements, and land use
2. Public consultation
 - Public consultation to gather feedback
 - Focus group study & proposals
3. Draft Concept Plan
 - Prepare Draft Concept Plan based on the consultation reports, focus group studies, and proposals
4. Public consultation
 - Incorporate feedback from public forums, exhibitions, public dialogue to discuss views on the draft concept plan
5. Final Concept Plan
 - Prepare final plan based on extensive public feedback received as part of the review
6. 1st Master Plan formulated during 1952-1955 and approved in 1958
7. The Master Plan has since undergone nine (9) reviews and various amendments
8. Update of land use plans
 - Amended and updated the detailed land use plans for the approved planning areas
9. Public consultation
 - Extensive public consultation through various channels such as exhibitions, focus group discussions, and public forums
10. Final Master Plan
 - Incorporate relevant feedback from the public exhibitions
 - Formalise amended plans as Master Plan

Government Land Sales (GLS) Programme

- Based on planning directions set out in the Concept Plan and Master Plan, land is released for development through the Government Land Sales (GLS) programme
- Government Land Sales (GLS) Programme releases State land for development by private developers

Planning Act of Singapore

- **Concept Plan**
- **Spatial Master Plan**
- **Land Use**
- **Transportation**

KEY TOPICS

- Housing
 - New Housing, Conventional Amenities, & Housing Density Mix
- Recreation
 - Planned Green Spaces, Sports & Arts, & Wetland Conservations
- Business
 - Business Centres, Industries, & Intensification around transit nodes
- Transportation
 - Rail & Road Network
 - Improvements
- Identity
 - Built Heritage and Identity for new built forms and areas/zones
- Economy
 - Business, Industries, & Planned Green Spaces
- Identity
 - Arts, & Wetland Spaces, Sports & Arts, & Wetland Conservations

Every 6 Months

- **Government Land Sales (GLS) Programme**
 - Confirmed List (CL)
 - Sites on CL are launched for sale at predetermined rates through tenders
 - Reserve List (RL)
 - Sites on RL are not released for tender immediately but are instead made available for application
EN-R01

ROLES AND RESPONSIBILITIES OF STAKEHOLDERS

Standardized analysis of stakeholders involved in planning and implementing TOD

Type: Reference Document

© 2021 The World Bank
INTRODUCTION

Experiences show that collaboration is a key ingredient to creating an environment that enables the promotion of TOD. Identifying partnerships early-on between different levels of government, multiple transportation and planning agencies, security agencies, agencies involved in infrastructure works, private developers and citizen groups are essential to overcoming political and economic hurdles in creating successful and safe TODs.

As TOD is a new concept, lower and middle income countries typically do not have the regulatory frameworks in place that allow for flexibility in zoning regulations and enabling road safety measures, incentives in exchange for infrastructure improvements, or use of financing tools such as land pooling. Ensuring an enabling environment for transit-oriented development is an attractive proposition for developers and users, requiring public-sector contributions and political will.

PURPOSE

During the assessment stage, it is crucial that factors that enable local governments to initiate, plan and implement successful TOD projects be identified from the beginning. Strong leadership and support may include actions such as issuing policy directives to require transit systems to maximize land development potential, advocating for a community-driven neighborhood planning process in TODs, ensuring safety for all road users – especially vulnerable users (pedestrians and bicyclists) or bringing private sector players to undertake TOD projects in a city. This tool identifies the roles and responsibilities of the various stakeholders included in a coordinated TOD implementation programme.

Disclaimer: The Transit-Orientated Development Implementation Resources & Tools knowledge product is designed to provide a high-level framework for the implementation of TOD and offer direction to cities in addressing barriers at all stages. As the context in low and middle-income cities varies, the application of the knowledge product must be adapted to local needs and priorities, and customized on a case-by-case basis.

© 2021 International Bank for Reconstruction and Development / The World Bank
RESPONSIBILITIES FOR VARIOUS STAKEHOLDERS

<table>
<thead>
<tr>
<th>STAKEHOLDER</th>
<th>ROLES AND RESPONSIBILITIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOCAL GOVERNMENTS</td>
<td>Systems (transit and infrastructure) planning, master planning (city and corridor), local area planning (station area and neighborhood), development control regulations and building by-laws, site plan review and approvals, infrastructure upgrades, land assemblage, active marketing of TOD opportunities, developer incentives, secure financing, enforcement (traffic police) and public outreach</td>
</tr>
<tr>
<td>TRANSIT AGENCIES</td>
<td>Infrastructure investment, station design, systems planning, transit service, land assemblage, active marketing of TOD opportunities, secure financing and joint development of stations with the private sector</td>
</tr>
<tr>
<td>REGIONAL PLANNING AGENCIES OR METROPOLITAN AUTHORITIES</td>
<td>Long-range transportation planning, regional transit planning, regional growth management, technical assistance to local agencies and monitoring of urban transport funds</td>
</tr>
<tr>
<td>INFRASTRUCTURE AGENCIES/ PUBLIC WORKS</td>
<td>Support planning and transit agencies in formulating short-range and long-range goals, developing mechanisms for achieving these goals, provide technical assistance and expertise to support urban growth and safety, help develop infrastructure</td>
</tr>
<tr>
<td>POLICE & SECURITY AGENCIES</td>
<td>Prepare and maintain road crash data inventory, identify road safety and security concerns within the city and station areas, review design interventions and safety plans</td>
</tr>
<tr>
<td>PRIVATE SECTOR ENTITIES</td>
<td>Provide financial support for TOD implementation, joint development of infrastructure in public-private partnerships, construction, investment in real estate and funding transport system operations</td>
</tr>
<tr>
<td>CITIZENS, NGOs AND ADVOCACY GROUPS</td>
<td>Advocacy for NMT improvements, community participation in planning and design, get educated, attend planning meetings and advocate for high-quality design</td>
</tr>
<tr>
<td>ELECTED OFFICIALS</td>
<td>Developer and citizen awareness about the benefits of TOD, changing regulatory climate, advocate transportation demand management policies and local economic development incentives</td>
</tr>
<tr>
<td>BUSINESSES/REAL-ESTATE DEVELOPERS</td>
<td>Joint development with transit agencies, public-private partnerships, affordable housing construction, private sector investment in real estate and employee incentives</td>
</tr>
<tr>
<td>STATE GOVERNMENT</td>
<td>Policy changes, funding assistance, capacity building, technical assistance, Land and Market Reforms</td>
</tr>
<tr>
<td>CENTRAL GOVERNMENT</td>
<td>Policy changes, guidelines formulation, funding assistance, and capacity building</td>
</tr>
</tbody>
</table>
COMMUNICATION BETWEEN STAKEHOLDERS

The government needs to facilitate TOD proposals that are intrinsically based on the urban context of the city. The transit agencies within each level of government, aside from being managers and planners, need to be leaders in preparing and implementing TOD. They also need to adapt to a new organizational hierarchy that can handle the planning and implementation, as well as the long-term management of the TOD system. Typically, responsibilities for various stakeholders in a coordinated TOD implementation programme at the city scale, for example, would include a back and forth communication as shown below. Similar communication patterns will need to be defined at the corridor, station area, and site scales for efficient collaboration between stakeholders.
EN-P01
COMMUNICATION STRATEGY
TERMS OF REFERENCE

Template for hiring a PR agency to analyze potential risks, plan and implement a TOD communications strategy for the community

Type: TOR Template
BACKGROUND

It is believed that a good deal of the benefit of transit investment comes from effects beyond their already high value as mobility enhancements and is found in their ability to positively affect the communities in which we live. It is necessary to generate awareness among all the stakeholders about the key components of the project and how they would benefit from it.

A community outreach programme is a process by which all the stakeholders are informed of the project objectives and its utility. A comprehensive approach should be developed to engage relevant agencies, corridor neighborhoods and businesses, key stakeholders, and the general public throughout the process. The outreach program will include policy and technical advisory committees, public meetings, presentations at neighborhood and business associations, websites and social media, a variety of communication tools, and direct outreach to non-traditional populations and organizations. Stakeholder workshops and/or public open houses will be held at key points in the TOD Planning process including, at a minimum: (1) discussion of problems, goals, objectives, evaluation criteria and alternatives, and data gathering (2) evaluation of alternatives, and (3) selection of the locally preferred alternative. Project information should be translated, as appropriate, to allow for effective outreach.

OBJECTIVE OF THE ASSIGNMENT

A systematic and comprehensive community outreach programme highlighting the key components of a transit oriented development and benefits to the locals will help in disseminating the required information to people. The objectives for the Programme shall be as follows,

- To build a positive identity for the TOD project
- Create an awareness amongst the citizens about the project and its benefits
- Educate and attract new riders for benefits of shifting to public transport and guide on how to shift
- Educate and attract people to live in the proximity of a public mode of transportation
- Induce a shift to public mode of transportation
- Inform and prepare the public regarding the difference and any difficulties they are likely to face during the implementation of the project. Also seek their co-operation, and receive their feedback to improve the proposal specific to the context.
- Identify key stakeholders and build strong partnerships with media and the society for smooth implementation of the project

The coverage for the community outreach programme would be the entire city and suburban area, and wherever the existing transport services are being operated.
SCOPe OF ACTIVITIES

The urban local body intends to outsource both Consultancy and Implementation work to an agency such that the single agency is responsible for the most effective outreach plan. The scope of work will be in two stages. During the first stage, the consultant would be required to develop a Communication and Outreach Plan (hereinafter referred to as Plan) conforming to the objectives detailed above. Subsequently, in the second stage, once the Plan is approved by the client in consultation with the World Bank (WB), the consultant would be required to implement the Plan. All the related cost of conducting seminar/workshop, publicity material, advertisement in the newspaper, etc. to be published on behalf of the client but are to be borne by the consultant. Consultant would be required to station a team within two weeks from the date of final acceptance of the Plan and for a period of four months at the respective city. The consultant will also be required to attend meetings as and when required. The publicity material and advertisements length, size, words, etc. will depend on what has been finalized in Plan. The approximate requirement is provided under each heading for their reference. The client will help facilitate the Public involvement process.

Stage I:

1. Preparation of Plan

Develop an external analysis based on a planned study (to be conducted as part of this consultancy) to understand the perceptions of various identified stakeholders, including civil society, media, and potential users. Identify opportunities and risks, and suggest approaches to address them.

2. Communication Strategy

Prepare a customized communication strategy, including customized messaging for audiences, selection of media tools, etc. aimed at achieving the identified objectives.

3. Development of Plan

Develop a “Plan” based on the communication strategy that would broadly include the following elements:

a. Goals, desired outcomes and expected outcome of the communication strategy
b. Definition of audience
 Issues with specific focus on different user groups like elderly, woman, children, students, differently-abled etc. / theme linked audiences (these are indicative and will need to be defined as part of the Communication Strategy and Consultation Plan)
c. Assessment of current attitudes/beliefs/motivators
d. Analysis of audience’s capacity for change
e. Definition of medium to deliver the message(s) based on activity requirement including the needs of proper consultation as well as publicity at various level / target audience.
f. Consultation Plan: Formulate and discuss the consultation plan for disseminating information on the project to the civil society through focus group discussions, workshops, seminars etc. The plan should follow the following structure and reflect the needs of communication at each stage:
Table 1: Structure of the Consultation Plan

<table>
<thead>
<tr>
<th>Stages of the Project/Actions</th>
<th>Objectives</th>
<th>Risks and Challenges</th>
<th>Audience/ Main Stakeholders</th>
<th>Messages (Information to be Communicated)</th>
<th>Means of Communication</th>
<th>Timeline/ Frequency</th>
<th>Responsibility</th>
<th>Resources</th>
<th>Indicator of achievement for responses</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>Defining Goals and Objectives</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planning and Design</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Evaluation of Alternatives</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Selection of Alternatives</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Implementation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

g. Branding:
A theme for land use and transportation integration and specific branding aimed at promoting TOD. The brand identity that is identifiable and popular for key segments of the population and catch phrase for population to link with the brand/theme

h. Marketing Campaign:
Marketing campaign for transit oriented development to promote sustainable urban development. This would involve campaign through appropriate media such as:
- Print and posters
- Advertisements in the local newspapers
- Radio
- Television
- Web
- Mobile Communication SMS feeds etc.
- Knowledge management activities such as workshops/seminars
- Exposure/competitions etc.
- Campaigns like car free day, bike day, bus day etc.
- Street and Station Signage
i. Media and Civil Society Relationship Management
 - Close engagement with media (print and electronic) assigned to cover the sector / project with information and perspectives
 - Close engagement with relevant civil society organizations (CSOs) to keep

j. Events:
 - Planning for various public events, workshops, seminars, competitions and awareness programmes etc.
 - Participation in national / regional level events including national/ international study tours
 - Events should allow focus on engaging in TOD related discussions and learning from best practices as a way to educate decision makers and people, thereby creating awareness and buy-in to the TOD concept.

k. Communication System:
 Definition of communication system within all stakeholder agencies in terms of who communicates and structure of the communication cell.

l. Feedback Mechanism:
 The Plan should propose setting up of Public Information Centers and must formulate a suitable communication mechanism to facilitate receipt of feedback and grievances from the general public.

m. Impact / Outcome Monitoring:
 Mechanisms to measure Impact / Outcome monitoring including behavioral changes with regard to proposed actions. This would include methodologies and protocol to assess impact of various actions on the user in terms of relevance and satisfaction with regard to the interventions.

n. Documentation:
 Suggest a documentation process including recording for capturing important events, media reports etc.

o. Timeframe:
 Definition of timeframe of communication.

4. Process to be followed while finalizing the “Plan”

The consultant would prepare a draft Communications and Outreach Plan in consultation with the client. A workshop would be organized by the client to which the concerned stakeholders, etc. would be invited for deliberations. The consultant would be required to modify the “Plan” after the inputs received in the workshop.
Stage II

This stage would involve implementation of the components of the approved Plan. In consultation with the client, the team of consultants shall implement the Plan. The various activities to be carried out in the implementation stage are broadly discussed as under, but not limited to:

1. **Advertising and promotions campaign for TOD:**

 A marketing campaign strategy and implementation plan, aimed at achieving the identified objectives needs to be devised. The consultant shall suggest the preferred mix of the various advertising and promotional components as part of the strategy, which should cover:

 - Preparation of advertisements, slogans, hoardings and other
 - Encourage use of sustainable transport modes among the commuters of the city
 - Special outreach strategies to capture the attention and understand the needs of special groups such as health and emergency service providers, women & children, students, etc.

2. **Design of Tools / materials and launch of campaign in relation to the requirements of the consultation plan as well as publicity requirements.**

 The consultant team shall design ‘Tools of Communication’ in relation to the priorities, communication focus and need of consultation as identified earlier. And based on the design guidelines as outlined below, the consultant would prepare the materials and initiate launch of various activities outlined in the strategy. The consultant will also launch the campaign, and build consensus through consultation. This would include information dissemination through the web and newsletters etc.

3. **Preparation of design guidelines, Graphics and Templates:**

 This would involve design of the Brand, make graphic standards (such as logo) for various facilities, organize posters & painting competitions, etc. The consultant will have to create a brand identity for the project which would include but not limited to evolving:

 - Tag line / slogan
 - Posters showing nearest rapid transport station
 - Organizing competition programmes leading to finalization of a brand logo for the project.

4. **Media and Civil Society Management:**

 Production of press releases, blogs, brochures, and organization of press briefings, media visits, along with placement of media articles, daily media monitoring and monthly analysis.

 - Organize meetings, launch events, awareness programs, and targeted outreach with key opinion leaders in the city. After each consultation, the team is expected to submit a report outlining the key recommendations, relevance of these recommendations and means and methods of converting recommendation into action points on the Communication Strategy.
 - Digital Media – Facebook/ Instagram/ Twitter/ Whatsapp – Design and content management
 - Improvement to website and sms facility
5. Advertising
- Develop the print campaign
- Design and production of Radio campaign
- Design SMS message campaign

6. Short presentations and videos (one 3-5 min video)
Videos for schools, offices, etc. to deliver identified messages

7. Public Events:
Planning various public events like car free day, bus day etc. in consultation with communication cell of the client. Planning and organizing focus group discussions to familiarize residents about TOD concept, brainstorming sessions, etc.

8. Public Information Centres and Feedback Mechanism:
The consultant must help the client to set up Public Information Centers (PICs) and assisting in training of the staff. It must also help the client to set up mechanisms to receive user/public feedback as recommended in the Plan.

9. Impact / Outcome Monitoring:
Measuring & Evaluating effectiveness of Outreach Program

10. Documentation of Processes and Events:
- Prepare documents and video clips to present the processes and activities involved in planning and design of TOD, including public views and perception at each stage of the project. After each stage of consultation, prepare a summary outcome report as well response to each of the comments/suggestions received from the stakeholders.
- Develop quarterly plans for information dissemination, perspective sharing and risk management. Prepare monthly newsletter to be published on the client’s website and prepare quarterly report indicating various activities undertaken.

11. Measuring & Evaluating Effectiveness of Outreach Program
The public outreach efforts for promoting TOD must be continuously evaluated to find the most effective approaches. The task must include:
- Evaluation at the end of each outreach effort to gather information that can be used in future outreach efforts.
- The program must have a built-in component which provides a way of finding out what works and what does not.
The consultant must:

- Keep track of how stakeholders heard about TOD and their response for a sample size of 500 commuters / influencers / households; to better understand the effectiveness of various initiatives. This can be undertaken in two phases - one post the initial activities and close to end of the outreach programme.
- Track the number of people attending the outreach efforts and their suggestions and feedback.
- Record Minutes of Meetings / Programs by Audio Visual
- Track media response
- Create a Summary Report of Observations and Recommendations

DELIVERABLES AND TIMELINE FOR SUBMISSION

The consultant shall commence work within a week of signing of the contract and shall submit a Draft Plan within 4 weeks of commencement of work. All deliverables are due within 4 months of commencement of work. During the rollout stage, consultant shall submit monthly progress report. The firm should submit the PERT Chart for the Planning and implementation schedule proposed by them.

Stakeholder engagement plan; stakeholder engagement summary report; newsletters, website content, presentation materials, public meetings, advisory committee meetings, meeting notes, translation services, and other engagement tools identified in stakeholder engagement plan.

<table>
<thead>
<tr>
<th>TASK</th>
<th>DELIVERABLE</th>
<th>TIMELINE (from date of signing the contract)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Memo #1: Inception Report (including Understanding of priorities, key themes and proposed work plan)</td>
<td>P + 2 weeks</td>
</tr>
<tr>
<td>2</td>
<td>Memo #2: Preparation of Draft Communication and Outreach Plan</td>
<td>P + 4 weeks</td>
</tr>
<tr>
<td>3</td>
<td>Memo #3: Final Communication and Outreach Plan</td>
<td>P + 10 weeks</td>
</tr>
<tr>
<td>Stage II</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Memo #4: Documentation of processes, events, audio and video</td>
<td>Ongoing</td>
</tr>
<tr>
<td>5</td>
<td>Memo #5: Three News Letters</td>
<td>Monthly</td>
</tr>
<tr>
<td>6</td>
<td>Memo #6: Two Quarterly Reports</td>
<td>Quarterly</td>
</tr>
</tbody>
</table>

where P is the date of award of the contract
QUALIFICATION OF CONSULTANTS

The Consultant Team must have experience in at least

A. One similar Communication and Outreach Program for TOD Projects

OR

B. At least two studies, which included communication and outreach for a transit project or a large mixed use high density development project

The Consultant Team must include the following key expertise:

<table>
<thead>
<tr>
<th>Key Experts</th>
<th>Years of Experience</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Project Manager and Public Relations Expert</td>
<td>15 years</td>
</tr>
<tr>
<td>2 Branding and Wayfinding Specialist</td>
<td>5-10 years</td>
</tr>
<tr>
<td>3 Urban Planner / Designer</td>
<td>5-10 years</td>
</tr>
<tr>
<td>4 Graphic Designer</td>
<td>5-10 years</td>
</tr>
<tr>
<td>5 Public Relations Expert / Social Worker</td>
<td>5-10 years</td>
</tr>
<tr>
<td>6 Expert in Communicating Real Estate</td>
<td>10-15 years</td>
</tr>
<tr>
<td>Development Opportunities</td>
<td></td>
</tr>
</tbody>
</table>

Disclaimer: The Transit-Orientated Development Implementation Resources & Tools knowledge product is designed to provide a high-level framework for the implementation of TOD and offer direction to cities in addressing barriers at all stages. As the context in low and middle-income cities varies, the application of the knowledge product must be adapted to local needs and priorities, and customized on a case-by-case basis.

© 2021 International Bank for Reconstruction and Development / The World Bank
INTRODUCTION

The ‘Plan+Design’ step of the Framework contains a series of detailed planning principles and design components to formulate TOD plans at various scales of intervention [city, corridor, station area and site scales] and in varying contexts.
The ‘Plan+Design’ step of this framework focuses on providing guidance on design values that underpin TOD as well as the planning process. It also presents action strategies and tools to create a more compact land development pattern hinged upon prioritization of pedestrians and cyclists.

TOD is the integration of transportation and land use planning, combined with an emphasis on the ‘spaces between’ – quality open space, multi-uses and streetscape interventions that contribute to urban placemaking. Critical to the success of an efficient and effective TOD strategy is a common vocabulary for different stakeholders that from the outset focuses on walking, cycling and public transit as primary modes of movement and not personal vehicles. It also takes into consideration the generally ignored inter-dependent impacts of land use, transportation and infrastructure networks and real estate economics at multiple levels.

Many existing resources address this need for a common TOD design vocabulary. Leading among them are the TOD Standard (Institute of Transportation and Development Policy 2017) and the TOD Corridor Course (World Bank Group and World Resource Institute 2015), which are global publications. In addition, many low and middle-income countries have also developed preliminary TOD design guidelines, such as the TOD Guidance Document (Ministry of Urban Development, India 2016), TOD Guide for Urban Communities (CTS-EMBARQ Mexico, 2014), and Design Manual for Low Carbon Development (The Energy Foundation, China Sustainable Cities Program, Calthorpe Associates, 2012).

To stitch these principles together, it is important to integrate them with design standards, development review processes, and regulatory mechanisms. The Plan + Design Knowledge Products include a TOD Zoning Code template (PD-R01) and TOD Planning Principles and Design Guidelines (PD-R02) as ready resources as a starting point for cities that are interested in applying the TOD design values into standards and regulations.

The Plan + Design Knowledge Products also provide “how-to” guides for TOD planning at various scales that integrate clear processes and mechanisms by which the public, private, and community sectors can shape TODs with the changing landscape of cities. The planning guides allow for developing actionable tasks that can be adjusted based on various context, transit mode and local factors such as development typology (Greenfields, urban infill or redevelopment). However, at times there are challenges when it becomes difficult to reconcile the design standards with one another and entails some complicated choices at the expense of other users. Striking the right balance to achieve well-planned TOD would require certain priorities and trade-offs. The Plan + Design Knowledge Products are not presented as standards but as suggestions with corresponding references to allow cities the space to achieve the right balance.

Finally, the Knowledge Products presented here must be read in conjunction with the monitoring and evaluation framework and key performance criteria suggested in the Implementation step of the TOD Framework. Design considerations and standards should ideally be adjusted based on the feedback received from the monitoring and evaluation exercise in a given context.
‘HOW-TO’ GUIDES

PD-H01 How To Prepare A City-Wide TOD Plan (Step-by-Step Guide)
PD-H02 How To Prepare A Corridor TOD Plan (Step-by-Step Guide)
PD-H03 How To Prepare A Station Area Plan (Step-by-Step Guide)
PD-H04 How To Prepare A Site Level TOD Plan (Step-by-Step Guide)
PD-H05 How To Develop TOD Supportive Zoning Framework (Step-by-Step Guide)
PD-H06 Land Amalgamation Framework (Step-by-Step Guide)
PD-H07 How To Plan Safe Access for TOD (Guideline)

RESOURCES

PD-R01 TOD Planning Principles & Design Guidelines (Ref Doc.)
PD-R02 TOD Zoning Code Template (Ref Doc.)
PD-R03 Land Use And Transportation Integration Best Practices (Ref Doc.)
PD-R04 Pedestrian Friendly Design Best Practices (Ref Doc.)

PROCUREMENT

PD-P01 TOD Plans Terms Of Reference (TOR Template)
REFERENCES

WRI (World Resources Institute) and World Bank Group. 2015. *Corridor Level Transit-Oriented Development Course - Module 4: Design Components of TOD*. Washington, DC.
The city-wide planning tool aims to provide the foundation for subsequent scales of TOD implementation by analyzing the existing transit corridors at the city-level and establishing goals for their TOD development. By identifying land use, current activity, transit demand and influence zones, goals and priorities can be established to draft a city-wide TOD plan. Establishing the statutory relevance of this plan will then guide development at the corridor, station area and site contexts.
PREPARATION OF CITY WIDE TOD PLAN

01 MAP LAND USES AND KEY DEVELOPMENTS

To understand the distribution of residential, employment and institutional uses in the city.

DATA SOURCES
- Satellite Image/GIS Data
- As per the approved Master Plan (MP)/Development Plan (DP)/Comprehensive Plan (CP)
- Field Surveys along major transit corridors
- Stakeholder Workshop

02 IDENTIFY ACTIVITY GENERATORS

To help identify routes of high commuter traffic and origin-destination travel patterns. [Housing, Employment and Recreational Centers]

DATA SOURCES
- As per approved MP/DP/CP
- Field Surveys along major transit corridors
- List of Approved Developments
- Stakeholder Workshop

03 IDENTIFY PRIORITY TRANSIT DEMAND CORRIDORS

Based on population distribution, land use plans, location of activity centers and travel demand forecasting (if available) for the transit type proposed.

DATA SOURCES
- As per approved MP/DP/CP
- Mobility Plan/Transportation Plan
- Transit System Detailed Report
- Latest Census Population and Projected Estimates as per MP/DP/CP
- Right-of-way widths: Google earth/satellite images/field surveys/street views

[Refer to AS-H02 How to undertake Rapid Transit Alternatives Assessment]

04 DELINEATE INFLUENCE ZONE OF TRANSIT

To determine the catchment area around transit routes where transit-supportive development needs to be prioritized.

DATA SOURCES
- Existing Station Locations
- Satellite Imagery/Google Street View
- GIS Database for land parcels, road network and natural features
- Master Plan/Development Plan/Comprehensive Plan
- Mobility Plan/Transport Plan
- Field Survey

CITIZEN’S INPUT

Disclaimer: The Transit-Orientated Development Implementation Resources & Tools knowledge product is designed to provide a high-level framework for the implementation of TOD and offer direction to cities in addressing barriers at all stages. As the context in low and middle-income cities varies, the application of the knowledge product must be adapted to local needs and priorities, and customized on a case-by-case basis.

© 2021 International Bank for Reconstruction and Development / The World Bank
05 DETERMINE DEVELOPMENT CONTEXT
To determine the real estate market dynamics, land availability and ROW constraints, including road safety considerations.

06 IDENTIFY GOALS AND TARGETS
For different areas within the TOD influence zone, based on city vision, growth scenarios, multi-stakeholder participation and road safety requirements.

07 DRAFT CITY-WIDE TOD PLAN
Implementing TOD at a city-wide level includes policy recommendations and actions related to various TOD principles across various TOD implementing agencies, identified below:

COMPONENTS OF A CITY LEVEL PLAN
- City-wide Policy recommendations including road safety in TOD areas
- Master Plan Integration
- Typology of corridors and stations (AS-A03)
- Zoning Codes

08 ESTABLISH STATUTORY RELEVANCE
Options to establish statutory relevance for TOD principles include:

OPTION 1
Include a TOD chapter in Master Plan/Development Plan/Comprehensive Plan as an amendment

OPTION 2
Create a TOD policy as a special law that supersedes the existing regulations

OPTION 3
Establish a TOD overlay district as a special area in existing development regulations
PD-H02

HOW TO PREPARE A CORRIDOR TOD PLAN

Corridor planning is essential to ensuring inter-modal connectivity between stations areas, as well as the creation of complementary stations along each transit corridor. Stations must be integrated and accessible to allow for a network of transit-oriented places, which exist within the framework of an overarching city-wide TOD plan.

Type: Step-by-Step Guide

© 2021 The World Bank
Disclaimer: The Transit-Orientated Development Implementation Resources & Tools knowledge product is designed to provide a high-level framework for the implementation of TOD and offer direction to cities in addressing barriers at all stages. As the context in low and middle-income cities varies, the application of the knowledge product must be adapted to local needs and priorities, and customized on a case-by-case basis. © 2021 International Bank for Reconstruction and Development / The World Bank

01 MAP TRANSIT ALIGNMENT AND STATION LOCATIONS

To understand transit system features and station characteristics.

TRANSLIT TYPE
- BRTS | MRTS | Commuter Rail

PHASING
- Priority Corridor(s)

ALIGNMENT
- System Coverage

STATION SPACING
- Average distance between stations

DATA SOURCES
- Transit System Detailed Report
- Mobility Plan/Transport Plan
- Master Plan/Development Plan/Comprehensive Plan

[Refer to AS-H02 How to undertake Rapid Transit Alternative Analysis]

02 DELINEATE INFLUENCE ZONE ALONG CORRIDOR

To determine the catchment area around transit routes where transit-supportive development needs to be prioritized.

DATA SOURCES
- Existing Station Locations
- Satellite Imagery
- Google Street View
- GIS Database for land parcels, road network and natural features
- Master Plan/Development Plan/Comprehensive Plan
- Mobility Plan/Transport Plan
- Field Survey

CATCHMENT AREA
- 800 m - 2 km /feeder network

INFLUENCE ZONE
- 400m –800m / 10min walk

PRIMARY STATION AREA
- 0-400 m / 5 Min walk

03 ANALYZE DEVELOPMENT OPPORTUNITIES

To understand development context and capacity for intensification along transit corridor(s).

DEVELOPMENT PATTERN
- Plot Sizes | Land Use Changes | Distribution of Employment & Residential Uses

LAND OWNERSHIP AND VACANT LANDS
- Property Values | Undeveloped Lands | FAR Utilization

REAL ESTATE MARKET POTENTIAL
- Property Values | Undeveloped Lands | FAR Utilization

DATA SOURCES
- Real Estate Market Assessment Reports
- Land Values from Real Estate Developers
- GIS Database
- Field Survey
- Stakeholder Engagement
- Existing/Proposed Land Uses
- Flood and Vulnerability Maps (to avoid areas at risk)
- Refer to AS-A03
04 ASSESS INFRASTRUCTURE CARRYING CAPACITIES

To understand the maximum number of people that can be supported along the corridor through optimum utilization of the available resources and keeping in view road safety considerations.

<table>
<thead>
<tr>
<th>POPULATION ANALYSIS</th>
<th>PEDESTRIAN AND BICYCLE INFRASTRUCTURE + TRAFFIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Growth Trends</td>
<td>Level of Service Benchmarks</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UTILITIES</th>
<th>TRANSIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>Waste</td>
</tr>
</tbody>
</table>

DATA SOURCES
- Transit System Detailed Report
- Master Plan/Development Plan/Comprehensive Plan
- Mobility Plan/Transport Plan / Traffic studies
- Traffic Impact Studies
- Infrastructure Detailed report
- User count studies for peak and off-peak hours for weekend and weekdays

[Refer to AS-H03 How to undertake Infrastructure Carrying Capacity Assessment and AS-H04 How to do Road Safety Assessment]

05 EVALUATE CONNECTIVITY ALTERNATIVES

To provide seamless linkages and safe transfers between priority corridor(s) and the city’s other transportation network.

<table>
<thead>
<tr>
<th>CONNECTIONS TO LOCAL BUS FEEDER ROUTES</th>
<th>CONNECTIONS TO PEDESTRIAN & BICYCLE NETWORK</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONNECTIONS TO OTHER PREMIUM TRANSIT CORRIDORS</td>
<td></td>
</tr>
</tbody>
</table>

DATA SOURCES
- Bus System Detailed Report / Paratransit studies
- Route Rationalization Studies
- Pedestrian Network Plan / Greenway & Trail System Plans
- Cycling Network Plans
- Mobility Plan/Transport Plan
- Field Surveys
- Google Street Map

[Refer to AS-H02 How to undertake Rapid Transit Alternative Analysis and PD-H07 How to plan Safe Access for TOD]

06 PREPARE CORRIDOR TOD STRATEGIC PLAN

To create a phased implementation plan for prioritizing station areas and level of intervention needed to maximize TOD potential.

<table>
<thead>
<tr>
<th>NETWORK LEVEL IMPROVEMENTS</th>
<th>STATION AREA TYPOLOGIES</th>
<th>PRIORITY STATION AREAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>STREET HIERARCHY</td>
<td>CATALYST PROJECTS</td>
<td>TOD ZONING CODE</td>
</tr>
</tbody>
</table>

[Refer to PD 07 TOD Zoning Code Template]
PD-H03

HOW-TO PREPARE A STATION AREA PLAN

Plans at the station-level are more detailed and design-oriented. This tool aims to assist with the implementation of specific designs and urban design guidelines, as well as streetscape and smaller scale real estate investment.

Type: Step-by-Step Guide

© 2021 The World Bank
01 DELINEATE AND REFINE STATION AREA BOUNDARY

Station area boundaries are defined by the distance people walk in a set duration of time. An effective strategy will work to increase the size of station area planning boundaries for transit stations by providing alternative mobility choices.

DATA SOURCES
- Satellite Imagery
- Google Street View
- GIS Database for land parcels, road network and natural features
- Master Plan (MP)/ Development Plan (DP)/ Comprehensive Plan (CP)
- Transportation/Mobility Plan
- Field Survey

WALKING DISTANCE FROM TRANSIT STATION
Willingness to walk up to 10 minutes to a given station at 5km/hr, is defined by 800m radial circle boundary centered on the station.

NATURAL ENVIRONMENT FEATURES
The boundary is remapped to include natural systems, greenways, waterways, opens space and barriers, such as major roadways and rail corridors.

PED-SHED ANALYSIS
Ped shed is short for pedestrian shed. Ped sheds have irregular shapes because they cover the actual distance walked, not the linear (aerial) distance.

EXISTING BUILT ENVIRONMENT
Existing large-scale developments, destinations and community features beyond a 10-minute walking distance.

02 CREATE INVENTORY AND ANALYZE EXISTING CONDITIONS

ACCESSIBILITY
Position within Public Transport Network | Road inventory | Pedestrian & Cycle Network | Street Grid | Intersections and mid-block crossings
Continuity of Road Network | Traffic Volume Count
Multi-modal Integration: Station Entry | Parking Management | Bus Stops

INFRASTRUCTURE
Physical: Drainage | Sewer | Water | Waste | Telecommunication
Social: Parks | Public Amenities | Street Vendors | Road Safety | Community Centers
Environmental Features: Natural Drainage | Topography
Heritage: Tangible (Built) | Intangible (Culture/Arts)

DEVELOPMENT
Land Attributes: Existing & Proposed (Use + Ownership + Plot Sizes)
Development: Population Densities + FAR utilization + Activity centers
Job Densities

DATA SOURCES
- Development and real estate market trends from stakeholder workshop/ focus group discussion
- MP/DP/CP
- Transportation/Mobility Plan
- Infrastructure Plans
- Field Survey
03 CONDUCT SWOT ANALYSIS

STRENGTHS are favorable conditions to be built upon. **WEAKNESSES** are unfavorable conditions to be considered. **OPPORTUNITIES** are potential improvements and favorable conditions that will help achieve project goals. **THREATS** are the potential barriers to the realization of project goals.

Categorize SWOT based on:

- Urban Design & Placemaking
- Land Use Attributes
- Crash data and blackspot identification
- Access to Transit
- Pedestrian and Cycle Mobility
- Safe design elements
- Parking Management
- Context: Development/Redevelopment/Greenfield

04 DEVELOP STATION AREA PROGRAMMING ALTERNATIVES

Programming alternatives may include scenarios on how the TOD station area may evolve over time:

- Accessibility Scenarios that include road safety measures
- Housing Development Scenario
- Employment Development Scenario

05 PREPARE STATION AREA CONCEPT PLAN

COMPONENTS OF A STATION AREA PLAN

- Spatial Layout Plan illustrating connectivity, land use mix, and building densities
- Circulation & Multi-modal Integration Plan
- Area-wide Parking Plan
- Physical Infrastructure Plan
- Landscape and Open Space Plan
- Architectural and Urban Design Guidelines
- Real Estate Market Potential Strategy
- Catalyst Redevelopment Projects
- Capital Improvements Program
- Phasing Strategy
- Branding and Communication Strategy
PD-H04
HOW-TO PREPARE A SITE LEVEL TOD PLAN

A step-by-step process guided by a series of task-based actions that will assist cities to plan and implement TOD at the site level

Type: Step-by-Step Guide

© 2021 The World Bank
IDENTIFY SITE CONTEXT

To understand the development opportunities and constraints.

ASSESS THE SITE CONTEXT BASED ON

- Location
- Connectivity
- Surrounding Development

REVIEW OF PLANNING DOCUMENTS

To apply development norms within the transit influence zone.

DATA SOURCES

- Land Use as per Master Plan/Development Plan/Comprehensive plan/Overlays if applicable
- Building Regulations
- Road safety policies and street design guidelines
- Other relevant Policies and Codes

CONDUCT EXISTING CONDITIONS BASELINE ASSESSMENT

To gain an understanding of the existing or desired level of activity to develop TOD projects. Elements include:

STATION AREA CHARACTER

Site History | Population | City-wide Context

DEVELOPMENT

Existing/Proposed Land Use | Surrounding Buildings | Land Ownership

ACCESSIBILITY

Pedestrian and Bicycle Network and safety | Safe access to mass transit | Feeder Transport network | First and last mile connectivity

EXISTING INFRASTRUCTURE

Roadways | Utilities | Safety assessment for all road users | Public Facilities

URBAN DESIGN

Street Grid and inventory | Setbacks | Heights | Building Forms | Open Spaces

PARKING

On-Street | Off-Street | Legal and Illegal Spaces | Park and Ride | Cycle parking | IPT parking

Disclaimer: The Transit-Orientated Development Implementation Resources & Tools knowledge product is designed to provide a high-level framework for the implementation of TOD and offer direction to cities in addressing barriers at all stages. As the context in low and middle-income cities varies, the application of the knowledge product must be adapted to local needs and priorities, and customized on a case-by-case basis.

© 2021 International Bank for Reconstruction and Development / The World Bank
04 CONDUCT AN OPPORTUNITIES AND CONSTRAINTS ANALYSIS

To gauge the level of interventions needed to make the site TOD compatible.

COMPONENTS TO BE EVALUATED
- Real Estate Potential
- Mobility & Circulation
- Road Safety
- Mix of Land Uses
- Urban Design

05 PREPARE SITE DEVELOPMENT PROGRAM ALTERNATIVES

To determine the highest and best use for the site and select a preferred alternative.

EXAMPLE
- Improving Connectivity
- Enabling Road Safety
- Optimizing mix of uses
- Creating Destination

06 DEVELOP CONCEPTUAL SITE MASTER PLAN AND URBAN DESIGN SCHEME

To translate the site development program into a physical layout plan with supporting street design and built form.

COMPONENTS OF A SITE LEVEL PLAN
- Physical Site Plan
- Building Architecture
- Circulation Plan including road safety measures
- Parking Plan
- Landscape Plan
- Site Infrastructure Plan
- Phasing Strategy

07 FINANCIAL AND IMPLEMENTATION STRATEGY

COMPONENTS:
- Project costs and revenues
- Phasing Plan
- Institutional Framework
PD-H05

HOW TO DEVELOP A TOD SUPPORTIVE ZONING FRAMEWORK

Guideline for the government to prepare/revise TOD supportive zoning ordinances, including revisions for pedestrian activities, urban design and parking restrictions.

Type: Step-by-Step Guide

© 2021 The World Bank
TOD K P

Disclaimer: The Transit-Orientated Development Implementation Resources & Tools knowledge product is designed to provide a high-level framework for the implementation of TOD and offer direction to cities in addressing barriers at all stages. As the context in low and middle-income cities varies, the application of the knowledge product must be adapted to local needs and priorities, and customized on a case-by-case basis.

© 2021 International Bank for Reconstruction and Development / The World Bank

01 REVIEW & ASSESS EXISTING REGULATIONS

- Identify existing regulations that do not work, are obsolete, are not developer friendly and/or are being constantly superseded during site plan approval stage.
- Identify local and national mandates or policies for ensuring safe roads for all users.
- Evaluate whether existing FARs are being utilized—this also provides an indication of market demand and absorption potential.
- Assess if the regulations include urban design, pedestrian and cyclist access, and general road safety design guidelines.

DATA SOURCES

- Land Use as per Master Plan/Development Plan/Comprehensive plan/Overlays if applicable
- Building Regulations
- Street Design Guidelines
- Relevant Policies and Codes

02 ENGAGE DEVELOPERS IN MODIFYING DEVELOPMENT NORMS

Organize a workshop with multiple developers to identify:
- Shortcomings of existing regulations
- Which regulation’s work and what needs to change
- Which regulation’s need to be included

03 ASSESS & DOCUMENT EXISTING GROUND CONDITIONS

Based on the various scales of intended interventions, to gain an understanding of the existing or desired nature of development, parameters to be studied shall include:

- **STATION AREA CHARACTER**
 - Site History | Population | City-wide Context

- **DEVELOPMENT**
 - Existing/Proposed Land Use | Surrounding Buildings | Land Ownership | Incentives for financial tools for builders to enable road safety | Speed zones

- **ACCESSIBILITY**
 - Pedestrian and Bicycle Network and safety | Safe access to mass transit | Feeder Transport network | First and last mile connectivity

- **EXISTING INFRASTRUCTURE**
 - Roadways | Utilities | Safety assessment for all road users | Public Facilities

- **URBAN DESIGN**
 - Street Grid and inventory | Setbacks | Heights | Building Forms | Open Spaces | Traffic calming and safety elements

- **PARKING**
 - On-Street | Off-Street | Legal and Illegal Spaces | Park and Ride | Cycle parking | IPT parking | Parking Tariffs
ESTABLISH TOD ZONING VARIATIONS

TOD Zones
- Core Area
- Primary Zone
- Influence Zone

Built Form
- Building Use
- Plot Size
- Building Height
- FAR and TDR
- Incentives enabling road safety

Transport
- Road Width
- Travel Lanes
- Road Types
- Speed zones
- Travel restrictions and closures, for walking and cycling zones

Special Area
- TOD Typologies
- Heritage Area
- Tax districts for financing TOD and road safety improvements
- Others

Miscellaneous
- Topography
- Natural Features
- Physical Barriers
- Infrastructure and green cover.

UPDATE/AMEND CITY DEVELOPMENT REGULATIONS/ORDINANCE (DCRS)

Replace existing regulations where possible or create new transit supportive regulations related to (at minimum):

- Setbacks
- Block Width
- Complete Streets Standard
- Pedestrian & Bicycle Standards
- Suggested Land Use Mix
- Density Matrix
- Street Frontage
- Parking

To establish statutory relevance, one of the following options could be utilized:

OPTION 01:
Include a TOD chapter in Master Plan/Development Plan/Comprehensive Plan as an amendment

OPTION 02:
Create a TOD policy as a special law that supersedes the existing regulations

OPTION 03:
Establish a TOD overlay district as a special area in existing development regulations

INITIATE DEVELOPMENT REVIEW PROCESS

- Incorporate updated regulations in draft form to:
 - Existing Master Plan
 - Master Plan Update (if underway)
- Follow the city’s existing protocol for the development review process, including:
 - Public consultations
 - Presentations to stakeholder,
 - Objections & suggestions phase to seek inputs from the community

NOTIFY TOD ZONING AMENDMENTS

Follow the city’s existing protocol for amendments to regulations notification
PD-H06

LAND AMALGAMATION FRAMEWORK

A step-by-step planning process to guide the restructuring of land for large-scale TOD interventions

Type: Step-by-Step Guide
ABOUT THE PLAN+DESIGN TOOL

PURPOSE
Land amalgamation is required for the purpose of assembling land for urban expansion, infill development, or redevelopment. In this process, the original landowners or occupants voluntarily contribute a certain percentage of their land to the government or other project initiators and, in return, receive compensation in the form of money, serviced land, or any other form of incentive.

CONTEXT
The land amalgamation process can be carried out in three different contexts, namely greenfield, infill, or redevelopment projects.

FOR GREENFIELD PROJECTS
Land amalgamation in greenfield projects can be undertaken in areas where there is land available. These can be farmlands, unused land in the outskirts, etc.

FOR URBAN INFILL PROJECTS
Underutilized and vacant lands have huge potential for urban infill near TOD areas. These lands should be amalgamated to be developed as high-density and serviced area.

FOR REDEVELOPMENT PROJECTS
Redevelopment projects can be undertaken by amalgamating lands that have blighted, unused structures, or in decayed inner city areas.
PREPARATION OF LAND

1 DEFINE TOD AREA

Define the TOD station area within 5-10 minutes walking distance of the transit station.

2 IDENTIFY PROPERTIES FOR LAND AMALGAMATION

Identify properties that can be incorporated for an Amalgamation Plan.

GREENFIELD
- Exclude natural features
- Rationalize boundaries based on physical barriers, such as bridges, flyovers, etc., that act as a barrier

URBAN INFILL
- Exclude natural features
- Include underutilized, vacant and government-owned lands

REDEVELOPMENT
- Exclude natural features
- Include blighted and unused structures
- Include decayed inner-city areas

3 REFINE LAND AMALGAMATION BOUNDARY

Refine the final project area boundary based on the following parameters:
- Clarity on ownership of land
- Whether the land falls under “No Development Zone” as specified by the State/Region/Nation
- Owner’s consensus
- Check with Zonal Regulations

The following instruments can be followed to assemble land that is more viable for development:
- LAND SWAPPING
- LAND SHARING
- LAND ACQUISITION
- LAND READJUSTMENT
- TRANSFER OF DEVELOPMENT RIGHTS
Create a Land Assembly Plan within the amalgamated area through a layered consideration of all the TOD requirements. The TOD requirements to be considered are listed below.

1. **TRANSIT STATION**
2. **STREET GRIDS**
3. **TRANSIT PLAZA AND URBAN PLACES**
4. **HIGH TO LOW DENSITIES**
5. **AMENITIES AND INFRASTRUCTURE**
6. **RETAIL AND COMMERCIAL**
7. **INTERMODAL CONNECTIONS**
8. **PARKING**
9. **BUILT FORM**
IDENTIFY DELIVERY MODE

Identify the appropriate delivery mode for implementing the project. A combination of public and private modes of delivery may also be considered for separate components of the project.

<table>
<thead>
<tr>
<th>PUBLIC</th>
<th>PRIVATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>For delivering the project through a public mode, the following steps will be considered:</td>
<td>For delivering the project through a private mode, the following shall be considered:</td>
</tr>
<tr>
<td>• Phased costing needs for the development</td>
<td>• Structuring of PPP/other partnerships</td>
</tr>
<tr>
<td>• Identification of sources for financing the project, including public funding for public works improvements, public housing and capital markets for financing development work</td>
<td>• If the project is undertaken by a private party or a community organization, then regulations must be prepared to ensure TOD-compliant development</td>
</tr>
<tr>
<td></td>
<td>• Cost estimation of public works necessary for the development</td>
</tr>
</tbody>
</table>

PREPARE PROJECT DELIVERY PLAN

Prepare a Project Delivery Plan, including a phased implementation plan and supporting institutional and regulatory formations, as required.

1 PHASING AND IMPLEMENTATION

It shall consist of different stages, such as a pre-planning stage, planning and design stage, implementation stage, and monitoring and evaluation stage. These stages may be modified as per different project requirements.

[Refer to IM-H02 How to Develop TOD Phasing Strategy]

2 NOTIFY REGULATIONS

To allow development in accordance with the regulations, they must be notified. The TOD principles that must be incorporated in regulations include:

3 CREATE AN INSTITUTIONAL AUTHORITY OR BODY FOR IMPLEMENTATION

Based on the delivery mode selected, a specific implementation body must be formed with sufficient accountability mechanisms to ensure equitable development and minimal displacement of original residents.
Guideline for the government to prepare/revise TOD supportive zoning ordinances, including revisions for pedestrian activities, urban design and parking restrictions.

PD-H07
HOW TO PLAN SAFE ACCESS FOR TOD

Type: Reference Guide

© 2021 The World Bank
INTRODUCTION

An easily understood notion of TOD planning relates to the intensification of development around the transit station. This is achieved through two strategies; increasing built-up density and diversifying permissible land-uses. With such dense urban environments, the number of users in the public realm also increases significantly, posing safety concerns for all users. This also requires the provision of networks safe access to transit stations and efficient connections between these developments and transit stations – which is often neglected. If these networks are not adequately provided, then it discourages the use of transit to access these developments, resulting in a much lower transit patronage than should be expected.

In order to achieve safe networks within a TOD area, the “Sustainable Safety” principles of functionality, homogeneity and predictability will need to be looked more comprehensively for planning and designing of roads, so that they align with the TOD principles and can be integrated with the local context, to develop implementable on-ground design strategies. These three Sustainable Safety principles tailored for TOD requirements have been briefly explained below:

1. **Functionality of roads in TOD area:** While assessing road safety it is critical to understand the mixed function of the road network – whether it is an arterial road that includes a mix of transit or a connector that caters to traffic accessing the developments in the TOD or feeders that focus on accessing the transit stations as well as distributing traffic within the station area. The planning and design considerations are therefore made keeping in mind the mixed function in the street. The functions of the road in a TOD are also related to the mix of land use along it and may vary through the time of the day impacting the volume of users on it.

2. **Homogeneity of road design in TOD area:** Homogeneity of road design refers to the prevention of large differences in speed, mass and direction. The road network in a TOD area caters to all kinds of speeds and volume of vehicles within its ROW – slow moving pedestrians and persons with needs, cyclists, faster moving cars and other motor vehicles, feeder services such as IPT and public buses, and high speed mass transit vehicles such as BRT or metro rails. It is crucial to ascertain the capacity of these network based on the function they serve and segregate the users and different modes by using protective measures or adequate buffers between the modes to ensure maximum safety. It is supported by orienting streets towards the station, determining directionality of these streets to enable ease of traffic flow within the station areas, and maintaining speeds based on the immediate context – nature of land use and function of the streets. These principles are detailed out on PD-H07 subsection Capacity, Orientation and Safety; as well as in safety design guidelines provided in PD-R02.

3. **Predictability of road network in TOD area:** This refers to the usability of the road space – “are the road users familiar with the behavior demanded by different road types, and what they may expect from them and others”. The design of road infrastructure and amenities are such that the users can recognize the type of road and are aware of its function. Within a TOD, higher mix of users, reinforces the need for predictability to achieve safety. Prioritization of road users, distribution of lanes within a ROW, stops and utilities, markings on the roads, signage, visibility, movement lines at intersections (especially for pedestrians, cyclists and other vulnerable users) gets highlighted.
5 PRINCIPLES OF TOD ZONE NETWORK PLANNING

The most critical aspect for the creation of a strong interlinkage between the transit station and the developments within station area is network planning. In our assessment, there are five key principles of network planning for TOD zones, which are presented below.

- **Coverage**: The network should have an extensive reach, such that every property within the TOD zone is connected to the network.

- **Continuity**: There should not be missing links (gaps) in the network.

- **Orientation**: The network should be oriented towards the transit station, providing as direct connectivity as possible.

- **Capacity**: The capacity of the network should be adequate to meet the high volumes of transit commuters, particularly along the trunk routes leading to the station.

- **Safety**: Achieving a high standard of safety should be the guiding principle behind each and every decision on network planning; especially for the safety of vulnerable road users.

“Coverage” helps define the extent of street network and accessibility for different road users and hence provide for suitable solutions to ensure safe access. “Continuity” refers to the connectivity within the network and its density, ensures equitable access to the transit without congesting any area, and channelize traffic flow within the TOD zone. “Orientation” is facilitating the directed movement to and from transit stations and hence help in placing required infrastructure for safe movement. “Capacity” refers to the spatial quality of the network for all road users to ensure adequate space within the ROW based on the volumes of each type of user the network is catering to. Lastly “Safety” refers to creation of safer and segregated infrastructure within the network to avoid any type of crash or ensuring lower speed allowing the safe sharing of infrastructure. These as principles of network planning, help in creating framework for implementing physical safety measures.

For example, sidewalks are designed to function separate from vehicular travel lanes and cycle infrastructure. They are designed as per best practices and recommended design guidelines to accommodate the anticipated number of pedestrians using the segment of the network depending on how it connects to the transit station and any other node within the station area. However, these attributes will become redundant if the sidewalks are not part of a network that is not continuous and connect different nodes within the TOD area including the transit station.

These 5 Principles of Station area Network Planning for a TOD are thus derived from the three key road safety principles. The following sections cover these five principles in more detail, which includes guidelines and strategies on how to implement them.

Refer [PD-R02](#) TOD Planning Principles for detailed guidelines for designing safe infrastructure based on road safety and network planning principles.
PRINCIPLE 1: Coverage

The principle of Coverage, with respect to station area network planning, means that every property within the defined influence area, must connect to a network leading to the station.

- It is neither practical nor desirable, for the coverage of every network to be as extensive as another. The importance of direct access of a network will depend upon the property’s location with relation to the station.

- Thus, an important step in planning the coverage of feeder networks is to first define the realms of each network within the TOD zone.

SAFETY IMPLICATIONS

If access networks do not have adequate coverage, then safety in the station area is adversely impacted. Lack of connectivity reduces the mode choices available to the commuter, which increases their dependence on personal motor-vehicles, thereby increasing traffic volume. There is clear evidence to show a strong correlation between traffic volume and road crash.

DEFINING THE NETWORK REALMS

- A station area in the denser parts of the city, where transit network coverage is high, will normally only have two realms for the planning of access namely
 - The walking realm and
 - The area outside the walking realm.

- The walking realm is normally considered as what an average commuter can walk in 5-10 minutes, which is about 400 to 800m.

- In low-density, suburban areas, a higher walking reach of 10 - 15 minutes (800m - 1.2km) may be considered.

The following diagram depicts the realms of a typical station area in a medium to high density urban area.
The boundary of the walking realm will not follow a straight line radius around the station, but will take an irregular shape determined by local land-use and street networks. Typically, the higher the density of the street network, (and smaller the block sizes), the larger is the walking realm.

The realms for cycling is much higher, typically to the order of 3 - 5 times the size of the walking realm; based on an average cycling speed of 18 to 25km/h, and an average willingness to cycle time of 10 - 15 minutes.

Similarly, depending on context, the feeder service or paratransit realms are likely to reach up to 3 - 5km from the transit station, which typically extend up to and beyond the TOD zone boundary.

A key component for the planning of these realms is the delineation of trunk routes leading to the station. It is not possible for every property to have direct connectivity to the station across all realms. The more practical solution is to connect properties to a few trunk routes leading to the station. This creates a strong and extensive network that offers multiple choices to the commuter. Such networks follow what is described as the hub-and-spoke model. The station is the center and trunk routes radiate outward from it. Further along, lesser capacity routes branch out of the trunk routes, forming a cohesive network.

It is not practical to provide distinct networks for each feeder mode. The key principle to follow here is priority in network planning. This refers to a hierarchy of priority when planning for the mobility needs of different modes.

Walking should sit on the top of this priority list, with access by personal motor-vehicles being the least priority. This is not a unique idea to TOD zone planning, but is rather a general guiding principle for creating sustainable, people-friendly cities. However, these guidelines become more relevant from the perspective of TOD, given the focus of prioritizing commute by transit.

ESTABLISHING PRIORITY IN NETWORK PLANNING

1. Walking:
 Walking is the most pertinent mode for first and last mile connectivity in almost any given circumstance. There is likely to be a high volume of walking commuters within the walking realm, and hence it is important that the network meets a high level of capacity and mobility. Outside the walking realm, walking infrastructure can be of lower capacity and mobility. However, it is still essential to have network coverage in this zone as well, because walking is likely to be used in combination with other feeder modes to access the station.

2. Cycling and Feeder Transit Services:
 Next in priority are the cycling and feeder transit services, (if applicable). As discussed earlier, the realms of the two will likely be the same in high density, urban areas, and both services can offer strong connectivity to the main transit line, depending on the context. The need for segregated infrastructure would be established based on volumes and differential speed. However, the shared network lines need to be planned and designed in a manner that offers a high level of safety and mobility for these modes.

3. Para-transit and shared vehicles:
 In some cases, para-transit modes, (taxis, rickshaws, etc.), may serve as feeder services to the transit station. This becomes more relevant in suburban areas, where some properties may not be within walking distance of the station or a feeder transit service. Recent innovations in mobility have also introduced the use of shared vehicles, (that can be self-driven) performing the function of first and last mile connectivity. In most cases, paratransit vehicles will share the same street networks of general vehicles. However, in the vicinity of the station, they may require special infrastructure to allow for safe and convenient transfer to and from transit. In general, paratransit services should be next in line of priority in the station area network planning.

4. Personal motor-vehicles:
 In some contexts, personal motor-vehicles may serve to provide first mile connectivity to transit. This may be relevant in low-density, suburban areas, that do not have access to other feeder modes. This entails the provision of adequate, long-term parking infrastructure in the vicinity of the station, which is only going to be viable in low-density areas. In most cases, personal motor vehicles should have the least priority in station area network planning.
Adaptation of hierarchy of priority for mobility planning, prominent in many global cities at the forefront of sustainability. This hierarchy of priorities is all the more relevant for station areas, given the focus of moving people away from personal vehicles and onto transit.
Network continuity within the context of the station area, means that every property should be seamlessly connected to every other property, and to the transit station. This means that there should not be any gaps or missing links in the network, where a commuter is forced to use other components of the general road network that may not be designed for this mode.

- If access networks to the station are not continuous, then it forces the commuter to use other elements of the road infrastructure that do not meet its safety requirements.

- The critical importance of network continuity is often neglected in cities in developing countries, where infrastructure provision is scattered and disjointed, making it near impossible to complete a trip entirely along the network.

- When implementing a station area plan, an integral step is to implement measures to augment and complete the feeder networks. In built-up, dense urban areas, it is generally difficult to build new infrastructure to complete the network, other more practical strategies are incorporated to achieve a satisfactory result.

PRINCIPLE 2: Continuity

4 MEASURES TO BRIDGE NETWORK GAPS

1. Developing off-road connectors
2. Using development incentives to augment the network
3. Developing grade-separated infrastructure
4. Designing for shared infrastructure

DEVELOPING OFF-ROAD CONNECTORS

- When planning the feeder network, an initial step is to develop a comprehensive map of the station area. This map will have important layers, such as the street network, land-use, property ownership and building footprint.

- This map can then be analyzed to identify missing links, which is then juxtaposed against adjacent land-use and property development, in order to identify opportunities to create off-road connections. Such a spatial study will help to identify, at least, the physical possibilities for completing the network.

USING DEVELOPMENT INCENTIVES TO AUGMENT THE NETWORK

The implementation of a TOD strategy is a golden opportunity for urban transformation within the TOD influence area. An integral component of a TOD policy is to intensify development around transit, by creating development incentives. A key strategy in this regard grants landowners two boons - additional Floor Space Index (FSI) and permission to transform land-use to more lucrative uses, such as commercial development. Property owners stand to make tremendous financial gains from this transformation.

In order to ensure that the objectives of social infrastructure within the station area are also met, the city should link these incentives to different terms and conditions.

Terms and conditions for bridging network gaps:

- **Break up large land parcels:** The city can include a condition in the TOD policy or the applicable zoning regulations, that requires plot holdings beyond a given size to be divided, with a public right-of-way created in between.

- **Implement and incentivize easement rights:** Easement refers to the right to enter and cross another person's private property in order to access a public right-of-way.
Such a strategy may be implemented for large land parcels and can be linked to additional FSI in built-up urban areas. Such easement rights can be restricted to non-motorized transport only, which also stand to benefit the property in question if it is a retail-commercial establishment.

- **Utilize building setbacks**: Amalgamate building setbacks between adjacent buildings to create new rights-of-way. These links should be restricted to pedestrian and cycling movement ideally, because building setbacks are not likely to be wide enough to accommodate motor-vehicle traffic.

- **Incentivize landowners to build missing networks**: The City develops a network plan that includes the use of private land. It then works with different landowners to build the various sections of the network, ensuring seamless connectivity between the different sections. Landowners may be incentivized to build these missing sections, as a partnership model with the City. This will help provide direct, safe and convenient access to the transit station thus increasing the footfall of potential customers and improving the commercial viability of their property. The City benefits with sharing of initial capital expenditure, and subsequent maintenance of the infrastructure - typically managed by the private landowner.

Refer Finance knowledge Product [FI-R01](#) for more zoning incentives and other incentives that would facilitate road safety inclusion during TOD implementation.

DEVELOPING GRADE-SEPARATED INFRASTRUCTURE

- In some extreme cases, one may consider the use of grade-separated infrastructure, either elevated or underground, to overcome a missing link in the network.

- Such measures must only be used as a last resort, when all other at-grade measures have been exhausted; because of its high capital cost, difficulty in access for mobility-impaired users, negative impact on the built-environment, and high propensity for decay due to disuse.

- Grade-separated infrastructure forces the commuter to climb up and down.

- Grade-separated infrastructure must generally be considered to augment the network and should not be used in lieu of at-grade facilities.

- Where provided, it is advantageous to directly link with the transit station, especially if the station infrastructure is at the same grade. This eliminates the need of changing grades, at-least, at one end of a transit-access trip.

Refer [PD-R02](#) for more details on developing grade-separated connectors.

DESIGNING FOR SHARED INFRASTRUCTURE

- In most built-up urban environments, it is not going to be practical to develop distinct networks for all feeder modes.

- There will be instances where modes will just have to share infrastructure along certain sections of the network.

- If designed appropriately, this can still ensure a high level of safety and mobility for all road users.

- The key guiding principle to follow here is, "when infrastructure is meant to be shared, design it to meet the mobility needs of the most vulnerable road user". For instance, if the carriageway must be shared between motor-vehicles and cyclists, then the design speed should be one that is safe for cyclists.

The measures to plan for a shared street are discussed in further detail under the fifth Principle of Safety.
This principle places the station as the anchor point of the network. The key component to ensure a network is well-oriented towards the station is to identify and develop trunk routes. This means the planning of networks that connect properties to the transit station as directly as possible.

A built-up urban environment rarely offers such a clean slate to plan the feeder network. Here, one has to work within the limitations of the existing built environment as well as the available right-of-way.

PRINCIPLE 3: Orientation

DETERMINING THE MAIN NODES

A key aspect of network planning in built-up areas is to first identify the main nodes in the station area, besides the station.

- These nodes are any location that are likely to have a high footfall, such as an office complex, a major retail street, a hospital, an educational building, etc. They may either be single points or stretches of corridor, (as in the case of a shopping street).

- Once these locations have been identified on a map, the next step is to overlay them on the road network of the station area. The objective is to determine how these nodes align with each other and transit station, and how to connect them with the least number of routes in the shortest possible distances.

- One may begin by drawing straight lines between these nodes and the transit station. If two or more lines are near one another, then consider the possibility of a single connector to these nodes.

- The next step is to trace a path along the existing right-of-way, that approximates as closely as possible to the straight-line connector to the station.

ASSESSING STRATEGIES TO MINIMIZE DEVIATIONS

- Once an approximate path for a trunk route is determined, the next step is to analyze it to reduce any deviations in this route using the measures discussed earlier in Principle 2: Continuity.

- The measures under “Continuity” will have to be assessed together and analyzed for their relative cost versus benefit.

- This is likely to be an iterative process, where all options are assessed, in order to determine the optimal solution.

- It is also likely that different measures will be viable for different sections of the route, and the final solution is likely to be a combination of one or more strategy.

3 ASPECTS TO DETERMINING THE ALIGNMENT OF TRUNK ROUTES

1. Determine the main nodes
2. Assess strategies to minimize deviations
3. Assess favorability of local conditions
ASSESSING FAVORABILITY OF LOCAL CONDITIONS

• Network alignment not only includes creating a continuous linkage to the station but also must take into consideration local conditions, such as adjacent land-use, infrastructure capacity, etc.

• It is important to determine if the adjacent land-use supports the selection of this trunk route alignment, keeping in mind that this will entail higher traffic volume and/or pedestrian footfall.

• Furthermore, one has to determine if the infrastructure capacity along each section of the alignment is adequate to meet its requirement as a trunk route. There are multiple strategies that must be first assessed to augment the capacity, before a decision is made. These strategies are described in more detail under the next section, Principle 4: Capacity.

• The final feeder network plan for built-up station areas may have some imperfections but will be the best plan for the given conditions.

Feeder network planning in a built-up environment.

Here, the existing streets were not oriented towards the station to begin with as they primarily ran parallel to the transit corridor. Hence it is not possible to completely orient the feeder networks to the station. However, it is still possible to identify close to direct lines between the main nodes and the station, and adopt different strategies to minimize the deviations (Principle 2) and increase capacity (Principle 4).
Capacity deliberations are most pertinent in the planning of the trunk routes along the network. A TOD involves creating concentrated nodes of moderate-to-high density developments supporting a balanced mix of diverse land uses which are located within 5-10 minutes of walking distance or 800m-1km from mass rapid transit stations. This integration of transportation network and land use around a station area, with elements such as market demands, environmental systems etc, allows for placement of employment, entertainment, leisure and residential uses near each other around the rapid transit stations. This allows for reduced trip lengths and number of trips and prioritizes public transit use and reduces dependency on private motor vehicles.

A dense development implies higher number of users within the area, concentrating around the station, and getting distributed outwards towards the ‘nodes’ through the road network. However, this also poses safety issues, as different road users are interacting within the same space, raising issues of capacity. Measures to augment network capacity have to start with land use planning and transit service planning, which is supported by the following augmentation methods.

PRINCIPLE 4: Capacity

- Generally, national street design codes are inadequate for station areas, in their prescriptions on minimums for pedestrian infrastructure.
- Along major trunk routes in a station area, a minimum footpath width of 5 meters may be warranted. To determine what’s appropriate, it is important to carry out pedestrian volume by capacity studies for the walking network, and reallocate road space to accommodate wider footpaths that can meet the desired Level of Service for pedestrians.
- For the cycling network, it is recommended that segregated cycle paths be provided on all trunk routes leading to the station, especially when the road way is shared with high-speed or high volume vehicular traffic. This may not always be feasible, given local constraints; but this must be the starting guiding position for cycle network planning.
- It may not be feasible to adopt dedicated transit lanes for feeder transit services. However, it would be advisable to restrict other ancillary road uses on these corridors to allow for the safe and smooth movement of transit vehicles. For instance, on-street parking could be restricted along these routes, and additional curb space provided at all bus-stops to accommodate waiting commuters.

MEASURES TO AUGMENT NETWORK CAPACITY

1. Reallocate road space
2. Incorporate building setbacks
3. Eliminate on-street parking & streamline other road uses
4. Create one-way street networks
5. Reduce interruptions in flow
6. Provide more entry & exits at the station

REALLOCATING ROAD SPACE

- The most important tool to ensure adequate capacity is to reorganize the use of road space in the station areas.
- Road space is a critical and finite commodity, especially in built-up urban areas. The judicious allocation of this space plays an important role in determining the quality and safety of mobility in the station areas.

Source: © WRI India
• Para-transit vehicles benefit from dedicated spaces for picking up passengers. However, unlike transit services, para-transit services are not restricted to fixed routes. Hence the locations of these pick-up spaces should be determined by high demand land-uses, such as retail, office, institutional developments, etc.

• For integrating building setbacks into pedestrian networks, a TOD policy can be introduced to allow for the transformation of the ground-floor of a residential property for commercial uses along major trunk routes.

• The city can link the permissions to develop ground-floor retail activities to the condition that the road-abutting compound wall is removed, and the setback is maintained as an extension of the public footpath. The ownership of this space can remain with the property owner, but its built conditions and usage will be guided by the city TOD policy.

Refer to FI-R01 Development Incentives for more zoning incentives and other incentives that would facilitate road safety inclusion during TOD implementation.

REDUCING ON-STREET PARKING AND STREAMLINING OTHER ROAD USES

• An effective way to free-up road space is to reduce the provision of on-street parking, especially along the trunk feeder routes leading to the station. This additional space can then be allocated to footpaths, cycle lanes or feeder-bus lanes.

• Within a TOD, due to the transit services there is a lesser dependence on private vehicles. Limitations on parking will encourage more commuters to use transit.

• It may also be possible to better utilize road space by streamlining other road elements, such as utility boxes, bus-stops, street-vending areas, taxi stands, freight loading/unloading areas, etc.

CREATING ONE-WAY STREET NETWORKS

• If there is a good network of parallel streets, and relatively small block sizes in the vicinity of stations, a network of one-way streets, alternatively running in opposite directions may be created.

• Typically, one-way streets require less carriageway than two-way streets, as they eliminate the need for a median or to have multiple lanes.

• One-way street networks also have the added advantage of being easier to manage at intersections, (because of lesser permissible turns); therefore, requiring fewer signal phases than a regular two-way intersection. This reduces the waiting time for feeder modes (transit, cycle or walking) to cross the intersection.

• A one-way C-shaped loop is also a great way to connect to the transit station. By making loop one-way for vehicular traffic, more road space can be allocated to other feeder network infrastructure, such as footpaths, cycle lanes and station transfer points.

• It must be noted here that converting a two-way street to one-way street is carried out to improve the carrying capacity of the street. This should not be confused with traffic calming design measures.

Refer to PD-R02 TOD Planning Principles & Design Guidelines for information about traffic calming measures.
Existing conditions with two-way circulation of streets (Left), converted to one-way circulation of streets to have improved network capacity

ONE-WAY REROUTING OF STREETS
Santacruz Railway Station area - Mumbai, India:

Parallel streets in the station area have been made one-way in opposite directions, creating a looped connection between the 2-way main street and the transit station. (Note: Here, traffic drives on the left)

(Base map procured from Google maps.)

REDUCING INTERRUPTIONS IN FLOW

- The capacity of a trunk route on a feeder network is not only determined by the road space allocated to it, but also by the frequency of interruptions to its flow.

- The more frequent the interruptions to free-flow conditions, the greater will be the reduction in capacity.

- A crucial aspect of trunk route planning along the network is the adoption of various strategies to minimize interruptions, mainly through the diversion of conflicting traffic movements.

Measures for reducing interruptions in flow:

1. Eliminate traffic intersections along major trunk routes leading to the station. This can be achieved by converting intersecting streets into cul-de-sacs or by modifying the intersection to only allow vehicles to enter and exit the minor street, but not cut across the trunk route.

(Base map procured from Google maps.)
2. Limit the number of driveways on the main trunk routes. This reduces the number of breaks along the sidewalk, again improving free-flow conditions.

Providing More Entries and Exits at the Station

- The capacity of any network is determined by its most constrained point. In the context of feeder networks, this point is often the immediate station area, which has the highest volume of commuters utilizing the smallest amount of space.

- Measures to avoid bottleneck:
 1. Station infrastructure can be designed with multiple entries and exits, directly taking people further along on the feeder network.
 2. One can even consider different points of access for commuters on different modes, to reduce the load at one location.

- Another important measure especially pertinent to feeder transit service, is signal priority. Signal phasing can be designed to give more green time for traffic and pedestrians along the main trunk routes.

- It should be noted that for every situation with at-grade transport lines, some amount of interruptions is unavoidable. At certain points, the trunk routes will have to cross other roads. The objective, therefore, is not so much to eliminate all interruption, but to minimize them where possible, and to design them in a safe and appropriate manner where unavoidable.
Planning for the safe provision of access networks in a station area, requires certain hard decisions that may lessen the mobility of other traffic in favor of the safety and mobility of the feeder network traffic.

Traffic in a station area, (both vehicular and pedestrian), can broadly be divided into two buckets:

1. Traffic destined to or originating from the station;
2. Traffic not concerned with the station in any way.

- In most instances, the priorities of these two groups will clash with each other. For instance, the loading and unloading activities of freight vehicles, servicing shops in the station area, may impede the mobility of commuters to the station. However, the principle of safety must have the highest priority.

- Balancing these conflicting priorities can be made easier by defining the boundaries within a station area, where the priorities of transit commuters are to be placed higher than those of other traffic.

- Typically, in the area closest to the station, traffic bound to the station must be given the highest priority. Similarly, traffic directed to and from the station should be of high priority along all the major trunk feeder routes leading to the station.

- Once the feeder priority areas of the station area are defined, the next step is to determine measures to ensure a high level of safety for the feeder modes in question.

MEASURES TO IMPROVE SAFETY

1. Provide dedicated infrastructure
2. Implement speed zoning & traffic-calming measures
3. Reduce vehicular traffic volume

PROVIDING DEDICATED INFRASTRUCTURE

- The safest measure, though not always the most practical, is to provide dedicated infrastructure for each feeder network which includes footpaths, pedestrian walkways, cycle lanes and bus lanes.

- Dedicated infrastructure is a good measure on wide trunk routes, especially where there is a high volume of vehicular traffic, moving at a very high speed.

- Excluding infrastructure for walking, it is not necessary, or even desirable, for the entire feeder network to be made up of dedicated infrastructure. A good network will utilize a combination of dedicated infrastructure, (where needed), and traffic-calmed shared streets for the remainder.

- Planning for safety requires the determination of where dedicated infrastructure is appropriate and is determined by the intersection of two aspects - desirability and feasibility.

- Desirability relates to the provision of dedicated infrastructure only where it is warranted from the perspective of improving safety. Whereas, feasibility relates to dedicated infrastructure provisions only where it is feasible to do so.
• Dedicated infrastructure can take two forms:

1. **Physically segregated infrastructure**: This kind of dedicated infrastructure is physically segregated from other traffic, using curb, fence, median, landscaping etc. Generally, the segregated infrastructure doesn’t continue over intersections, to allow for traffic to pass.

2. **Lane-marked infrastructure**: It relies on lane-marking and road signage to convey the information instead of using physical infrastructure to segregate traffic.

• From the perspective of safety, segregated infrastructure is generally safer, especially for vulnerable road users like pedestrians and cyclists.

IMPLEMENTING SPEED ZONING AND TRAFFIC-CALMING MEASURES

• Speed zoning is the single most effect measure for the provision of safe mobility in the station areas. Recommended speeds for station area planning:

 • **5km/h**: Narrow streets where traffic & pedestrians share the road
 • **15-30km/h**: All streets within the station walking realm & neighborhood streets outside the walking realm
 • **30km/h**: Trunk feeder bus / cyclist routes to the station
 • **50km/h**: Maximum prescribed design speed for all other roads in the station areas

VEHICLE SPEED AND RISK

Vehicle speed determines the severity of crashes and injuries sustained. Researches have shown that vehicular speeds below 30km/h, drastically reduce the risk of fatalities. The fatality risk for pedestrians with vehicles traveling at 50km/h is more than twice as high as the risk at 40km/h and more than five times higher than the risk at 30km/h as can be seen in the graph below.

![Graph showing risk of pedestrian death vs impact speed](Source: NACTO Global Street Design Guide)

Additionally, vehicle speeds also affect the potential to avoid crashes. Higher speeds reduce the driver’s capacity to stop in time, reduce the maneuvering ability to avoid a crash, difficult to make turns or drive along curves, and cause others to misjudge timing of approaching vehicles. The figure below shows the relationship between vehicular speeds and stopping distances.

![Diagram showing stopping distances at different speeds](Source: NACTO Global Street Design Guide)

NOTE: These studies were conducted in high-income countries and there is evidence to suggest that this relationship might be even more extreme in low- and middle-income countries.
• Desired speed should be achieved through a combination of enforcement and design measures.

• It is recommended to adopt a uniform speed limit for the walking realm across all station area in the city. In certain short sections, where the high pedestrian volumes, coupled with local traffic accessibility demands, a significantly lower speed limit (of 5km/h) may be desirable.

• It is prudent to note that it is not feasible for a cycling network in a station area to entirely consist of segregated cycle lanes. Such infrastructure is desirable and warranted on trunk routes with high traffic speeds and volume. However, at other locations cyclists will share the road with other traffic, and such shared streets will be an integral part of the station area cycling network.

• It is also important to note that speed zoning doesn’t merely entail enforcing speed limits through regulation, but also requires the implementation of appropriate traffic-calming infrastructure to ensure that the design speed is in sync with the speed regulation.

• Automated Enforcement (AE) refers to all forms of technology which detect and record violation of any road rule without direct human involvement. Speed cameras enforcing speed limits are a common application of AE. Over speeding and other illegal behaviors, including disobeying a red light signal, mobile or cellular phone use, incorrect lane use, and non-restraint use can be detected using an automated enforcement approach. The use of technology should be considered as one part of a comprehensive speed management approach that includes road infrastructure and roadside policing as well. This technology requires adequate support of robust database of vehicle registration, high-quality camera sensitivities and calibrations, and supportive regulations and policies.

• Regulatory measures: Another strategy is to adopt regulatory measures, such as restricting certain vehicle classes during peak commuter time periods. For instance, freight vehicles may not be allowed in the walking realm from 8:00 AM to 9:00 PM.

• Alternate bypass routes: Traffic volume in the walking realm can also be reduced through the creation of alternate routes that bypass this area. For instance, a new road may be developed to carry through traffic that does not originate, or is not destined to, a location within the walking realm.

• Eliminating through traffic: Another measure to limit traffic volume within the walking realm is to convert certain streets into dead-ends (cul-de-sacs) or loops back to the same road outside the walking realm. This discourages the use of these streets by any traffic that is not locally-bound. Loops are preferable to cul-de-sacs because often the streets in the near vicinity of the station are not wide enough to accommodate a functional cul-de-sac.

• Full pedestrianization of streets: Pedestrian-only paved streets could be created for routes in the TOD station area that connect to the transit station with developments having high footfall, or generate heavy pedestrian traffic due to commercial and recreational activities along those routes. Barring access for emergency vehicles and delivery vehicles during certain hours, no motor-vehicle is allowed in these streets.

• Out of the walking realm, the undue diversion of vehicular traffic is not recommended. However, along main transit feeder lines and/or cycling routes, traffic diversion may be considered to enhance safety.

REDDUCING VEHICULAR TRAFFIC VOLUME

• There are different measures that can be considered to reduce traffic volume in the station areas, particularly in the walking realm. The measures are discussed here:

1. Restrictive measures: Traffic volume in the walking realm can be significantly reduced, by adopting strategies to discourage personal motor-vehicle usage. For instance, reducing parking availability, or increasing the cost of parking, in the walking realm encourages more commuters to avoid personal motor-vehicle usage.
PD-R01
TOD ZONING CODE TEMPLATE

Template zoning ordinance/guideline for governments to use, including provisions on pedestrian pathways, activity generating uses, porous urban design, parking restrictions, shared parking provision, etc.

Type: Reference Document
ABOUT THE PLAN+DESIGN TOOL

PURPOSE
Establishing an appropriate zoning framework for TOD projects is essential to achieving good design and upholding best practices in transit-oriented development. An effective zoning framework allows for easy and unambiguous enforcement. The approach to writing zoning codes must depend on the planning framework applicable to the city. Most cities in low and middle-income countries, where zoning codes are used, follow the conventional Euclidean or Single-use Zoning format. This format relies on a land use-based definition of development of building standards.

Traditionally, Euclidean Zoning formats have been based on automobile-oriented planning practices and regulations are catered towards managing the impacts of specific land uses by segregating them spatially. This has led to sprawled development patterns, with limited connectivity. Poorer communities, in particular, have suffered from lack of access to jobs and opportunities because of such segregation. The TOD planning paradigm is fundamentally based on reversing segregation and allowing for compact, mixed-use developments within close proximity to transit. Consequently, zoning codes need revision to ensure the success of your city’s TOD.

This Knowledge Product provides the resources listed below. The resources are based on industry-led best practices, but should be tailored to the context-specific conditions and considerations of your city.

Disclaimer: The Transit-Orientated Development Implementation Resources & Tools knowledge product is designed to provide a high-level framework for the implementation of TOD and offer direction to cities in addressing barriers at all stages. As the context in low and middle-income cities varies, the application of the knowledge product must be adapted to local needs and priorities, and customized on a case-by-case basis.

© 2021 International Bank for Reconstruction and Development / The World Bank

RESOURCES:

1 SAMPLE ZONING CODES
As a reference, Case studies have been assembled to highlight zoning efforts in the few cities in low and middle-income countries where TOD is implemented statutorily that may serve as references for future efforts globally.

II MODEL ZONING CODE KEY ELEMENTS
TOD elements that are found to be most commonly used in zoning codes from the case studies are listed and explained here. These elements form the basis of a TOD zoning code. To understand how to incorporate these elements into your city’s zoning code, refer to the detailed templates.
MODEL ZONING TEMPLATES

These templates can be used by city authorities as a base to develop zoning codes and ordinances for their respective cities. Two types of zoning templates are provided here:

III A. The Model TOD Overlay Zoning Ordinance:

This model template is adapted from the Model Transit-Oriented District Overlay Zoning Ordinance resource by Reconnecting America (Valley Connections 2001). It provides a city the opportunity to create a “TOD Overlay Zone” over an existing base zoning framework. All the development parcels that lie within the TOD Overlay Zone are either required to or have the option to follow the regulations of the overlay zone. When the model template is applied to a city, the TOD Overlay Zone must be clearly defined to avoid ambiguity in property selection.

III B. The Model TOD Form-Based Code:

This model template is adapted from the Smart Code Version 9.2 (Center for Applied Transect Studies; 2008). This template is based on the innovative form-based code paradigm, where building standards will be defined based on the station area typology rather than land use. These Codes may be used as a replacement or as an overlay to the existing base zoning framework. All the development parcels that lie within a specific station area typology would need to adhere to form-based regulations for that specific typology. When the model template is applied to a city, the TOD Station Area Typologies and their boundary delineation must be clearly defined to avoid ambiguity in property selection.

A form-based code is a land development regulation that fosters predictable built results and a high-quality public realm by using physical form (rather than separation of uses) as the organizing principle for the code. A form-based code is a regulation, not a mere guideline, adopted into city, town, or county law. A form-based code offers a powerful alternative to conventional zoning regulation. (Form-Based Codes Institute n.d.)

A TOD station area typology is a powerful tool to prioritize where and when to make investments, determine the types of investments that are appropriate in varying transit communities, and guide the timing and scale of those investments. A TOD typology provides a means of classifying and differentiating the many transit communities throughout a city by grouping them based on key shared characteristics. (Salat and Ollivier 2016)

REFERENCES

1. TOD Zone

The TOD Policy in Delhi was framed within the Influence Zone along MRTS corridor, designated as the Transit-oriented Development Zone in the Master Plan for Delhi 2021, modified with the latest revisions in 2017. This zone comprises of all the areas lying within 500m of the metro transit corridor on either sides. This area is expected to be delineated in the Zonal Development Plans to avoid ambiguity. The Master Plan incorporates TOD as a redevelopment strategy, encouraging private landowners to assemble and redevelop lands that have high TOD potential. (WRI [World Resources Institute] 2007)

Figure 1: TOD Influence Zone Delineation, Delhi TOD Policy Manual
Source: Reproduced from UTTIPEC, WRI India (2014)
2 FAR and Density:
Higher densities are allowed for all developments that are planned on individual or amalgamated land parcels of a size of 1Ha or more. A minimum mandatory Floor Area Ratio (FAR) is imposed for housing for the economically weaker section. This norm is intended to encourage land pooling as a redevelopment strategy in the TOD influence zones. Larger land parcels allow Delhi Development Authority (DDA) to extract land for public use including open spaces and transit plazas.

3 Mix of Uses:
Minimum 30% residential use, 10% commercial use, and 10% public amenities are compulsorily required on all land parcels irrespective of their dominant land use as per the Master Plan. Within the minimum residential area requirement, the Master Plan mandates housing units to be of smaller sizes. This is intended to encourage economic diversity within transit influence zones. Smaller unit sizes allow buyers the flexibility of purchasing small units in case of budget limitations and purchasing multiple units and combining them in case of larger family sizes. However, in practice, this requirement has been the most difficult to meet, because it increases the planned density of the development substantially. This, in turn, increases the infrastructural and parking requirement for the development.

4 Road Network:
A minimum 20% of the land is required to be reserved for roads, adhering to the principles of 250m center-to-center road density of vehicular roads and 100m center-to-center density of the pedestrian network. These roads will be handed over to the Government as public roads, but will be maintained and kept encroachment free by the Developer Entity.

5 Open Spaces:
A minimum of 20% of the land is required to be reserved for green open spaces for public use, adhering to principles of inclusion and another 10% green space for private use. In parcels smaller than 1 HA, private open space is allowable in the form of common terraces, rooftops or podiums.

6 Public Facilities:
Public facilities like schools and health facilities are required to be provided as part of the development.

7 Green Buildings:
The built form of the development is required to achieve a minimum of 3 stars or gold rating as per the Indian Green Building Standards.

8 Traffic Impact:
It is expected to be assessed and mitigated through traffic management measures.

In addition to the above norms, the Master Plan also prescribed Street Design Regulations to be followed within the streets planned in a development under the TOD scheme. The street design elements are intended:

- Promote Preferable Public Transport Use
- For Safety of All Road Uses by Design
- For Pedestrian Safety, Comfort and Convenience on All Streets
- For climatic comfort for all Road Users
- To ensure universal accessibility and amenities for all street users
- To reduce Urban Heat Island Effect and Aid Natural Storm Water Management
SAMPLE ZONING CODE

COMPREHENSIVE GENERAL DCR - 2017 GANDHINAGAR, AND AHMEDABAD URBAN DEVELOPMENT AUTHORITY (AUDA) DEVELOPMENT PLAN, INDIA

1. Smart City and TOZ

TOZ is an overlay zone which provides opportunities for mixed-use and high-density development along the Bus Rapid Transit (BRT) corridor and Metro Rail Transit (MRT) corridor except in Core Walled City, Industrial Zone – General, Industrial Zone – Special, SPD-2 Science Park and on GIDC Estates. High-density development permissible in areas falling within 200m on both sides on transit corridor in case of AUDA and RUDA and in case of smart city node.

[Refer to Section 7.11 Smart City & TOZ (SPD-5)]

2. Use Zone and Permissible Uses

The comprehensive Development Control Regulation permits mixed-use development on Smart City & TOZ zone with permissible uses of Residence, Commercial and Green Institutional Zone.

[Refer to Table 7.3.1: USE ZONE AND PERMISSIBLE USES]
3 Permissible FAR

Smart City & TOZ allow a Base FAR of 1.8 on a building unit and a chargeable FAR of 2.2. Maximum FAR of 4.0 is permissible.

[Refer to Section 7.7 Floor Space Index (F.S.I.) for different categories, Table 7.7.6 Use Zone and F.S.I.: Category D1 RUDA.]

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>City Area - A</td>
<td>6.0</td>
<td>2.25</td>
<td>4.0</td>
</tr>
<tr>
<td>2</td>
<td>City Area - B</td>
<td>6.0</td>
<td>2.25</td>
<td>4.0</td>
</tr>
<tr>
<td>3</td>
<td>Gandhinagar</td>
<td>6.0</td>
<td>2.25</td>
<td>4.0</td>
</tr>
<tr>
<td>4</td>
<td>Gandhinagar Extension</td>
<td>6.0</td>
<td>2.25</td>
<td>4.0</td>
</tr>
<tr>
<td>5</td>
<td>TOZ</td>
<td>1.8</td>
<td>2.2</td>
<td>4.0</td>
</tr>
</tbody>
</table>

Source: Reproduced from UD&UHD (2017)

Uses as per Knowledge and Industrial Zone (KZ) and Residential Affordable Housing (RAH) with respective permissible FSI specified as under:

An Additional Chargeable FAR of 2.0 is permissible at a 40% Jantry Rate within TOZ zone.

[Refer to 20.1.2: Permissible Uses & FSI in Closed Textile Mill Zone (CZ)]

Source: Reproduced from UD&UHD (2017)

4 Permissible Ground Coverage

Entire Area available after providing for the required margins, Common plot and other Regulations may be utilized for construction of the superstructure.

5 Parking

For Building- Units within the Transit-Oriented Zone with Commercial Use (Mercantile -1), The minimum parking requirement shall be 35% of Total Utilized FAR and 20% of the required parking shall be provided as Visitor Parking.

[Refer Section 13.2.1 Relaxation in Parking]

<table>
<thead>
<tr>
<th>Type of Use</th>
<th>Minimum Required</th>
<th>Parking</th>
<th>Visitor’s Parking and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mercantile-1</td>
<td>35% of Total Utilised FSI</td>
<td>20% of the required parking shall be provided as visitors parking</td>
<td></td>
</tr>
</tbody>
</table>

Source: Reproduced from UD&UHD (2017)

[Note: good TOD practice in TOD shifts the parking approach to maximum parking requirements instead of minimum ones]

In case of Metro Rail Transit (MRT) corridor the regulations of the Transit Oriented Zone shall be applicable only after finalization and notification of the MRT corridors by the Comprehensive Development Control Regulations – 2017, UD & UHD, Govt. of Gujarat.
NAYA RAIPUR TRANSIT-ORIENTED DEVELOPMENT STUDY

SAMPLE ZONING CODE

KEY ELEMENTS

1. **Multimodal Transit Station**
 Rapid Transit Stations Local feeder bus stops must be located within 50m of rapid transit stations. Bus stops may be located within station premises or along the street right-of-way. IPT stands must be located within 150m of rapid transit stations. Parking shall be provided for 2-wheelers and cycles within 400m of all rapid transit stations. A parking space for the differently-abled must be provided within close proximity of a rapid transit station. Car drop-off bays must be provided within 150m of rapid transit stations.

 Intermediate Public Transport IPT stands should be spread throughout the city, such that an IPT stand should be within 300m walking distance from anywhere in the city. IPT stands should be located such that the resulting passenger queues do not block pedestrian or NMV movement. Clear directions for forming queues at IPT stands shall be placed at all IPT stands.

2. **Interconnected Street Pattern**
 An interconnected street pattern is a traditional urban design technique that reduces congestion, encourages travel choice and supports mixed-use development. Block lengths should not exceed 200m.

 ![Source: Reproduced from NRDA (2013)](image_url)
3 Mixed Used Development

A mix of diverse and complementary land uses in a compact pattern allows residents and workers to walk to work or to shop rather than driving for all daily needs. All projects and sites within the Mixed Use (MU) zones may have a mix of uses. A variety of shared parks and multi-use public spaces shall be provided, which can be active round-the-clock and open for use by users of a variety of age groups, income groups and gender, and also reduce number and length of trips. Selective plots within the MU Zone shall be applied with vertical mixed-use requirements incorporating 2 or more uses. A minimum of 50% of total street frontage length of any TOD project should have an active frontage with a mix of at least two types of uses with different peak hours of activity stacked vertically, to provide round-the-clock ‘eyes on the street’. A minimum of 20% of FAR for all Residential Group Housing projects to be allocated to rental or for-sale housing with unit sizes no larger than 40 sq.m.

4 Walkability

Pedestrian-friendly environments allow walking to be a pleasant, safe, and efficient alternative to (or extension of) the automobile. This includes design features such as safe crossing points near transit stations, shaded pedestrian routes, and continuous sidewalks and paths.

Table 1: Table: Pedestrian Mobility

<table>
<thead>
<tr>
<th>Table 3: Pedestrian Mobility Standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum clear width = 1.8M</td>
</tr>
<tr>
<td>Minimum clear height = 2.4M</td>
</tr>
<tr>
<td>Minimum width on residential street = 2M</td>
</tr>
<tr>
<td>Minimum width on commercial/mixed use street = 2.5M</td>
</tr>
<tr>
<td>Maximum height = 150MM</td>
</tr>
<tr>
<td>Preferred C/C spacing = 100M</td>
</tr>
<tr>
<td>Maximum ramp gradient = 1:12</td>
</tr>
<tr>
<td>Minimum spacing = 1.2M</td>
</tr>
</tbody>
</table>

5 Compact Development

The scale of transit-oriented development approximates the scale of the pedestrian. The extent of these neighborhoods is based on a comfortable walking distance from the edge to center (approximately 400 to 800m in radius).

Table 2: Table: Ground Coverage, FAR, Height and Other Controls

<table>
<thead>
<tr>
<th>Minimum R.O.W. (m)</th>
<th>Minimum Ground Coverage (%)</th>
<th>Maximum Ground Coverage (%)</th>
<th>Minimum FAR</th>
<th>Maximum FAR</th>
<th>Minimum Height (m)</th>
<th>Maximum Height (m)</th>
<th>Other Controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>20</td>
<td>90%</td>
<td>1.0</td>
<td>1.2</td>
<td>4.9</td>
<td>6.5</td>
<td>Minimum standard for net density permissible for any TOD project within the RAP is 300 du/ha. Minimum standard for net density permissible for any TOD project within the RAP is 500 du/ha.</td>
</tr>
</tbody>
</table>

Table 3: Table: Minimum Frontage Standards

<table>
<thead>
<tr>
<th>Street Type</th>
<th>Minimum Frontage</th>
</tr>
</thead>
<tbody>
<tr>
<td>> 24M</td>
<td>70%</td>
</tr>
<tr>
<td>18 - 24M</td>
<td>60%</td>
</tr>
<tr>
<td>< 18M</td>
<td>0%</td>
</tr>
</tbody>
</table>

Source: Reproduced from NRDA (2013)
Intermediate Public Transport IPT stands should be spread throughout the city, such that an IPT stand should be within 300m walking distance from anywhere in the city. IPT stands should be located such that the resulting passenger queues do not block pedestrian or NMV movement. Clear directions for forming queues at IPT stands shall be placed at all IPT stands.

6 Street Facing Building

Buildings should be placed near streets, not behind parking areas, to better define the street. Street front retail should be provided to humanize the building wall and activate the sidewalk. Building entrances should be close to transit entrances.

Within MU zones, maximum front setbacks will be maintained as defined below.
Bicycle Friendly Streets/Parking

Bicycles are efficient ways to expand the service area of the station without relying on automobiles or bus service. Bike lanes, bike routes, and secure parking make the bicycle an easy option.

- Bicycle markings on the roadway shall be clear. NMT paths and lanes should be colored in a distinct color to avoid confusion. NMT conflict zones shall be identified and marked with a different color to alert drivers of impending conflicts with NMVs.
- NMT crossing infrastructure design shall ensure a barrier-free environment for all including, raised crossings and additional traffic calming interventions, audible signals, curb ramps, etc.
- Bicycle boxes may be used at major signalized intersections to provide cyclist priority and safety.
- NMT paths or lanes should never be terminated abruptly due to a sudden change in ROW width or at a T-junction. Ramps should be provided where necessary to enable novice cyclists to shift to pedestrian paths.
- Cyclists should have a clear view of at least 25m straight ahead and 60m ahead on slopes.
- On-street NMT parking should be provided throughout the city, such that at least one NMT parking would be within a 300m radius from anywhere in the city.
- Private commercial developments should be encouraged to accommodate bicycle amenities such as showers, change rooms, and lockers. Incentives should be offered to developers or employers who install such facilities in their premises.

Table 9: NMT Standards

<table>
<thead>
<tr>
<th>NMT Standards</th>
<th>Minimum Width</th>
<th>Minimum Buffer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Segregated NMT paths/trails</td>
<td>2.5m</td>
<td>1M</td>
</tr>
<tr>
<td>Marked NMT lanes</td>
<td>2M</td>
<td></td>
</tr>
<tr>
<td>Vertical clearance</td>
<td>25m</td>
<td></td>
</tr>
<tr>
<td>Minimum horizontal radius</td>
<td>10m</td>
<td></td>
</tr>
</tbody>
</table>

Maximum gradient = 1:30 for length not exceeding 90m.
Steeper gradients may be allowed for very short distances.
Maximum gradient = 1:170 for length not exceeding 1000m.

Source: Reproduced from NRDA (2013)
1. Form-Based codes to supplement zoning in transformation Zone

Introducing Form-Based Codes as spatial policy on a local or regional scale in Johannesburg has the following goals:

- To supplement, not replace, traditional zoning tools to allow for a more desirable built form.
- To define what form the built environment should take, and what land uses should be in place.
- To offer design requirements to be applied in specific areas.
- To deal with context-specific aspects such as interaction with the street (shops and commercial activities, and permeability on the ground floor), height, interaction of building facades, parking location (on street, underground, or in a manner that does not create a parking ‘buffer’ between the street and the building), pedestrian accessibility and contribution to shared visions for the built environment.

2. Land Value Capture

The infrastructure needed to support new development can be financed, based on the projected returns. It is important in this case, that:

- Rates increases are considered thoroughly, and in consultation with finance experts and lenders to ensure realistic predictions;
- Rates increases from the specific developments are ring-fenced to service the specific infrastructure loans;
- That risk on the infrastructure loans is shared by private developers and the city, to ensure mutual commitment to realizing the goals of such a project;
- Inclusive social return (such as inclusionary housing and a percentage of public space) is set out as a requirement for this type of infrastructure funding.

3. Transit Oriented Development (TOD) Nodes

- TOD is identified as a priority programme, with the objective to encourage the optimal development of transit hubs across the city, that provide access to affordable accommodation, intense economic activities, transport, high-quality spaces, amenities and social services.
- TOD nodes are a key aspect of the compact polycentric vision for Johannesburg. Stations, in this regard, act not only as
points for accessing public transit, but as catalysts for
growth. Stations should act as points of departure and
arrival and are thus promoted as areas of intensification of
high-density, mixed land uses.

• TOD nodes are those that are specifically linked to transit
facilities. These nodes should ideally offer a range of mixed
uses relating to the function and scale of the transit node.
TOD areas have great potential for offering good quality
of life through the creation of intense mixed-use precincts
that can accommodate a range of economic opportunities
within walking distance from public transport.

• These nodes vary in size and function. The largest TOD
nodes are anchored by multi-modal stations. A large
number of TOD precincts are anchored by PRASA rail
stations, however, generally speaking, the development
potential around these stations has not been realized.
At a more localized scale, BRT stations will contribute
significantly to the achievement of TOD precincts in the
city. As a matter of principle, low density, single-storey,
single-use developments are not acceptable within TOD
nodes.

4 Density

The goal of the density regulations is to assist the city in
curbing urban sprawl and locating the bulk of the city’s
residents across all income groups close to urban amenities,
specifically public transportation infrastructure, jobs, economic
opportunities and social infrastructure.

Higher residential densities will be allowed where developers
show that they will deliver inclusionary housing. To qualify, the
inclusionary housing proportion of the development must cater
to households earning less than R7000 a month, equivalent to
USD95 (10/2018), with a total monthly housing cost of 30% of
household income per month (for rental or purchase). Density
bonuses will be awarded proportionally to the percentage
of inclusionary units per development (i.e. 30% inclusionary
units would result in a 30% density bonus in du/ha), up to a
maximum density bonus of 50%. To qualify, at least 20% of the
total units applied for should be for inclusionary housing. The
Transit Development Node within 500m walking distance of Rea
Vaya/BRT bus station would have a minimum density of 60du/
ha.

5 Land readjustment

With land readjustment, a group of neighboring landowners
come together in a partnership and pool their land to jointly
plan and service their adjoining plots. Part of the land can
also be sold to offset development costs. The resulting costs
and benefits of the project are equitably shared among public
bodies, landowners and developers. During the readjustment,
part of the land will often be used for infrastructure or public
space. The public sector can stimulate this process by devising
incentives that promote collective action.

Land readjustment involves a change in people’s legal
relationships in the same way that it alters their physical ones.
This means that there are three fundamental considerations:

1. To provide the framework within which relationships can
be changed in a clear and predictable manner that results in
mutual (public and private) benefit.

2. To ensure that the framework is fair and will treat individuals
and groups equitably, particularly the poor, women and the
vulnerable, including private landowners and the wider citizenry
of the city.

3. To provide the vehicle for the implementation of government
policy on the ground, legal mechanisms are needed to address
issues such as site selection, the level of land contributions, the
land valuation mechanism, sales and transfers of land after the
project has been announced, handling disputes, combatting
speculation, the classification of land in the plan, the types of
formal land rights to be allocated, and financial arrangements.

6 Housing

The Spatial Development Framework 2040 provides a housing
vision and approach and locational principles for housing,
including housing for the poor, state delivered housing, informal
settlements, backyard homes and inclusionary housing. The
Inner City is targeted to accommodate a large number of new
low income and affordable housing opportunities, including
public rental housing, mainly through conversion of buildings.
The development of inclusionary housing is a key priority to
ensure that the City’s residents are housed adequately, in close
proximity to job opportunities, public transport as well as social
amenities.
MODEL ZONING CODE KEY ELEMENTS

FAR AND DENSITY

Floor area ratio (FAR) and Density norms are needed to ensure densities are strategically distributed across the urban area as a means to create compact city forms near transit proximities. The FAR is representative of the intensity of built form. It is a function of the total floor area of the building as a fraction of the total area of the development parcel. It is used as an instrument to control the density of a place by imposing maximum permissible FAR norms. In TOD zones, FAR norms need relaxation to allow for higher density buildings.

Alternatively, other measures to control residential density are also used, for example, Persons Per Hectare (PPH) or Dwelling Unit Per Hectare (DU/HA) thresholds. The density may also be influenced by norms for building heights, podium heights and step-backs and lot coverage.

MIXED USE

Mixed land use promotes more efficient land use patterns by increasing options for residents to access retail, commercial and civic services, employment and recreational facilities within walking distance. Mixed use is codified in the zoning code through Permissible Land Uses or Building Functions, and Non-Permissible Land Uses or Building Functions. Permissible Land Use/ Building Function Regulations must allow for complementary uses to be mixed, ensuring optimal and shared use of resources such as streets and parking. Non-Permissible Uses must discourage automobile-oriented uses such as large industries, car showrooms, cemeteries, etc.

Other Design Guidelines for Mixed Use are suggested in PD-R01 TOD Planning Principles.
HOUSING DIVERSITY

A mix of housing types based on sizes and residential types may be provided within the TOD Zone or Station Area. This will allow for means to ensure that housing affordability is maintained within walking distance of transit. The mix of housing units and types within a corridor or station area can be dictate through minimum standards for inclusionary housing provision or affordable housing incentives. An inclusionary housing provision is operationalized by requiring a percentage of housing units to be within a specific range of unit sizes. The affordable housing incentive provision is operationalized by offering development incentives such as density bonuses or transfer of development rights. Other incentives are suggested in FI-R01 Development Incentives.

STREET NETWORK

The street network is controlled through block width and street design standards. Landforms, topography, natural features (waterbodies, forests) and physical barriers (railway lines, roads, existing developments) may influence street network standards. Block widths are intended to increase the intersection density per sq. unit within the station area. Intersection density is the number of intersections in an area. It corresponds closely to block size—the greater the intersection density, the smaller the blocks. Small blocks make a neighborhood walkable.

Additionally, street standards can be provided for public streets within private developments or accessing private sites. These standards depend on the type of roadway and the level of service required and may be codified in the form of minimum widths for pedestrian sidewalks, cycle lanes, and traffic calming requirements.

Other Design Guidelines for Street Network are suggested in PD-R01 TOD Planning Principles.
MODEL ZONING CODE KEY ELEMENTS

EDGES

The transition zone between the building and the street is defined by the building setback and street frontage. Building setbacks should be reduced either to zero or shallow setbacks in the TOD Zone or station area to allow for a legible street edge. Buildings should be oriented towards the pedestrian, with active uses located along the sidewalk and not located behind parking lots or blank walls. Optimum setback needs are usually dictated by state/federal firefighting requirements and light and ventilation needs.

Street frontage requirements address the orientation of a building in relation to the street. They typically require a minimum percentage of a building facade to occupy a primary street frontage. Some portion of the frontage may be required to be transparent or interact with the street through shop fronts. Mandatory shop line requirements may be proposed along key streets to ensure active uses are oriented towards the street.

PARKING

Parking needs need to be rationalized in TOD Zones or station areas. Allow for flexibility in parking provisions, based on the specific development and transportation contexts. The trend is to move from minimum parking requirements to maximum parking requirements. Develop adjustment factors that can be applied when evaluating parking supply, while ensuring parking caps and maximums are respected. Shared parking standards and unbundled parking norms may be used to make the most out of parking provisions. The quantity of parking per built-up area impacts maximum development densities. Thus it is extremely important to reduce parking requirements or apply maximum caps if higher densities are proposed.
The purpose of the Transit-Oriented District is to encourage an appropriate mixture and density of activity around transit stations to increase ridership along the transport corridor and promote alternative modes of transportation to the automobile. The consequent intent is to decrease auto-dependency and mitigate the effects of congestion and pollution. These regulations seek to achieve this by providing a pedestrian-, bicycle-, and transit-supportive environment configured in a compact pattern and a complementary mix of land uses all within a comfortable walking and bicycling distance from stations.

Transit-Oriented Development often occurs as infill and reuse within areas of existing development. The regulations within this ordinance vary in some cases from other ordinances related to infill development in the City, because of the additional need to support transit ridership.

OBJECTIVES
The specific objectives of this district are to:
• Encourage people to walk, ride a bicycle or use transit;
• Allow for a mix of uses to create an environment that engages people at the pedestrian scale;
• Achieve a compact pattern of development that is more conducive to walking and bicycling;
• Provide a high level of amenities that create a comfortable environment for pedestrians, bicyclists, and other users;
• Maintain an adequate level of parking and access for automobiles;
• Create fine-grained detail in architectural and urban form that provides interest and complexity at the level of the pedestrian and bicyclist;
• Encourage uses that allow round-the-clock activity around transit stations;
• Provide sufficient density of employees, residents and recreational users to support transit;
• Generate a relatively high percentage of trips serviceable by transit.

This model template is adapted from the Model Transit-Oriented District Overlay Zoning Ordinance resource by Reconnecting America (Valley Connections 2001). It provides a city the opportunity to create a “TOD Overlay Zone” over an existing base zoning framework. All the development parcels that lie within the TOD Overlay Zone are either required to or have the option to follow the regulations of the overlay zone. When the model template is applied to a city, the TOD Overlay Zone must be clearly defined to avoid ambiguity in property selection.

The original model zoning ordinance is available here: www.reconnectingamerica.org/assets/Uploads/bestpractice230.pdf
This is an overlay zone established in Transit-Oriented Development (TOD) principles, which provides the opportunity for mixed-use and higher density development along the transport corridor. This zone takes precedence over all underlying zones, except conservation areas and special areas, by encouraging compact, mixed-use development. Sustainable transit-oriented densification could be achieved through incentivizing the development of additional floor space along the transit corridors and station areas. The concept of Transit Oriented Development shall be adopted for development within this zone, such that the maximum number of people can live, work or find means of recreation within walking/cycling distance of the transit corridors. This overlay Zone shall establish separate densities and development regulations applicable to any development in the TOD Zone. The TOD Zones will establish high-density environments in the city where bus feeder connectivity is optimum. This zone can benefit from more transit-friendly urban design.
These definitions shall apply only to the Transit-Oriented District Overlay District.

Accessory Dwelling
units that are “secondary” or subordinate to the primary residence and situated on the same lot as the primary residence.

Access way
a formalized path, walkway, or other physical connection that allows pedestrians to efficiently reach destinations.

Clear Window
the amount of glass surface of a window that allows 100% visual permeability.

Commercial Parking Facility
a parking structure or a surface parking lot operated for profit that has parking spaces that are not accessory to a primary use. This term does not include a park-and-ride lot.

Compact Development
the planning concept of using site design and urban design techniques to decrease the amount of land needed to develop a given amount of land use. In the case of TOD, this is done with the goal of improving transit access.

Density
a unit of measurement that divides persons, floor area, or dwelling units per the gross or net measurement of a discreet area e.g., acres, square feet, square miles. Density requirements in this document are expressed as gross densities with the land area including the area of the parcel, specific to the use including its yard and any parking provided, plus the area of one-half of the street right-of-way upon which the parcel fronts.

Drive-Through Facility
facilities allowing transactions for goods or services without leaving a motor vehicle.

Finished Floor
the ultimate grade at which a structural floor will be constructed including added decorative and finished surfaces.

Floor Area Ratio (FAR)
the amount of enclosed gross floor area in relation to the amount of site area. For example, a floor area ratio of 0.5 is equal to one square foot of floor area for every two square feet of site area.

Frontage
the linear edge of a property adjacent to the property line abutting a street, public right-of-way.

Gradient
the change in density, height, and/or land use occurring in stages, degrees, or even and continuous change.

Greenway
a singular or a series of vegetative, linear corridors, natural or man-made, which may contain active or passive recreational uses or which may prohibit human activity altogether in order to preserve sensitive areas. These are usually associated with riparian systems, but may also include transportation corridors.

Human Scale
the size and proportion of a physical element that closely relates to the human body e.g., a 16-foot lamp post vs. a 30-foot lamp post, and a façade with vertically oriented framed windows vs. a façade with a continuous and unarticulated window wall.
Interior of Lot
the area within a parcel that does not contain a side which is adjacent to a public or private right-of-way for an access way or street.

Live-Work
a residential unit that is also used for commercial purposes for a time, with a minimum of 50% of the total building area given to the commercial use within the same structure as the residential component.

Major Pedestrian Route
the primary route or space used by “Pedestrians” as defined in this section.

Mixed-Use
Development contained within a single-parcel (horizontally or vertically) or adjacent parcels that contains different uses that are complementary to each other and provide activity throughout the day.

Open Space
a private or public open land area that is currently undeveloped; it may be maintained as open space into the future or it could be developed.

Parking Structure
a parking garage located above ground or underground consisting of one or more levels, not surface parking.

Parking, Off-Street
formal or informal parking located within a parcel and outside a private or public right-of-way.

Parking, On-Street
formal or informal parking located within a private or public right-of-way and outside of a parcel.

Pedestrian
a pedestrian means people who walk, sit, stand, or use a wheelchair in public spaces, be they children, teens, adults, elderly, people with disabilities, workers, residents, shoppers or people watchers, etc.

Pedestrian Activity
the congregation of persons in an area whose primary means of transportation is by foot.

Pedestrian-oriented Design (PeD)
The design of communities, neighborhoods, streetscapes, sites, and buildings that emphasizes pedestrian access, comfort, and visual interest. Transit-Oriented Design is a particular type of PeD that includes design and intensity of land use to support transit in addition to pedestrians.

Pedestrian Way
a linear space or an area where the primary users are pedestrians and that may also accommodate bicyclists.

Pergola
an arbor or passageway with a roof or trellis on which climbing plants can grow.

Portico
a porch or walkway with a roof supported by columns, often leading to the entrance of a building.
Porch
an open or enclosed gallery or room attached to the outside of a building, typically serving as a semi-public space prior to a building entry.

Primary Front Façade
the façade of a building that is meant to take importance over the remaining façades of a building, typically fronting onto a public or private street or pedestrian access way.

Setback
the distance between the building façade and the property line of the parcel in which the building is located.

Shared Parking
parking that is utilized by two or more uses taking into account the variable peak demand times of each use; the uses can be located on more than one parcel.

Station Area
the core area of the TOD within closest proximity of the transit platform e.g., within 300 to 500 feet of the platform.

Street-Facing
the façade of a building that is adjacent to a public or private right-of-way.

Transit-Oriented Development (TOD)
a development pattern characterized by a mix of uses surrounding a transit platform where streets have a high level of connectivity, blocks are small, and streetscape, buildings, and uses cater to the pedestrian.

Transit Platform
A designated transit loading and waiting area as assigned by the public transit agency.

Transit Station
the area including the platform which supports transit usage and that is owned by the transit authority.

Transit Street
a street that contains a transit line.

Transparent
a surface which allows objects on the other side to be easily seen.

Visual Permeability
the ability of vertical surfaces to allow viewers to see through to the other side e.g., windows and open fencing.

Walking Radius
the distance beyond a central point from which a person is willing to walk. This distance will vary depending on existing barriers, the walking environment, and the availability of destinations.
2. APPLICABILITY AND GENERAL PROVISIONS

The City of ____________’s Transit-Oriented Development Overlay District(s) (TOD) shall apply to lands delineated on the City’s official zoning map as adopted on ________ and generally within an 800m walking radius (or distance) of a transit platform. All land uses and development including, but not limited to buildings, drives, parking areas, landscaping, streets, alleys, greenways, and pedestrian/bicycle ways designated to be within this district, shall be located and developed in accordance with the following provisions. The standards of the TOD shall not apply to development for which approval was granted prior to the adoption of these regulations and for development for which the city has issued building permits.

3. INCONSISTENCIES OF UNDERLYING DISTRICTS

In the event that the underlying zoning district standards or other ordinance or regulations are inconsistent with these Overlay Zoning Ordinance standards or any other provisions herein, the TOD standards shall control within the specific TOD district.
For properties within the Transit-Oriented Development Overlay District the following uses are permitted:

<table>
<thead>
<tr>
<th>Use Category</th>
<th>Retail</th>
<th>Office</th>
<th>Industrial</th>
<th>Mixed-Use</th>
<th>Res>7du/ac</th>
<th>Res<7da/ac</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retail/Commercial</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Convenience Retail</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Retail and Service Uses</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hotel or Motel Lodging</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mixed Use</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Live-Work</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mixed-Use</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Office</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Professional Offices</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other Offices</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Civic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day Care Facilities</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Post Offices</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schools & Community Buildings</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Government Offices</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hospitals/Clinics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sports Facilities</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Residential</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single-Family Detached</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single-Family Attached</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apartments</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accessory Units</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
For property within the Transit-Oriented Development Overlay District the following uses are prohibited:

- Boat dealers, resellers, repair, and leasing
- Bulk retail and wholesale uses including building materials, food and beverage sales, restaurant suppliers, etc.
- Car washes
- Cemeteries
- Cold Storage Plants
- Commercial Equipment and Construction Equipment, Sales, Service and Rental
- Drive-in Businesses
- Exterior Display of Goods and Exterior Storage
- Funeral Homes and Mortuaries
- Gas Station accessory uses such as mini-marts, convenience food and sundries sales
- Golf Courses including miniature golf courses
- Grocery stores with building footprints over 50,000 square feet
- Heavy Commercial Services
- Heating Fuel Sales
- Junk Yards and Motor Vehicle Wrecking Yards
- Kennels, excluding those accessory to veterinary clinics
- Manufactured Home sale
- Motorized vehicles dealers, resellers, repair, leasing, service stations, including oil and lubrication services, tire and muffler installation and service, body shops, or other motor vehicle services, but excluding retail or wholesale outlets selling motor vehicle parts and accessories without provision for on-site installation
- Nurseries or Greenhouses
- RV Parks or Mobile Home Parks and campgrounds
- Solid waste transfer stations
- “Telecom Hotels”
- Towing services
- Truck stops and Uses Related to Trucking excluding loading and unloading for permitted commercial uses
- Uses that require building footprints over [insert building footprint maximum area desired by jurisdiction, could vary by distance from transit platform and existing station area context, authors of this Model Overlay Ordinance recommend 30,000] sq. ft.10 with the exception of Civic Uses and Sports Facilities.
- Warehouses, Mini-Warehouses, Storage Facilities, and Mini-Storage Facilities (Indoor and Outdoor)
6. DEVELOPMENT STANDARDS FOR PERMITTED USES

SETBACKS AND BUILT-TO-LINE

Setbacks and Build-to Lines for Non-Residential and Mixed-Uses
The following standards shall apply to new non-residential and mixed-use development within the TOD Overlay District.

<table>
<thead>
<tr>
<th>Distance from Station</th>
<th>Max. Building Setback</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-150m</td>
<td></td>
</tr>
<tr>
<td>150-400m</td>
<td></td>
</tr>
<tr>
<td>400-800m</td>
<td></td>
</tr>
</tbody>
</table>

Features such as overhangs, porticos, balconies, loggias, arcades, covered (non-enclosed) bicycle parking, pergolas, and similar architectural features placed on the front (street-facing) side of the building are allowed within the setback.

Setbacks and Build-to Lines for Residential Uses
The following standards shall apply to new residential development within the TOD Overlay District.

<table>
<thead>
<tr>
<th>Distance from Station</th>
<th>Max. Building Setback</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-150m</td>
<td></td>
</tr>
<tr>
<td>150-400m</td>
<td></td>
</tr>
<tr>
<td>400-800m</td>
<td></td>
</tr>
</tbody>
</table>

DENSITY, AREA, BUILDING AND REGULATIONS

DENSITY

Densities for Non-Residential and Mixed-Uses:
New non-residential and mixed-use development within the TOD Overlay District shall achieve minimum FARs as stated in the table below and a maximum of 125% of the FAR given in the underlying zone.

<table>
<thead>
<tr>
<th>Distance from Station</th>
<th>Minimum FAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-150m</td>
<td></td>
</tr>
<tr>
<td>150-400m</td>
<td></td>
</tr>
<tr>
<td>400-800m</td>
<td></td>
</tr>
</tbody>
</table>

Densities for Residential Uses:
New residential uses within the TOD Overlay District shall achieve densities according to the following table and a maximum of 150% of the average density given in the underlying zone.

<table>
<thead>
<tr>
<th>Distance from Station</th>
<th>Min. Residential Density</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-150m</td>
<td></td>
</tr>
<tr>
<td>150-400m</td>
<td></td>
</tr>
<tr>
<td>400-800m</td>
<td></td>
</tr>
</tbody>
</table>
BUILDING HEIGHTS

For all new development and the vertical alteration of existing development, building heights within the TOD Overlay District shall conform to the following table.

Table 9: Building Heights

<table>
<thead>
<tr>
<th>Distance from Station</th>
<th>Max. Building Heights</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-150m</td>
<td></td>
</tr>
<tr>
<td>150-400m</td>
<td></td>
</tr>
<tr>
<td>400-800m</td>
<td></td>
</tr>
</tbody>
</table>

GROUND COVERAGE

New development within the TOD Overlay District shall achieve ground coverage according to the following table or the underlying zoning designation’s maximum lot coverage, whichever is higher.

Table 10: Ground Coverage

<table>
<thead>
<tr>
<th>Distance from Station</th>
<th>Max. Ground Coverage</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-150m</td>
<td></td>
</tr>
<tr>
<td>150-400m</td>
<td></td>
</tr>
<tr>
<td>400-800m</td>
<td></td>
</tr>
</tbody>
</table>

BUILDING FRONTAGE AND FACADES

In order to support the pedestrian-oriented environment within the TOD station area, building frontages onto streets and open spaces shall be maximized. Building frontage within the TOD Overlay District shall achieve the requirements as outlined in the following table:

Table 11: Building frontage

<table>
<thead>
<tr>
<th>Distance from Station</th>
<th>Min. Building Frontage as a Percentage of Lot Frontage</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-150m</td>
<td></td>
</tr>
<tr>
<td>150-400m</td>
<td></td>
</tr>
<tr>
<td>400-800m</td>
<td></td>
</tr>
</tbody>
</table>

Clear windows shall encompass, at a minimum, 50% of the building façade length fronting onto a street within the area from 1 m to 2 m above adjacent interior finished floor and adjacent sidewalk grade. Blank walls shall not occupy over 30% of the principal frontage for non-residential buildings and 50% for residential buildings, and a section of blank wall shall not exceed 6 m feet without being interrupted by a window or entry.

BUILDING ENTRY

If a building is adjacent to the transit platform, transit station, a transit street, or a major pedestrian access way, at least one main building entry shall be oriented to the adjacent transit platform, transit station, transit street and/or major pedestrian access way. A pedestrian way shall be provided from the building entry to the transit platform, transit station, transit street or major pedestrian access way.

To allow for their use, residential porches shall have a minimum clear depth of 2 m and shall be a minimum of 4.6 square meters.
Minimum Width

Sidewalks within the TOD Overlay District shall have a minimum 75cm clear space for circulation with the exception of residential areas with a density of less than 12 units per acre where the width may be reduced to 1.8 m.

Private Use of Sidewalks

Exterior storage on sidewalks is prohibited. Outdoor seating for food and drink establishments and pedestrian-oriented accessory uses, such as sales display for flowers, small shops, food, or drink stands, are exempt from this requirement. Outdoor service of alcoholic beverages shall be clearly demarcated from public spaces. In all cases, a minimum 8-foot clear pedestrian circulation path shall be maintained along the sidewalk.

Sign Regulations

New signage within the TOD Overlay District shall conform to the standards stated herein and Section. Signage shall not reduce clear sidewalk width to less than 2.5 m. Opaque signage shall not reduce the visual permeability of street-fronting windows to less than the minimum clear window requirement.

Automobile Parking Requirements Per Floor Area or Unit Size and Land Use Type

For new development within the TOD Overlay District, the number of required parking spaces (on-street and off-street) shall be based upon the following table which summarizes the maximum number of parking spaces required for permitted uses:

<table>
<thead>
<tr>
<th>RETAIL/COMMERCIAL</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bank</td>
<td>1.0 space for each __ square meters of gross floor area</td>
</tr>
<tr>
<td>Bars/Nightclubs</td>
<td>1.0 space for each __square meters of gross floor area</td>
</tr>
<tr>
<td>Bed & Breakfast</td>
<td>1.0 space per room or suite of rooms</td>
</tr>
<tr>
<td>Bookstores</td>
<td>1.0 space for each __square meters of gross floor area</td>
</tr>
<tr>
<td>Convenience Retail</td>
<td>1.0 space for each __square meters of gross floor area</td>
</tr>
<tr>
<td>Dry Cleaners</td>
<td>1.0 space for each __square meters of gross floor area</td>
</tr>
<tr>
<td>Eating and Drinking Establishments</td>
<td>1.0 space for each __square meters of gross floor area</td>
</tr>
<tr>
<td>Hotel or Motel Lodging</td>
<td>1.0 spaces per room or suite of rooms</td>
</tr>
<tr>
<td>Live-Work</td>
<td>1.25 spaces per dwelling unit and 1 space for each employee not residing in the dwelling unit</td>
</tr>
<tr>
<td>Lodging limited Bed and Breakfast Inn</td>
<td>1.0 space for each room or suite of rooms</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MIXED USE</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mixed-Use</td>
<td>1.0 space for each __square meters of gross floor area</td>
</tr>
<tr>
<td>Retail and Service Uses</td>
<td>1.0 space for each __square meters of gross floor area</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OFFICE</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Professional Offices</td>
<td>1.0 space for each __square meters of gross floor area</td>
</tr>
<tr>
<td>Other Offices</td>
<td>1.0 space for each __square meters of gross floor area</td>
</tr>
<tr>
<td>CIVIC</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>------------</td>
</tr>
<tr>
<td>Day Care Facilities</td>
<td>__ spaces per employee</td>
</tr>
<tr>
<td>Gov’t Offices</td>
<td>1.0 space for each __ square meters of gross floor area</td>
</tr>
<tr>
<td>Lodges/Clubs</td>
<td>1.0 space for each __ square meters of gross floor area</td>
</tr>
<tr>
<td>Hospitals/Clinics</td>
<td>1.0 space for each __ square meters of gross floor area</td>
</tr>
<tr>
<td>Museums</td>
<td>1.0 space for each __ square meters of gross floor area</td>
</tr>
<tr>
<td>Post Offices</td>
<td>1.0 space for each __ square meters of gross floor area</td>
</tr>
<tr>
<td>Schools-Elementary/Jr. High</td>
<td>10 spaces + __ per classroom</td>
</tr>
<tr>
<td>Schools-High/College</td>
<td>__ spaces per student and staff</td>
</tr>
<tr>
<td>Sports Facilities</td>
<td>1.0 space for each __ square meters of gross floor area</td>
</tr>
<tr>
<td>Theaters</td>
<td>__ spaces per seat</td>
</tr>
<tr>
<td>Worship</td>
<td>__ spaces per seat</td>
</tr>
<tr>
<td>RESIDENTIAL</td>
<td></td>
</tr>
<tr>
<td>Studios and Efficiencies</td>
<td>__ spaces per dwelling unit</td>
</tr>
<tr>
<td>1 Bedroom</td>
<td>__ spaces per dwelling unit</td>
</tr>
<tr>
<td>2 Bedroom</td>
<td>__ spaces per dwelling unit</td>
</tr>
<tr>
<td>3 Bedroom</td>
<td>__ spaces per dwelling unit</td>
</tr>
<tr>
<td>Accessory Units</td>
<td>__ space per accessory dwelling unit</td>
</tr>
<tr>
<td>AUTOMOBILE PARKING “MAXIMUMS” FOR PERMITTED USES</td>
<td></td>
</tr>
<tr>
<td>Boarding Houses</td>
<td>__ space per bedroom</td>
</tr>
<tr>
<td>Nursing Home</td>
<td>__ space per bed</td>
</tr>
<tr>
<td>Elderly Housing</td>
<td>__ space per bed</td>
</tr>
<tr>
<td>INDUSTRIAL</td>
<td></td>
</tr>
<tr>
<td>Manufacturing/Light Industry</td>
<td>1.0 spaces per __ square meter of gross floor area</td>
</tr>
</tbody>
</table>
9. ON-STREET PARKING

For new development occurring within the TOD Overlay District, on-street parking along the use’s lot frontage shall count towards the parking requirements for uses on the lot set forth within the regulations of this Overlay District.

10. BICYCLE PARKING

Convenient bicycle facilities should also be provided within the TOD district. The following bicycle parking requirements shall be applied within the TOD district. Bicycle parking shall be provided at 1 space per 186 square meter feet of commercial floor area.

11. OFF-STREET PARKING LOCATION

Non-Residential and Multi-Family Uses

Surface Parking Lots

Off-street parking location for new development within the TOD Overlay District shall conform to the following requirements:

Off-street parking shall be located to the rear and/or interior of a lot such that its visibility from a street shall be minimized. At-grade, above-, or below-ground parking structures shall be permitted. At-grade parking structures shall have a minimum frontage. Surface parking lots shall be placed between the structure and a side or rear lot line. Where a lot fronts onto two or more streets, parking shall be located accordingly:

• Along the street with the least amount of commercial activity
• Along the street with the least amount of pedestrian activity if the lot is located along two or more commercial streets with equal amounts of commercial activity.

A maximum 2 m high wall or fence shall separate parking lots from abutting residential uses with a minimum 1.2m landscaped buffer. Walls and fences shall take on the character of residential uses.
12. SINGLE-FAMILY RESIDENTIAL USES

Garages, whether attached or detached, shall be set back at least 3 m behind the primary front façade of the buildings they serve. The primary front façade shall comprise at least 50% of the overall width of the primary residence and the 3 m setback shall not be measured from projections such as bay windows and porches, but from the façade of the wall which encloses the building.

13. LOCATION OF VEHICLE ACCESS

Conflicts between pedestrians and vehicles entering and exiting parking lots shall be minimized. Access from pedestrian-oriented streets shall be avoided unless no other reasonable access is available, such as in lots with a single street frontage and no alley. Where alleys are present, driveways leading to parking lots, and loading and service areas shall be accessed from the alley. Lots with more than one street frontage and no alley shall locate vehicular access along the street with the least amount of pedestrian activity. All loading and service drives shall be of a depth that prevents loading and service vehicles from obstructing the sidewalk and roadway.

Entrances to loading and service areas shall be screened from view. Access driveways shall not dominate the street frontage. Driveway widths shall be minimized to reduce their presence along the street. Where feasible, driveways shall be consolidated within the single lot and shared with adjacent properties to minimize their encroachment upon sidewalks. Shared driveway agreements shall be utilized where possible for shared parking, and loading and service areas. To avoid encroaching upon sidewalks and creating uneven pedestrian surfaces, driveway slopes shall be located between the roadside edge of the sidewalk and the curb.

14. LOADING AND SERVICE AREA LOCATION

Loading, service, and refuse areas shall be located at the interior of the lot and screened from view with walls, trellises, planting, berms, or by integration into the design of the building. Walls shall not exceed 2 m in height. Solid walls shall be landscaped to soften their appearance and shall be made of finished materials to match the primary building. Decorative elements, variation in materials, and articulation shall be used.
MODEL TOD FORM-BASED CODE

This model template is adapted from the Smart Code Version 9.2 (Center for Applied Transect Studies; 2008). This template is based on the innovative form-based code paradigm, where building standards will be defined based on the station area typology rather than land use.

These Codes may be used as a replacement or as an overlay to the existing base zoning framework. All the development parcels that lie within a specific station area typology would need to adhere to form-based regulations for that specific typology. When the model template is applied to a city, the TOD Station Area Typologies and their boundary delineation must be clearly defined to avoid ambiguity in property selection.

The Original Code is available here: https://transect.org/codes.html

Station areas along corridors are set in different urban contexts, play different roles in the transportation network and present unique challenges and opportunities. Successful approaches to built form around a Station Area that acts as a main interface into the rapid transit network may not be appropriate for a station area that serves as a key transfer point between different modes. Similarly, appropriate intensification strategies at a very urbanized hub may be very different from a regional destination or a greenfield low-density area. Every station area, whether existing or proposed, faces unique challenges and will require specially tailored strategies to develop high-performing TOD projects.

This Form-based Code is prepared for seven key station area typologies that depict typical planning considerations. Station area typologies are typically established based on:

- Existing land use character
- Transport functions including right-of-way, availability of multiple modes, and connectivity to the citywide network
- Land availability for future development
- Susceptibility to change - for example, age of buildings
- Mobility network (including block size and mobility barriers)
- Infrastructure carrying capacity

In the context of low and middle-income countries, typical station area typologies may include:

- Intermodal Gateways
- Employment Centres
- Destination Nodes
- Transit Neighborhoods
- Urban Core(CBD)
- Infill Neighborhoods
- New Residential Area
STATION AREA TYPOLOGIES

<table>
<thead>
<tr>
<th>Intermodal Gateways</th>
<th>Employment Centres</th>
<th>Destination Nodes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

What are the characteristics of the Station Area?	Significant hubs of transport activity with supporting commercial and informal activities	Significant center of economic and community activity. Stations serve the main public/semi public-amenities & offices of the city.	Stations which provide access to unique destinations.
What is the Character of Land Use Mix & Density?	Moderate- to high-density mix of industrial, commercial, employment, public - semi public / cultural and residential uses.	Moderate to high-density mix of employment, public-semi public / cultural uses. Some residential and local-retail also supported.	Moderate to low-density mix of public-semi public and cultural uses. Some residential and local-retail also supported.
What are the major planning & development challenges?	Integrating dense mix of housing and employment uses while maintaining ease of access to transit stations. Illegal parking and hawker encroachment can create a false sense of congestion.	Introducing housing into predominantly employment/public-semi-public uses and improving connections/access to transit.	Creating sustainable off-peak uses and accommodating peak travel demand.
What are land development opportunities?	Moderate chance of land availability	Less possibility of land availability	Less possibility of land availability
Characteristics of Station Area

Significant hubs of transport activity with supporting commercial and informal activities.

Significant center of economic and community activity. Stations serve the main public/semi-public amenities & offices of the city.

Stations which provide access to unique destinations.

Predominantly residential district with good access to regional and subregional centres.

Predominantly residential districts located just outside the core/old city.

Predominantly residential district outside the core/old city area with good access to the core city.

Character of Land Use Mix & Density

Moderate- to high-density mix of industrial, commercial, employment, public-semi public/ cultural and residential uses.

Moderate to high-density mix of employment, public-semi public/cultural uses. Some residential and local-retail also supported.

Moderate to low-density mix of public-semi public and cultural uses. Some residential and local-retail also supported.

Potential for community and regional-serving retail but need to balance demands and conflict with surrounding destination retail.

High-density with commercial uses (>75%) + a moderate mix of other uses such as institutions, and residential within a 5 min (400m) walking radius.

Moderate-to high-density with predominantly residential and moderate mix of Commercial, public semi public & community facilities.

Moderate-to high-density mix with predominantly residential supported with commercial & community facilities.

Integrating affordable housing in the product mix to increase transit ridership.

Integrating high-density housing into existing mix of housing and employment to support local-serving retail and improving connections/access to transit.

Integrating new housing and supporting local-serving retail.

Expanding local-serving retail opportunities and high-density housing opportunities.

Provide greater opportunities for commercial activities and informal markets to support household needs.

Major Planning & Development Challenges

Integrating dense mix of housing and employment uses while maintaining ease of access to transit stations.

Illegal parking and hawker encroachment can create a false sense of congestion.

Introducing housing into predominantly employment/public-semi-public uses and improving connections/access to transit.

Creating sustainable off-peak uses and accommodating peak travel demand.

Integrating affordable housing in the product mix to increase transit ridership.

Provide greater opportunities for commercial activities and informal markets to support household needs.

Land Development Opportunities

Moderate chance of land availability.

Less possibility of land availability.

Mostly infill developments & retrofitting uses.

Very less chance of land availability.

Moderate chance of land availability.

New Residential Areas

Teleferico Do Alemão, Rio de Janeiro

Church Gate, Mumbai

Koh-e-fiza, Bhopal

Guatemala City

<table>
<thead>
<tr>
<th>Transit Neighborhoods</th>
<th>Urban Core (CBD)</th>
<th>Infill Neighborhoods</th>
<th>New Residential Areas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Predominantly residential district with good access to regional and subregional centres</td>
<td>Significant center of economic, community and cultural activity with regional-scale retail destinations.</td>
<td>Predominantly residential districts located just outside the core/old city</td>
<td>Predominantly residential district outside the core/old city area with good access to the core city</td>
</tr>
<tr>
<td>Potential for community and regional-serving retail but need to balance demands and conflict with surrounding destination retail.</td>
<td>High-density with commercial uses (>75%) + a moderate mix of other uses such as institutions, and residential within a 5 min (400m) walking radius.</td>
<td>Moderate-to high-density with predominantly residential and moderate mix of Commercial, public semi public & community facilities</td>
<td>Moderate-to high-density mix with predominantly residential supported with commercial & community facilities</td>
</tr>
<tr>
<td>Integrating affordable housing in the product mix to increase transit ridership.</td>
<td>Integrating high-density housing into existing mix of housing and employment to support local-serving retail and improving connections/access to transit</td>
<td>Integrating new housing and supporting local-serving retail</td>
<td>Expanding local-serving retail opportunities and high-density housing opportunities</td>
</tr>
<tr>
<td>Provide greater opportunities for commercial activities and informal markets to support household needs.</td>
<td></td>
<td>Improving connections/access to transit</td>
<td></td>
</tr>
<tr>
<td>Less possibility of land availability</td>
<td>Mostly infill developments & retrofitting uses</td>
<td>Very less chance of land availability</td>
<td>Moderate chance of land availability</td>
</tr>
<tr>
<td>Note: All requirements in this Table are subject to calibration for local context.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>INTERMODAL GATEWAY</td>
<td>EMPLOYMENT NODE</td>
<td>DESTINATION NODE</td>
<td>TRANSIT NEIGHBORHOODS</td>
</tr>
<tr>
<td>a. BASE RESIDENTIAL DENSITY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dwelling units per hectare</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. BLOCK SIZE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Block perimeter</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. THOROUGHFARES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arterial</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sub-arterial</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collector</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neighborhood streets</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bike facilities</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pedestrian priority streets</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shared street</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d. CIVIC SPACES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Park</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Green</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Square</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plaza</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Playground</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e. LOT OCCUPATION</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lot Width</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lot Coverage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f. DEVELOPMENT STANDARDS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum height</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum height</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum podium height</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum podium stepback</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>g. SETBACKS - PRINCIPAL BUILDING</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Front Setback Principal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>URBAN CORE</td>
<td>INFILL NEIGHBORHOODS</td>
<td>NEW RESIDENTIAL AREAS</td>
<td>BASELINE STANDARDS</td>
</tr>
<tr>
<td>------------</td>
<td>----------------------</td>
<td>------------------------</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>High</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Medium density should be within 500m catchment</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lower density should be beyond the 1000m catchment</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>150m</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>130m</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>110m</td>
</tr>
</tbody>
</table>
PD-R02
TOD PLANNING PRINCIPLES

A series of detailed planning principles and design components to formulate TOD plans at various scales of intervention

Type: Reference Document

© 2021 The World Bank
The different transportation modes (transit, walking, bicycle, cars, taxis, etc.) and the infrastructure and amenities (lanes, parking spots, transit stops, stations, sidewalks, etc.) that allow residents to travel safely, conveniently, and comfortably, whichever mode they choose.
The public spaces (plazas, patios, parks, sidewalks, etc.) that form the transition between transportation facilities and buildings, also known as ‘the spaces between’ where the life of the city plays out. Can be public or private property, but should be designed to be accessible, friendly, and fun for all.

The built-up areas, primarily private parcels, where different human activities occur that support varied housing, employment, shipping, and other uses. In the TOD model, buildings should relate to and activate surrounding open spaces and support transit ridership by adequate density.
<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>WELL DESIGNED TRANSIT SYSTEM</td>
<td>Encourage high-quality station architecture and public realm that is sensitive to the surrounding built context and must provide amenities, including retail, to ensure a comfortable and seamless commuter experience.</td>
</tr>
<tr>
<td>MULTI-MODAL INTEGRATION</td>
<td>Seamless integration of transit modes, systems, and routes must be ensured, while considering efficient links to all modes of access, users and abilities, to and from the station.</td>
</tr>
<tr>
<td>COMPLETE STREETS</td>
<td>Enable street design that ensures safe access for all users, including pedestrians, cyclists, motorists and transit riders, by providing equitable distribution of road space.</td>
</tr>
<tr>
<td>TRAFFIC MANAGEMENT</td>
<td>Incorporate safe speed strategies for traffic around transit stops along with measures on traffic demand management and reduced parking demand to promote sustainable mobility choices.</td>
</tr>
</tbody>
</table>
ORIENTED (OPEN SPACE) COMPONENTS

TRANSIT PLAZA

01. Promote congregational activities through inclusive and context-sensitive variety in architecture and landscaping around transit stations.

WALKABILITY

02. Focus on providing an attractive pedestrian environment that is continuous, forms a network and offers an array of experiences and amenities.

PUBLIC REALM

03. Provide visual interest at the pedestrian scale through thoughtful landscaping and building design, which will encourage people to use the public realm and help contribute to an active street life.

URBAN PARKS & OPEN SPACES

04. Create open areas such as amenity spaces, green spaces, playgrounds, parks and natural areas, plazas, civic squares, etc. within a five-minute walking radius of residents.
DEVELOPMENT (BUILT ENVIRONMENT) COMPONENTS

COMPACT DEVELOPMENT

D1

Optimize employment and residential densities along a transit corridor or station area, based on the carrying capacities of transit and NMT infrastructure, to promote walking and transit use.

MIX OF USES

D2

Promote more efficient land use patterns by providing residents with access to retail, commercial and civic services, employment and recreational facilities without needing to travel by automobile.

HOUSING DIVERSITY

D3

Provide a diversity of housing choices, which includes a mixture of types, styles, price ranges and tenure, within a 10-minute walking distance from a transit station, to foster the creation of equitable TODs.

INFORMAL SECTOR INTEGRATION

D4

Strive to achieve inclusive development in TODs by addressing the needs of the informal sector in all aspects of policy, planning and design for street vendors, settlements and transportation services.
TOD SUPPORTIVE PRINCIPLES

CLIMATE RESILIENCE
S1
Identify high-risk areas to design TOD projects in consideration with the anticipated hazards and failures associated with climate change & environmental variations.
Reference: Climate resilient development index: theoretical framework, selection criteria & fit-for-purpose indicators, European Commission

INCLUSIVENESS
S2
Adopt inclusive development of TOD areas at all stages & scales by means of incorporating the needs of diverse user groups including gender, age, abilities & socio-economic segments.
Reference: Towards an Inclusive and Low Carbon Transit Oriented development in Indian Cities, Shakti Foundation

LAND VALUE CAPTURE
S3
Adopt development based land value capture as a financial mechanism for upgrading infrastructure along TOD corridors and station areas.
https://openknowledge.worldbank.org/handle/10986/21286

UNIVERSAL ACCESSIBILITY
S4
Meet and exceed the requirements of accessibility guidelines and standards of all users with different abilities in building or retrofitting pedestrian environments.
Reference: Environment for Disabled and Elderly Persons, CPWD (1998)

SUSTAINABLE INFRASTRUCTURE
S5
Prioritize and implement innovative green building practices in all aspects of providing or upgrading infrastructure including, energy, water, landscape and waste management.
Reference: LEED for Neighborhood Development

BICYCLE FRIENDLY
S6
Expand accessibility in TOD areas by promoting bicycles as an alternate or preferred sustainable and healthy mode of choice.
Reference: National Guidance Document on Public Bicycle Sharing, MoHUA

TECHNOLOGY INTEGRATION
S7
Adopt smart technologies within TOD projects such as fare integration, smart parking, real-time information, to provide public transit service an edge over automobiles.
Reference: ITS Toolkit, IUT
Transit corridors must be located in proximity to a city’s current or planned urban footprint. City officials must assess where enough transit demand exists to sustain public transportation, or where there is potential for future development (based on integrated land use and transportation plans), and route primary and secondary transit systems to these areas in order to accommodate and create demand.

-A TOD corridor should be designed with the goal of incorporating and connecting as many types of transit systems to one other to create a more robust transit network, but not all stations across a corridor will demand the same variety and capacity of transit options. The types of transit options will depend on various factors including proximity to the urban core, and to dense residential and economic hubs.

-Risk & Mitigation
- Transit agencies have a strong say on where the transit infrastructure is built, and hence influence the potential of TOD. Often, the transit stops are planned in less expensive locations, far from jobs and housing areas, which diminish the outcomes early on. Transit station designs are many times planned by transit agencies without considering options for joint developments or other mechanisms to improve integration at the station area scale.
- Placement of transit stops has to be in concurrence with the emerging locations that foster private development.

- WHEN PLANNING A TOD CORRIDOR, IT IS NECESSARY TO UNDERSTAND THE EXISTING DEMAND AT EACH STATION, BASED ON EXISTING AND Projected ECONOMIC CONDITIONS. THIS WILL HELP TO PRIORITIZE THE STATIONS THAT SHOULD PLAN FOR THE GREATEST HIERARCHY OF PUBLIC TRANSIT SYSTEMS.

-Module 4: Design Components of TOD, WRI, 2015

- CONSIDER A TRANSIT ALTERNATIVE ANALYSIS TO DETERMINE THE MOST EFFECTIVE AND COST-EFFICIENT MODE FOR THE CONTEXT.

- BUS RAPID TRANSIT SYSTEM SHOULD BE CONSIDERED FOR DEMAND GREATER THAN 2000 PASSENGERS PER HOUR PER DIRECTION.

- METRO RAIL SHOULD BE CONSIDERED FOR DEMAND GREATER THAN 15000 PASSENGERS PER HOUR PER DIRECTION.

Encourage high-quality station architecture and public realm that is sensitive to the surrounding built context and must provide amenities, including retail, to ensure a comfortable and seamless commuter experience.
1.0 INTRODUCTION

Related to station design (spacing, placement and facility) and its conclusions. Similarly, with the exception of Delhi Metro, other metro rail systems are currently in the construction or partial BRT systems in India, with the exception of Janmarg Ahmedabad, are still in their early stages of implementation to draw definitive indications that the ability for transit systems to attract development along well-designed BRT corridors is comparable to TOD near urban rail. There is a misconception that Metro rail systems are better positioned than BRTs to occupy low-to-moderate density capacity of both systems is highly debated, BRT is more flexible and able to better serve suburban development patterns than implementation phase. However, there are some inherent differences between planning for TODs along Local Express Bus/BRT

2. CREATE BARRIER FREE MOVEMENT SPACES

- The maximum acceptable walking distance to the nearest rapid transit station is defined as 1,000m and 500m for a frequent local bus service that connects to a rapid transit network within less than 5 kilometers.
 -Adapted from TOD Standard, ITDP, 2017

- The transfer station should be designed for short, convenient and all-accessible connections with the rapid transit service.
 -Adapted from TOD Standard, ITDP, 2017

- In addition to variety, efforts should be made to integrate the various forms of public transit. This can be achieved through measures such as integrated fare systems across the different systems; easy access to transfer between systems, and combined operations to ensure higher quality, complementary and complete public transit system network.
 -Module 4: Design Components of TOD, WRI

3. PROVIDE CUSTOMER AMENITY TO ENHANCE COMFORT, SAFETY AND INFORMATION

- Convenience: Provide retail opportunities at transit stations to offer food, drink and services such as banks or dry cleaners.

- Comfort and Safety: Transit stations should provide comfortable and secure places to sit and wait with amenities such as washrooms and secure bike storage.

- Information: Provide a high level of customer service at stations, including staffed customer service kiosks, real-time and static information displays, wireless internet and pay telephones.
 -Adapted from Mobility Hub Guidelines, Metrolinx, 2011

+ REFER OTHER KNOWLEDGE PRODUCTS

AS	A01, A02, H02, P02
EN	C01, C02, H01, R01, P01
PD	H01, H02, H03, H07, R03, P01
FI	A01, A02, H01, H02, R01, R02, R03
IM	A01, A02, H01, H02, P01
1. DESIGN FOR EFFICIENT INTER-MODAL TRANSFERS TO CREATE A SEAMLESS TRANSIT EXPERIENCE

- Coordinate local feeder transit service schedules and routes to provide seamless connectivity between local, regional, and rapid transit services by reducing waiting times.
- Adopt transit priority measures to ensure the efficient movement of surface transit to and from the station area. Intermodal integration of formal public transport, paratransit and cycle sharing should be within 200m from each other.

RISK & MITIGATION

- Different agencies for various modes of transit, with lack of inter-agency coordination, hinders the seamless and efficient integration of transit for users.
- A multi-agency task force could be set up to address the interdependent needs of multi-modal integration at various levels from planning routes to provision of PPUDO at transit stops.

APPROX. WALKING DISTANCE FROM EXITS

Within 100 m	Bus stops; vendor zones; convenience shopping; cycle-rental station, high occupancy feeder stop/stand, public toilets; pedestrian-only plazas.
Beyond 100 m	Private car/taxi “drop-off” location only; validated car parking facility for metro users (park & ride) may be provided.
Within 500m	Cycle-rickshaw stand; cycle-parking stand; informal transit and ride-sharing services/auto-rickshaw stand, improved lighting, proper signage, information for modal interchange and way-finding; interchange between any two mass rapid transit modes (Railway, Metro, BRTS, etc.)

Refer **E PRIMARY STATION AREA DESIGN** for multi-modal integration guidance.
2. **FOCUS ON THE NEEDS OF FIRST AND LAST MILE CONNECTIVITY**

- Dedicated and physically segregated bicycle tracks with width of 2m or more, one in each direction, should be provided on all streets with total motor vehicle carriageway larger than 10m (not ROW) after providing adequately sized footpaths in each direction based on pedestrian traffic.

 -Adapted from TOD Guidance Document, MOUD, 2016

- Provide designated parking for informal transit within 150m of walking distance from the station exit.

 -Adapted from TOD Guidance Document, MOUD, 2016

- Cycle rickshaw parking and three-wheeler parking bays of 1.5m width should be provided near the junctions.

 -Adapted from TOD Guidance Document, MOUD, 2016

- Desired average waiting time for a pedestrian is not more than 45 seconds.

REFER OTHER KNOWLEDGE PRODUCTS

AS	A01, A02, A04, H02, P02
EN	C01, C02, H01, R01, P01
PD	H01, H02, H03, R01, R03, P01
FI	A01, A02, H01, H02, R01, R02, R03
IM	A01, A02, H01, H02, P01
Enable street design that ensures safe access for all users, including pedestrians, cyclists, motorists and transit riders, by providing equitable distribution of road space.

RISK & MITIGATION

- Addressing competing needs of space from diverse user groups in an existing built context deters the objective of designing complete streets due to lack of available space.
- Street upgrades within various agencies and different timelines hinders the implementation of complete streets.
- Prioritizing other initiatives that help support the complete streets objective including traffic management, promoting walking & bicycling culture to be addressed in parallel.
- Inter-agency coordination and institutional support to bring the agencies together mitigates the risks on differing timelines.

1. **DESIGN THE STREETS FOR THE ENTIRE RIGHT OF WAY**
 - Multi-Utility Zone (MUZ) of minimum 1.8 m width should be provided on all Collector and Arterial Roads, to accommodate bus stops, street utilities, trees, street furniture, planting for stormwater management; informal transit and ride-sharing services/NMT stands, paid idle parking, etc.
 - Adapted from TOD Guidance Document, MOUD, 2016

2. **CREATE A BALANCE BETWEEN NEEDS OF ALL USERS AND MODES OF TRAVEL**
 - No vehicular street R/W within 500m of TOD station shall be more than 30m unless already notified in the Master Plan.
 - Adapted from TOD Guidance Document, MOUD, 2016
 - In a slow-speed local street (below 30km/h), the optimum width for a carriageway is 3 m for one-way movement and 4.5 m for two-way movement.
 - Adapted from TOD Guidance Document, MOUD, 2016
 - Create dedicated and protected bike lanes, at least 3m wide in each direction, on all streets except low-speed local streets.
 - Adapted from The Energy Foundation, 2012

Refer

A) WALKING INFRASTRUCTURE,
B) CYCLING INFRASTRUCTURE,
C) FEEDER TRANSIT AND PARATRANSIT INFRASTRUCTURE and
D) TRAFFIC CALMING MEASURES FOR SHARED STREETS

for design guidance on Complete Streets design

+ REFER OTHER PRINCIPLES
3. DESIGN STREETS IN CONTEXT TO ITS ABUTTING LAND USES

- A continuous unobstructed footpath on each side of all streets with ROW wider than 12m. Commercial/Mixed Use-2.0m, Shopping frontages- 2.5m, Bus Stops- 3m, High-Intensity Commercial Areas-4m.

- Building edges and building frontages should be incorporated in the street design.

- Building frontages should be accessible to the public as far as possible.

4. DEVELOP AN INTERCONNECTED STREET NETWORK TO PROVIDE DIRECT CONNECTIONS TO THE TRANSIT STATION

- Block sizes should be minimized to avoid the creation of inhospitable super-blocks. These types of long blocks can deter walking, as they increase the perceived distance between locations. Recommended block size: 150-200m (WRI + MOUD)

- Area of blocks surrounded by public access pedestrian/cyclist streets or pathways not to exceed 2 ha. In existing built-up areas, statutory planning to be done for breaking up blocks with an area of more than 2 Ha, to provide publicly accessible pedestrian thoroughfare.

- Preferred density of pedestrian-friendly intersections: 50 intersections per squarekm.

- Hierarchy of street network:
 o Arterial - 50m to 80m - 50km/hr
 o Sub-Arterial - 30m to 50m - 50km/hr
 o Distributor - 12m to 30m - 30km/hr
 o Access - 6m to 15m - 15km/hr

RECOMMENDATIONS

- **As**: H03, P03
- **En**: C01, C02, H01, R01, P01
- **Pd**: H01, H02, H03, H07, R03, P01
- **Fi**: A01, A02, H01, H02, R01, R02, R03
- **Im**: A01, A02, H01, H02, P01

LEGEND

- Arterial
- Sub-Arterial
- Collector/Local
- NMT Network
1. REDUCE VEHICULAR TRIPS IN THE STATION AREA

- Vehicle Demand Management (VDM): Adopt strategies and policies to reduce or redistribute travel demand for private vehicles. Discouraging use of private vehicles by means of congestion pricing, registration fee, alongside with provision of high-quality public transit facilities are some of the means to address VDM.

 -Adapted from TOD Guidance Document, MOUD, 2016

- Streets meant primarily for NMT movement as well as all streets of ROW 12m or below, should be limited to a maximum speed of 20km/hr by design.

 -Adapted from TOD Guidance Document, MOUD, 2016

- Narrow streets that allow one-way motor traffic, as well as bicycles and pedestrians, will significantly reduce congestion. Replace major arterials wider than 45m with efficient one-way couples (two narrower one-way couples).

 -Adapted from The Energy Foundation, 2012

- On streets with ROW of 18m or less, if pedestrian traffic is greater than 8000 per hour in both directions together, the entire ROW should be notified for pedestrianization.

 -Adapted from TOD Guidance Document, MOUD, 2016

RISK & MITIGATION

- Growing dependency on automobile coupled with the tendency to sprawled development.

- Lack of appropriate parking policies and provision of distinct parking supply to address the needs for parking.

- Sensitizing officials in charge of traffic and transportation towards the needs of transit and NMT users.

- Adequate measures on updating policies and enforcement of traffic rules to focus on NMT users and their needs.

Refer

C FEEDER TRANSIT AND PARATRANSIT INFRASTRUCTURE and for guidance on Traffic speeds management
2. OPTIMIZE TRAFFIC SPEEDS ON HEAVY TRAFFIC ROADS TO PROTECT MULTI-MODAL USERS AT TRANSIT STATIONS

- Disperse high traffic volumes over multiple parallel human-scale streets rather than concentrating traffic on fewer major arterial streets.
 - Adapted from TOD Guidance Document, MOUD, 2016
- Limit speed on urban arterial roads and sub-arterial streets to 50kmph and on collector and local streets to 30kmph.
 - Adapted from TOD Guidance Document, MOUD, 2016
- Traffic calming of all streets with ROW of 12m or less through the narrowing of driveways and meandering path with the use of trees, islands and street furniture.
 - Adapted from TOD Guidance Document, MOUD, 2016
- Mid-block crossings every 250m on average. Min: 5 safe street-level crossings/km.

3. REGULATE PARKING NEEDS AROUND THE STATION AREA

- Short-Term Parking (on-street & off-street): Approximately 70% of the total parking space/slots capacity to be kept for short-term parking near the station.
 - Adapted from TOD Guidance Document, MOUD, 2016
- Park-and-Ride Lots: Park-and-Ride facilities for private modes may be provided only at Terminal MRTS Stations or major Multi-modal Interchanges.
 - Adapted from TOD Guidance Document, MOUD, 2016
- Special parking spaces should be designated on-street for differently abled, at a ratio of 1 for every 25 parking spaces. These parking spaces should have 1.2m access zones.
- At least 50% and preferably 100% of the total parking facilities (based on ECS) provided for any new/redevelopment/retrofit project greater than 2000 sqm plot area, shall be provided as a Shared Parking facility.
- Minimum parking rates may be fixed but maximum rates be variable based on market forces, similar to all real estate space in the city.
- Increase fee exponentially with decreasing distance to BRTS/Metro Rail stations.

+ REFER OTHER KNOWLEDGE PRODUCTS

AS: A01, A02, A04, H02, P02
EN: C01, C02, H01, R01, P01
PD: H01, H02, H03, R03, P01
FI: A01, A02, H01, H02, R01, R02, R03
IM: A01, A02, H01, H02, P01
Promote congregational activities through inclusive and context-sensitive variety in architecture and landscaping around transit stations.

TRANSIT PLAZA

Transit Plaza at center square MRT, Raffles Place, Singapore

1. **ADOPT MEASURES TO CREATE EFFICIENT AND DISTINCT CIRCULATION AREAS THAT CATER TO INTER-MODAL TRANSFER AROUND TRANSIT STOPS**

 - Adopt transit priority measures to ensure the efficient movement of surface transit to and from the station area.

 - Adapted from Mobility Hub Guidelines, Metrolinx, 2011

 - Provide clearly marked and protected access for pedestrians and cyclists at station areas to minimize conflicts, particularly at passenger pick-up and drop-offs (PPUDO), bus facilities, and parking access points.

 - Adapted from Mobility Hub Guidelines, Metrolinx, 2011

 - Provide secure and plentiful bicycle parking at station entrances with additional cycling amenities at high volume locations.

 - Adapted from Mobility Hub Guidelines, Metrolinx, 2011

RISK & MITIGATION

- Transit route planning involves alignments passing through various contexts and space constraints, risking the provision of transit plazas at stops. Provision of standardized transit stop designs that lack distinguished character prohibits consideration of transit plaza.

- Lack of sufficient land ownership by the transit agency.

- Station area plans should be made along with transit plans so that appropriate plazas are also designed. Space for transit plaza could be created through urban design guidelines or regulations over private properties.

Refer

D) TRAFFIC CALMING MEASURES FOR SHARED STREETS

E) PRIMARY STATION AREA DESIGN

for design guidance on Transit plaza and Station a design

+ REFER OTHER PRINCIPLES
2. PEDESTRIAN FIRST MEASURES HAVE TO BE PRIORITIZED AROUND THE TRANSIT PLAZA

- Provide an attractive pedestrian environment with a high level of priority, safety, and amenities.
 - Adapted from Mobility Hub Guidelines, Metrolinx, 2011
- Ensure the plazas respond to local needs both functional and architectural.
 - Adapted from Mobility Hub Guidelines, Metrolinx, 2011
- Public plazas with community amenities such as gathering places, public information kiosks, public art displays and opportunities for small convenience-oriented retail uses.
 - Adapted from Mobility Hub Guidelines, Metrolinx, 2011
- In waiting areas, include a variety of comfortable seating types and locations.
 - Adapted from Mobility Hub Guidelines, Metrolinx, 2011
- Use fountains, landscaping and building elements (such as low walls) to buffer traffic noise.
 - Adapted from Mobility Hub Guidelines, Metrolinx, 2011
- Incorporate natural landscape elements and other green design features such as drought-resistant plantings, permeable surfaces and recycled/able materials.
 - Adapted from Mobility Hub Guidelines, Metrolinx, 2011
- Recommended area of pedestrian spill out space > 1.9 sqm/ped.
 - Adapted from TOD Guidance Document, MOUD, 2016

+ REFER OTHER KNOWLEDGE PRODUCTS

<table>
<thead>
<tr>
<th>AS</th>
<th>EN</th>
<th>PD</th>
<th>FI</th>
<th>IM</th>
</tr>
</thead>
<tbody>
<tr>
<td>C01, C02</td>
<td>H03, H04, H05, H06, P01</td>
<td>A02, H02, R01, R03</td>
<td>A01, A02, H01, H02, P01</td>
<td></td>
</tr>
</tbody>
</table>
Focus on providing an attractive pedestrian environment that is continuous, forms a network and offers an array of experiences and amenities.

RISK & MITIGATION

- Lack of technical capacities and sensitivity towards pedestrian needs.
- Lack of a walkable mix of uses because of discordant land use regulations.
- Consider formulation of NMT cells within at relevant levels within the local authorities to address the needs of walking.

1. **PROVIDE APPROPRIATE NETWORK AND WIDTH OF CONTINUOUS Foothaths**

 - A concerted effort to create connected & contiguous networks for cycling & walking must be made at the corridor level, detailed to the level of each station area.
 - Adopt sidewalks to be designed using a three-section strategy:
 - Service zone: contains space allocation for urban furniture, vegetation, stormwater management and infrastructure
 - Pedestrian flow zone: strictly dedicated to pedestrian movement, free of all obstructions. This zone must cater to all users with different abilities and age groups moving in both directions.
 - Front-of-building zone: transition zone from public to private property, could be utilized for outdoor seating, signage, porches, planting etc.
 - Additionally, a fourth zone could be added, if space permits for bicycles, as an additional section of the sidewalk of as part of the street.

Refer

WALKING INFRASTRUCTURE

for design guidance on Walkability

REFER OTHER PRINCIPLES

T1 T2 T3 T4 O1 O2 O3 O4 D1 D2 D3 D4
2. MAKE WALKING A COMFORTABLE CHOICE

- Street trees:
 - At least 125 trees per km for streets with ROW smaller than 12m.
 - At least 125 trees per km per footpath on streets with ROW greater than 12m.
- Street Lighting: Spacing should be uniform with the distance based on the minimum illumination required.
- Street Furniture: Benches, trash receptacles, bollards, vending kiosks, signage to be provided adequately.
- Public Facilities: Provide Accessible Public Toilets at every 500-800m distance – preferably located close to bus stops for easy access by pedestrians and public transport users.

3. MAINTAIN ACTIVE STREET EDGES TO CREATE SAFE WALKING

- Active frontages include arcades, shopfronts, entrance doorways, access points, entry/exits and transparent windows of active areas facing the primary access street.
 -Adapted from TOD Guidance Document, MOUD, 2016
- Primary pedestrian access for buildings from the main street, with location as per shortest walking distance from nearest bus stop.
 -Adapted from TOD Guidance Document, MOUD, 2016
- Vehicular/service access should be from secondary street wherever access to the building is possible from multiple streets.
 -Adapted from TOD Guidance Document, MOUD, 2016
- Compound walls, if present, should be transparent above a height of 100cm. High-security government buildings may apply for an exemption.
 -Adapted from TOD Guidance Document, MOUD, 2016

+ REFER OTHER KNOWLEDGE PRODUCTS

AS: A01, A02, A04, P02
EN: C01, C02, H01
PD: H03, H04, H05, H06, P01
FI: A02, H02, R01, R03
IM: A01, A02, H01, H02, P01
Provide visual interest at the pedestrian scale through thoughtful landscaping and building design, which will encourage people to use the public realm and help contribute to an active street life.

RISK & MITIGATION

- Lack of micro-planning mechanisms or allocation of budgets with public agencies hinders the investments in public realm improvement projects.
- Investments in infrastructure to support the quantum of development envisioned for a particular place is critical to TOD. The public sector needs to invest in infrastructure to alleviate the cost burden from prospective private developments.

1. INCORPORATE PROVISION OF PUBLIC REALM AT ALL SCALES OF TOD PLANNING

- A neighborhood park accessible by 800m walking or bicycle trip, and a public sports venue accessible by 1,200m walking or bicycle trip.
 -Module 4: Design Components of TOD, WRI, 2015
- Public spaces must be designed to integrate with existing urban space and meet the needs of local residents. To properly integrate a public space network, the public spaces within the network should connect with each other and with a neighborhood’s primary leisure spaces. This network can be connected through a system of sidewalks, pedestrian paths, or cycling paths.
 -Module 4: Design Components of TOD, WRI, 2015
- When streets are thought of as public spaces, opportunities for community enhancement are created. Community streets can be used for a variety of purposes, including such events as food fairs, festivals, games, and parades.
 -Module 4: Design Components of TOD, WRI, 2015
- Through the establishment of mixed-use districts, encouragement of streetscape that are created for all user experiences (not just vehicles), sidewalks that are built for multiple purposes including green space, pedestrian experience, and aesthetic transitioning to adjacent businesses and residences, zoning codes can be powerful tools.
 -Module 4: Design Components of TOD, WRI, 2015

Refer

A) WALKING INFRASTRUCTURE,
B) CYCLING INFRASTRUCTURE,
D) TRAFFIC CALMING MEASURES FOR SHARED STREETS

for design guidance on Public Realm design

+ REFER OTHER PRINCIPLES
2. PROVISION OF PUBLIC SPACES IMPROVES QUALITY OF LIFE

- Provision of public and green spaces can seem in direct conflict with TOD’s density goals; however, the two design components must be thought of as complementary. Balancing the two design components to achieve high density and green and public space is not only possible, but necessary.

-Module 4: Design Components of TOD, WRI, 2015

- Important local landmarks, including heritage buildings, churches, and monuments, must be preserved to keep a community’s history alive. TOD design can serve to increase access to historical locations; for example, pedestrian zones can be created around important monuments and buildings, improving connectivity between important historical sites.

-Module 4: Design Components of TOD, WRI, 2015

-Adapted from TOD Guidance Document, MOUD, 2016

3. DESIGN OF PUBLIC SPACES MUST BE SENSITIVE TO LOCAL HERITAGE AND CONTEXT

- Preservation of local identity is key in defining unique places and creating a sense of belonging among residents, which are central for TOD projects. Effort should be made to recognize local assets when planning a TOD project. TOD design can serve to complement, enhance, and reflect local cultural, heritage/historical, and environmental features.

-Module 4: Design Components of TOD, WRI, 2015

- TOD projects should also take a community’s cultural traditions into consideration when designing development for a neighborhood. If a community has traditional festivals, parades, or weekly markets, these customs must be accommodated through design.

-Module 4: Design Components of TOD, WRI, 2015

- The architectural features of a TOD project should take local context into consideration. Existing buildings can be used as prototypes, and properties of local architecture, including construction materials and facade colors, can influence TOD design.

-Module 4: Design Components of TOD, WRI, 2015

-Adapted from TOD Guidance Document, MOUD, 2016
Create open areas such as amenity spaces, green spaces, playgrounds, parks and natural areas, plazas, civic squares, etc. within a five-minute walking radius of residents.

RISK & MITIGATION

- Lack of focus on open spaces in planning, along with an inappropriate allocation of funds towards upgrading facilities in parks and open spaces. Open spaces as potential areas for encroachments requires adequate measures on design and enforcement.

1. **PROVIDE OPTIONS FOR OUTDOOR RECREATION, LEISURE AND PLAY AREAS TO PROMOTE HEALTHY COMMUNITIES WITHIN TOD AREAS**
 - Access to parks and playgrounds is particularly important to the urban poor, who have little access to private facilities and few opportunities to break away temporarily from urban life.
 - Adapted from TOD Standard, ITDP, 2017

 - A TOD project’s designed green spaces should be open to the general public, and access to these areas should be prioritized for non-motorized means of transit.
 - Module 4: Design Components of TOD, WRI, 2015

Public open space, Curitiba, Brazil
2. IMPROVE ECOLOGICAL FOOTPRINT OF TOD AREAS

- Public parks and playgrounds have multiple benefits—from improved air quality, to reduced heat island effects, to the increased physical and mental health and comfort of residents.

 - Adapted from TOD Standard, ITDP, 2017

- TOD design can be integrated with the local environment, including such features as rivers, cliffs, agricultural lands, forests, and regional fauna and floral. Natural areas should be protected from development for the capturing of CO2, aquifer replenishment, and maintenance of biodiversity.

 - Module 4: Design Components of TOD, WRI, 2015

- Public and green spaces also provide opportunities for city officials to incorporate risk and natural resource management into city planning.

 - Module 4: Design Components of TOD, WRI, 2015

- Preservation of sensitive or critical ecosystems and creation of buffers along waterways protect against habitat loss and species extinction, while at the same time improving aesthetics, access to green space, and natural resource production.

 - Module 4: Design Components of TOD, WRI, 2015

3. PROMOTE ENHANCED CONNECTIVITY TO TRANSIT THROUGH PARKS

- While retail and playgrounds should, ideally, be no further than 600m away from any point within a neighborhood, schools and markets should be less than a 1km trip.

 - Module 4: Design Components of TOD, WRI, 2015

- Identify opportunities to provide ‘cut-throughs’ (i.e. across parking lots or through parks, where such cut-throughs shorten access routes.)

 - Adapted from TOD Guidance Document, MOUD, 2016

+ REFER OTHER KNOWLEDGE PRODUCTS

<table>
<thead>
<tr>
<th>AS</th>
<th>EN</th>
<th>PD</th>
<th>FI</th>
<th>IM</th>
</tr>
</thead>
<tbody>
<tr>
<td>C01, C02</td>
<td>H03, H04, H05, H06, P01</td>
<td>A02, H02, R01, R03</td>
<td>A01, A02, H01, H02, P01</td>
<td></td>
</tr>
</tbody>
</table>
1. ADOPT DIFFERENTIAL LAND USE DENSITIES AS PART OF STATUTORY PLANS

- Incorporate varying densities based on the development potential of different areas.

 -Adapted from TOD Guidance Document, MOUD, 2016

- Distribution of FSI has to be varied depending upon the FSI already consumed, proposed land use zoning, and accessibility, particularly, areas in proximity to public transit stations, in order to ensure efficiency of use of land.

 -Adapted from TOD Guidance Document, MOUD, 2016

- To establish articulated densities along transit corridors, Building codes can be changed to increase the maximum floor-area-ratio (FAR) permitted and allow for development on smaller plot sizes.

 -Module 4: Design Components of TOD, WRI, 2015

- Land consolidation can be facilitated for larger developments.

 -Module 4: Design Components of TOD, WRI, 2015

RISK & MITIGATION

- Undue focus on increasing FARs and densities independent of market forces and absorption capacity fails the objective of achieving compact development. On the contrary, highly compact built up environments may result in deteriorating quality of life with lack of appropriate public open spaces.

- Engaging with private sector early on to create awareness and capacity building would benefit to promote TOD.

City development, Bogota, Colombia
2. CREATE HIGH-DENSITY NODES BY MEANS OF PREMIUM FARS OR BONUSING

- A typical density bonus program sets a base density that a development may achieve ‘by right’ and a maximum density that can be achieved by conformance to higher standards or through the provision of qualifying amenities/benefits/premium paid.

- High-quality design, improved infrastructure, and high-quality amenities also attract and support additional density without producing the sensation of congestion.

-Planning should take into account the level of connectivity of a station, to align human and economic densities, mass transit capacity and network characteristics for greater accessibility.

3. ENSURE OPTIMUM POPULATION AND HOUSING DENSITIES

- Design for buildings and unit sizes can also be adopted to increase density. On smaller size properties, micro-unit apartments or offices can be introduced to increase density; their compact design can raise the number of units able to be constructed within an apartment or office building.

- Minimum standards must be prescribed for urban areas that begin to be transit supportive developments.

- New development in the peripheral zone should be allowed only if it abuts existing developed areas with prescribed minimum density and mix of uses.

- Both residential & commercial density should be designed to match the area’s peak-hour transit, walk and bike capacity.

-REFER OTHER KNOWLEDGE PRODUCTS

AS A01, A02, A03, H01, R01, P01
EN C01, C02
PD H01, H02, H03, H04, H05, H06, R02, R03, R04, P01
FI A01, A02, H01, H02, R01, R02, R03
IM A01, A02, H01, H02, P01
MIX OF USES

Promote more efficient land use patterns by providing residents access to retail, commercial and civic services, employment and recreational facilities without needing to travel by automobile.

1. RESIDENTIAL AND NON-RESIDENTIAL USES COMBINED WITHIN THE SAME OR ADJACENT BLOCKS

- **Internally Complementary:** residential and nonresidential uses form a complementary mix within the development. A development is defined as internally complementary if residential uses account for no less than 15% and no more than 85% of the total developed floor area.

 - Adapted from TOD Standard, ITDP, 2017

- **Contextually Complementary:** the project’s predominant share of floor area is dedicated to uses complementary to the uses predominant in the surrounding station catchment area. A development is defined as contextually complementary if either: more than half of its floor area is dedicated to uses that balance the category of uses predominant in the station catchment area, or the development is internally complementary and located in a station area with a residential use balance between 40% and 60%.

 - Adapted from TOD Standard, ITDP, 2017

RISK & MITIGATION

- Miscalculation in feasibility studies of development projects due to added risks associated by working with the public sector, specific TOD requirements of projects on providing street-facing buildings, a mix of uses or green building techniques, hamper the success rates of TOD projects.

- Lack of market acceptance for mixed-use properties.

+ REFER OTHER PRINCIPLES

T1 T2 T3 T4 | O1 O2 O3 O4 | D1 D2 D3 D4
2. ACCESS TO LOCAL SERVICES

- Entrances within a 500m walking distance of fresh food sources and a 1,000m walking distance of primary or elementary schools and a healthcare service or a pharmacy.

 -Adapted from TOD Standard, ITDP, 2017

- Provide effective basic accessibility from the residences to facilities and commerce.
 - Retail that is, at most, a 600m trip
 - A playground that is, at most, a 600m trip.
 - A preschool and an elementary school that are, at most, a 1km trip.
 - A space destined for open or movable markets that is, at most, a 1km trip.

 -Module 4: Design Components of TOD, WRI, 2015
 -Adapted from TOD Guidance Document, MOUD, 2016

3. ACTIVE GROUND FLOOR

- **Boundary Walls:** In all TOD projects, boundary walls along any edge facing a public open space, pathway, road, park, etc. shall be prohibited. In case enclosure of sites is required, translucent fencing shall be used.

 -Adapted from TOD Standard, ITDP, 2017
 -Adapted from TOD Guidance Document, MOUD, 2016

- **Active Frontage:** Active frontages include arcades, shop-fronts, entrance doorways, access points, entry/exits and transparent windows of active areas facing the primary access street. It is considered visually active if 20% or more of the length of its abutting building frontage is visually active.

 -Module 4: Design Components of TOD, WRI, 2015
 -Adapted from TOD Guidance Document, MOUD, 2016

- **Setbacks:** For Integrated TOD Schemes, provide zero front setback and other setbacks no greater than 5m for private buildings and 10m for public buildings, and for any of the other façades.

 -Module 4: Design Components of TOD, WRI, 2015
 -Adapted from TOD Guidance Document, MOUD, 2016

+ REFER OTHER KNOWLEDGE PRODUCTS

<table>
<thead>
<tr>
<th>AS</th>
<th>A01, H01, R01, P01</th>
</tr>
</thead>
<tbody>
<tr>
<td>EN</td>
<td>C01, C02</td>
</tr>
<tr>
<td>PD</td>
<td>H01, H02, H03, H04, H05, H06, R02, R03, R04, P01</td>
</tr>
<tr>
<td>FI</td>
<td>A01, A02, H01, H02, R01, R02, R03</td>
</tr>
<tr>
<td>IM</td>
<td>A01, A02, H01, H02, P01</td>
</tr>
</tbody>
</table>
Provide a diversity of housing choices, which includes a mixture of types, styles, price ranges and tenure, within a 10-minute walking distance from a transit station, to foster the creation of equitable TODs.

1. PROVIDE FORMAL SUPPLY OF AFFORDABLE HOUSING STOCK WITHIN TOD AREAS
 - All apartments/group housing private and government scheme with a plot size exceeding 2000 sqm must compulsorily reserve a minimum FAR for affordable housing units, as mandated by local acts or policies.
 - Ensure all TOD projects provide for the needs of diverse income groups including Economically Weaker Sections (EWS), Lower Income Groups (LIG) & Middle-Income Groups (MIG) as an integral component of the housing units with relevant unit sizes.
2. ENSURE MINIMUM SUPPLY OF AFFORDABLE HOUSING OPTIONS FOR LOW & MIDDLE-INCOME GROUPS

- Minimum percentage of FAR for all TOD projects to be allocated to rental or for sale housing or low-income families.
- Housing options should accommodate a mix of income levels and age groups. (China)
- Mix housing, shops and services within commercial districts to create 24-hour communities.

-Adapted from The Energy Foundation, 2012

3. ADOPT INCENTIVES IN PROMOTING HOUSING FOR ALL IN TOD AREAS

- The developer may be entitled to receive additional FAR equivalent to 100% of the built-up area utilized for EWS and 50% of the built-up area utilized for LIG units.
- Projects providing affordable housing within TOD areas shall be eligible for following incentives to the extent of EWS and Housing mix by units LIG housing in terms of FAR used, over and above the mandatory reservations:
 - Fast track approval process
 - Exemption from Building Plan sanction fee

Housing typologies | source: MOUD, 2016

Balanced mix of housing choices along transit corridor | source: MOUD, 2016

+ REFER OTHER KNOWLEDGE PRODUCTS

AS A01, A03, H01, R01, P01
EN C01, C02
PD H01, H02, H03, H04, H05, H06, R02, R03, R04, P01
FI A01, A02, H01, H02, R01, R02, R03
IM A01, A02, H01, H02, P01
INFORMAL SECTOR INTEGRATION

Strive to achieve inclusive development in TODs by addressing the needs of the informal sector in all aspects of policy, planning and design for street vendors, settlements and transportation services.

1. INCORPORATE STREET VENDORS AND THEIR NEEDS IN PUBLIC REALM

- Vending zones shall be provided at regular intervals (approx. 10-minute walk from every home/workplace).
 - Adapted from TOD Standard, ITDP, 2017

- Vending spaces should be marked in addition and adjacent to the walking path, especially along high pedestrian volume areas to activate the street and make it safe.
 - Adapted from TOD Guidance Document, MOUD, 2016

- Determination of vending zones as restriction-free-vending zones, restricted vending zones and no-vending zones.
 - Adapted from TOD Guidance Document, MOUD, 2016

RISK & MITIGATION

- Lack of detailed inventory and dynamic variations that require continuous updates on the inventory hinders the provision of space and facilities.

- Lack of a comprehensive policy for incorporating informal sector in planning processes.

- Creation of a digital inventory of the informal sector with regular updates resonates with the provision of space and amenities.

- Incorporate the informal sector in all planning and infrastructure interventions to work in conjunction to with them.

+ REFER OTHER PRINCIPLES

| T1 | T2 | T3 | T4 | O1 | O2 | O3 | O4 | D1 | D2 | D3 | D4 |
2. DESIGN FOR INTEGRATED INFORMAL TRANSPORT SECTOR NEEDS AT TRANSIT STOPS AND STATION AREAS

- Organize informal transit and ride-sharing services within 800m from transit station facility through Dial-an-auto/rickshaw services, prepaid booths, Passenger Pick-up & Drop-off areas or Remote Informal Transit/Taxi Parking lots.

- Multi-Utility Zone (MUZ) of minimum 1.8m width should be provided to accommodate bus stops, street utilities, trees, informal transit/NMT stands.

 -Adapted from TOD Guidance Document, MOUD, 2016

3. INFORMAL SETTLEMENTS HAVE TO BE CONSIDERED IN REDEVELOPMENT PROPOSALS

- Preparation of Slum Redevelopment Plan as per relevant Guidelines; or Slum Redevelopment with private sector participation; or Town Planning Schemes for land pooling and plot reconstruction in greenfield areas.

 -Adapted from TOD Guidance Document, MOUD, 2016
A WALKING INFRASTRUCTURE

Walking is the most important mode in any station area, not just for direct access to the transit station, but also, as the most likely means of first and last mile connectivity to other commute modes. The most crucial component of the walking network is obviously the footpath; that is the area along the general right-of-way that is assigned specifically for pedestrians. A cohesive and dense network of footpaths, (of adequate capacity), ensures a high level of safety for walking in the station areas.

Footpath Design

The footpath is the most crucial component of the walking network. The footpath is that component of the street that is assigned for the specific use of pedestrians.

Not all the space on a footpath is meant exclusively for walking. A well-functioning footpath will have spaces assigned for other important elements and uses. A footpath comprises of three components:

1. **Frontage zone**: This is the area touching the boundary of the right-of-away, that is, abutting the property edge line or compound wall. It is meant to accommodate spill-over uses from the adjacent property. This area is not considered to be part of the walking zone, because, normally, pedestrians avoid walking in close proximity to a wall or a building.

2. **Walking zone**: It is the area immediately adjacent to the frontage zone which is actually used by pedestrians to walk. This space should be kept free of encumbrances that impede walking.

3. **Multi-utility zone**: It is the area, normally located between the walking zone and the traffic or parking lane. It’s use will vary depending on the context, to accommodate street vending, street furniture, trees, utility boxes, light poles, signal posts, signage posts, crossing waiting areas, etc.

The three stated components of the footpath are notional. Their actual space requirements are likely to vary along the corridor, depending upon the context along the right-of-way, as well as the adjacent land-use.
FRONTAGE ZONE CONSIDERATIONS

- The width of the frontage zone can be thought out to be between 0.2 to 1 meter. In the case of a residential area, the frontage zone needn’t be very wide.
- If there is a commercial establishment along the road edge, then the frontage zone should be assumed to be wide enough to accommodate spill-over activity, like waiting, window-shopping, etc.
- In the case of large developments, such as a shopping mall, office complex, public or institutional building, it is a good practice to ensure that building setbacks are designed to serve as additional frontage zones.
- This ensures that there is no spillage of activity onto the walking zone and can be achieved through design regulations that stipulate a soft edge between the property and the right-of-way, without f a boundary wall.

WALKING PATH WIDTH

- The most important design consideration for the walking zone is to ensure it has adequate width and is free of any hindrance. For feeder lines to the main walking routes, a walking path width of 1.5m minimum may be acceptable, as this allows two pedestrians to cross each other without hindrance.
- In compromised situations, provisions for the frontage zone or the multi-utility zone may be reduced, before considering reducing the walking path width beyond 1.5m.
- For the main trunk walking routes leading to the transit station, the ideal provision will depend on projected commuter volume, the desired pedestrian Level of Service and total available right-of-way.
- Typically, 3m should be the minimum width for the walking zone on a trunk route.

Compound wall impact on the walking path

- In many high-density areas, there may be a gap between a desirable frontage zone width and what is practically possible on-ground. In such cases, compromises are unavoidable.
- One strategy that can be adopted to reduce the necessary width of the frontage zone is to place regulations that eliminate or control the height of the compound wall. If the compound wall is absent, (or below waist level), then pedestrians are more likely to use the space near the edge of the footpath. Moreover, high compound walls encourage the misuse of the footpath edge, which is then prone to decay over time. This further dissuades pedestrians from walking close to the road-edge, and if left unchecked, this decay can gradually encompass the entire footpath.
- Regulations should also be put in place to disallow the use of pointed / barb-wired fencing and to restrict vertical obstructions, (such as shop hoardings, gates, planter pots, low-height canopy roofs, etc). All these elements discourage pedestrians from walking close to the road edge.

Deviations in the walking path

In some situations, deviations in the walking path are unavoidable - on account of the presence of a tree or a difficult-to-relocate utility box. In such cases, the walking path should be designed to curve around the encumbrance, preferably with
a gradual transition.

Distinguishing the walking path

- Visual cues to distinguish the walking zone, may be provided by using softer design elements, such as a different pavement style or surface treatment (paved versus landscaped), or creating a marginal height difference.
- These cues aid in guiding road user behavior, informing people about the appropriate use of the space.

Walking path continuity

- An important design consideration for the walking zone is to ensure a uniform height along the entire length of the footpath by maintaining the same height for the walking path across property entrances and exits. There are two aspects as to how this can be achieved:
 1. **Planning aspect** - restricting vehicular access on main pedestrian routes; and
 2. **Design aspect** - bringing vehicles up to the footpath height using ramps (accommodated in the multi-utility zone on the traffic lane side, and in the frontage zone or within the property on the property edge side).

Footpath height

- The recommended footpath height for any urban area, including a station area, is normally 10 to 15cm.
- Footpaths greater than 15cm high are cumbersome for pedestrians, especially mobility impaired users.
- They make the provision of accessibility ramps very challenging as they take up the entire width of the footpath. In many cases, footpaths are not wide enough to accommodate the ramp, without significantly increasing the steepness of the slope and make the ramp inaccessible.
- When footpaths are not wide enough to accommodate the 15cm high ramp, then consider reducing the height of the footpath to 10 cm in this section. A 10cm high footpath requires a 50% shorter ramp than a 15 cm high footpath.
- This measure must be used sparingly and with caution, because a 10 cm high footpath is easier to be mounted by vehicles, which may encourage erring motorists to park or drive on the footpath.
- Footpath can also be at the same level as the road with separation achieved by bollards, curbs or different pavement material.

MULTI-UTILITY ZONE DESIGN

There is no standard width for this zone, as it will depend on context and the available right-of-way. Typically, this zone is the best place to absorb any variations in the width of the right-of-way, as this space can be widened or narrowed as required.

- The multi-utility zone can accommodate the uses and functions that are essential for the pedestrian environment, apart from the walking space like seating and waiting areas and street-vending.
- This zone can also accommodate other fixed elements in the right-of-way, such as trees, lamp posts, signal posts, signage posts, utility boxes, etc.
- Multi-utility zone also as a buffer between pedestrians and fast moving traffic, increasing the level of safety.
- It is also essential to have an ‘active sidewalk’ that can be achieved through active frontage from commercial and recreational activities at the street level of the developments as well as encouraging vending and other activities in the multi-utility zone. This ensures there...
are 'eyes-on-street' and provides a sense of security to pedestrians.

STREETLIGHTS

Improved street lighting, along with providing a sense of security, contributes towards increased safety and prevents road traffic crashes, injuries and fatalities due to improved visibility. It enables motor vehicle drivers, cyclists and pedestrians to move safely and comfortably, by reducing the risk of traffic accidents and improving personal safety.

Lack of activities on the sidewalk and inadequate streetlighting can create unsafe experience for pedestrians and force them to use the vehicle travel lanes which are typically more well lit. This raises conflicts between the different road users leading to potential crashes.

- The streetlights should preferably be placed in the multi-utility zone, clear of pedestrian walkways. It’s placement can be coordinated with other street elements such as trees, signage, seating, vending etc. so that they do not impede proper illumination.

- Lighting must be directed downwards as up lighting might result in spillage of light, wastage of energy, and create night sky light pollutions.

- Lighting needs of pedestrians are different from those of vehicular traffic, and therefore need to be designed and integrated within the overall lighting strategy for the street.

- Additional lighting should be provided at conflict points.

Typical multi-utility zone with different types of uses
Crossing Design

The design of safe crossings is a crucial component of the walking network for a station area. There are many important considerations for pedestrian crossings, which are discussed over the following sub-sections.

CROSSING FREQUENCY AND LOCATION

The most important aspects of pedestrian crossing provision is their frequency and location. From the perspective of access to the transit station, crossings must be provided such that the connectivity of the walking network is maintained.

A station area with a higher density of crossing opportunities is typically safer and better for walking:

- Crossing infrastructure must be provided at all intersections.
- Block sizes should be limited such that intersections crossings are not more than 150-200m apart in the high-density areas close to the station. In already developed areas, it may not be possible to modify block sizes, hence mid-block crossings may be provided.

It should be noted here that in the earlier Knowledge Product of PD-H07, the subsection on “Capacity” recommends reduction of interruptions on trunk routes, in order to keep the traffic moving. These interruptions arise due to access points for vehicles into the buildings or land parcels. It has been recommended that these access related interruptions be shifted to parallel tertiary streets or feeder routes. These interruptions are within the recommended 150-200m (discussed above) of consecutive pedestrian crossings. This modification of access points would therefore not hinder the pedestrian movement in the area.

CROSSING ALIGNMENT

Deciding on the alignment of a pedestrian crossing raises two questions:

1. Should the crossings be so aligned that it continues the natural walking path between the two adjoining footpaths?

Or

2. Should it be aligned perpendicular to the traffic lanes, such that crossing distance is minimized?

- The natural walking path and the shortest crossing distance will align perfectly with each other in a 4-arm intersection, where both roads are at right angles to each other.

CROSSING WIDTH

- A pedestrian crossing must be at least as wide as the footpaths that it connects.

- An even wider crossing width may be desirable, as it allows for more people to cross at the same time, which reduces delay and allows for shorter pedestrian signal cycles.

- For a wider crossing, it is recommended to have a minimum width of 3m, though a width closer to 5m may be desirable on high volume routes that connect to mass transit stations or BRT stops catering to high volume of pedestrians going towards and coming out from the stations or BRT stops.
• If the angle of the intersection is skewed, then there will be a deviation in the two paths. So the question becomes, which parameter should one follow.

• For unsignalized intersections, choose the alignment that minimizes the crossing distance. This reduces the amount of time that the pedestrian is put into potential conflict with vehicular traffic. Moreover, it positions the pedestrian and traffic perpendicular to each other, which improves their visibility of each other.

• For signalized intersections, pedestrians will want to avoid deviations to their natural walking path. It is recommended aligning the crossing as close as possible to the straight line connecting the two footpaths.
INTERSECTION DESIGN

Intersection corner curvature

The curvature of intersection corners has a significant impact on pedestrian safety.

- A generous curvature allows vehicles to make free turns at intersections at high speeds, which puts pedestrian at risks, particularly at unsignalized intersections.
- A wide curvature also increases the size of the intersection, which increased the area of undefined road space where conflicts may arise.
- Pedestrian crossings get pushed further back and away from the natural crossings path.
- A wide intersection curvature reduces the availability of space to accommodate pedestrians waiting to cross the road.

It is recommended to have intersection corner curvature radius approximately 4-6m, which allows for most vehicles to make a safe turn at a slow speed.

Slip lanes

- Slip lanes may be provided to give turning vehicles an exclusive lane. This is not desirable in most urban contexts, from the perspective of pedestrian safety.
- If the removal of the slip lane is not possible, it is recommended to ensure that traffic speeds are brought down close to zero, through traffic calming measures and signage like “Yield to Pedestrians” for vehicular traffic.
- The traffic islands created due to provision of slip lane infrastructure must be accessible to pedestrians and should be utilized to accommodate pedestrian waiting areas and accessibility ramps.

Slip lanes provided as part of HP Intersection redesign in Mumbai, India
(Source: WRI India)
Pedestrian waiting area

The pedestrian waiting area is an important component of a crossing. This space is especially important for signalized intersections to accumulate the build-up of pedestrians waiting for their light to turn green.

- The space requirement of the pedestrian waiting area is likely to be very high on the trunk walking lines in a station area, and if adequate space is not provided, pedestrians may spill onto the traffic lane.

- The pedestrian waiting area must be kept distinct from the walking area, otherwise waiting pedestrians will hold up walkers who just want to pass through.

- The best way to ensure a large waiting space, is to keep the intersection corner curvature as tight as possible.

- Another measure is to eliminate the parking lane, if present, at the intersection, and create a curb extension to accommodate the waiting area.
Accessibility ramps

The provision of ramps is an absolutely critical aspect to ensure that street infrastructure is accessible to all road users, including wheelchair-bound pedestrians. Ramps not only benefit mobility-challenged road users, but are also useful for pedestrians pushing baby strollers, shopping carts, hand carts, luggage, trolleys, etc.

• A well-designed ramps consists of flared portions on either side of the ramp, (maximum slope of 1:12), that allow the wheeled unit to enter or cross the ramp from any side.

• Preferably, a landing portion (flat horizontal space) should be present at the end of the ramp to accommodate waiting commuters. However, if the footpath is not wide enough to allow for a landing, then the presence of side flares in the ramp, allow for a wheeled unit to traverse the ramp with ease.

• It is recommended to avoid the use of interlocking paver-blocks for ramps, as it is difficult to fit them to the complex slope geometry required for the different components of ramps. Cement concrete is a preferred material.

• It is preferable to maintain two separate ramps for each crossings at an intersection corner. However, if the footpath area is insufficient to have two ramps, then one can consider using a combined ramp.

• Care should be taken to design it such that the pedestrian doesn’t enter the intersection along the diagonal, but does so in line with the crossing.

Traffic signals

All major intersections in the station areas must be equipped with traffic signals, which incorporate pedestrian signal cycles:

• Any crossing that has more than two lanes, without the presence of a median, must have a pedestrian signal.

• The pedestrian green phase must be long enough to allow for most pedestrians to cross the road in one phase. The pedestrian green times may have to be even longer on the main walking routes within the immediate station areas which may be synchronized with the timings of transit services to accommodate the higher volume of pedestrians going towards and coming out from the mass transit stations or BRT stops. These time synchronization are critical where interchanges between one mode to another takes place, and the connections aren’t direct and require crossing a road to access the stations.

• Signal priority and signal synchronization for pedestrians allows for pedestrians to face a “green wave” (uninterrupted green phases as soon as they reach the intersection); which aids in the safe and convenient access to the station.

• Additional Intelligent Transportation System (ITS) technologies can be incorporated which include use of AE cameras to detect over speeding of vehicles and turning the signal red to ensure speeds under safety limits are maintained within the station area.

• Saw cut loop detectors can be buried at intersections to detect traffic presence and accordingly phase the signal cycles to avoid traffic jams that may impede movement of shared modes and feeder services.

Traffic calming elements

Traffic signals are generally not recommended for minor intersections, with 1 or 2 lanes. In these situations, other traffic calming measures may be adopted to ensure that pedestrians can cross the intersection safely.

Curb extensions can be utilized to reduce the crossing distance at the intersection. Speed humps and tables aid in slowing down vehicular traffic. For very minor side streets, one can consider continuing the footpath across the length of the intersection, using ramps to allow for vehicles to cross the footpath.

Mid-block crossing

• A mid-block crossing may be necessary if the block-size is very large.

• Traffic signals are recommended if the pedestrian has to cross more than 2 lanes without the presence of a median, or if there is a very high volume of traffic.

• It is recommended that mid-block crossings be accompanied by traffic calming infrastructure, such as speed humps or speed tables. Curb extensions may be provided by discontinuing parking lanes close to the mid-block crossing.
Off-road pedestrian path design

Off-road pedestrian paths may also be augmented with the utilization of grade-separated infrastructure. There are broadly two categories for such infrastructure:

- Infrastructure only meant to cross a single road, such as a Foot-over Bridges (FoBs) or an underpass.
- Grade-separated infrastructure of a much longer length that provides direct connectivity to multiple locations the transit station and may comprise of a network of interconnected sections. Such infrastructure is normally elevated, and commonly referred to as skywalks, though there are cases of sub-terrain pedestrian networks as well.

Foot-over-bridges (FoBs) or Underpasses

- FoBs and underpasses are not recommended as crossing substitutes as they are very expensive, and impractical to implement at each location.
- Pedestrians also do not prefer them, because of the physical exertion and time delay involved, in comparison to crossing at street level.
- This infrastructure is unfriendly to the needs of vulnerable users.
- The access points of such infrastructure tends to impede the free movement of the footpath, because of the presence of stairwells and elevator shafts.

Grade separated infrastructure

A grade-separated pedestrian networks may be useful to augment at-grade pedestrian infrastructure.

- They may also provide direct connectivity of major establishments to the transit station, which can be have a positive impact both for walking and for transit patronage.
- While there are contexts where the provision of such infrastructure has benefits, their provision must only be considered as addition to at-grade infrastructure.
Cycling is a healthy and sustainable mode of commute that can play an important role in enhancing connectivity to transit. It has a higher reach than walking, which greatly increases the commutable distance to the transit station.

The most crucial aspect for cycling safety is the design of street infrastructure. The cycling network for the station area will comprise of the judicious use of dedicated cycle lanes where viable, in combination with traffic-calmed, shared streets. This section covers best-practices for the provision of cycle lanes, with respect to the station areas. This includes aspects related to the provision, typology and design.

Cycle Lane Design

CYCLE LANE PROVISIONS

It is recommended to use dedicated cycle lanes on trunk routes of the cycling network, leading to the station. Normally, the trunk cycling corridors will also contain the trunk transit and motor-vehicular routes, and hence will have a high volume of large vehicles and fast-moving traffic. Thus, the provision of dedicated cycle lanes can have a significant positive outcome on cyclist safety.

It should be noted that the cycle lane is not only for bicyclists, but for all wheeled, active modes of transport, which includes wider vehicles, such as tricycles or cycle-rickshaws.

There are, broadly, two kinds of cycle lanes:

1. Physically segregated from vehicular traffic, either, by curbs, medians, railings or landscaping.
2. Marked cycle lanes provided on the main carriageway itself, normally delineated through the use of road-marking and roadside signage.

Physically segregated versus marked cycle lanes

- Segregated infrastructure reduce the possibility of a motor-vehicle entering the cycle lane and colliding with a cyclist.
- It is recommended to avoid use of railings to segregate, because it effectively reduces the usable width of the cycle lane, as cyclists don’t tend to ride closer to the railings. Medians or landscape strips should be used instead.
- The use of lane-marked cycle lanes are often more practical as they cost less. The maintenance, cleanliness and drainage of lane-marked cycle lanes are a lot easier as compared to segregated infrastructure.

Directionality

- Typically, lane-marked cycle lanes are uni-directional, and cyclists are expected to ride in the same direction as traffic on their side of the road. In this case, cycle lanes are expected to be provided on both sides of a two-way road.
- It is recommended to avoid use of contraflow cycle lanes, where cyclists travel in the opposite direction of adjacent traffic as it puts them at risk of head-on collisions in case a motor-vehicle enters the cycle lane.
- Segregated cycle lanes can be uni-directional or bi-directional. When designed to be bi-directional, the cycle lane acts much like a footpath, and cycle crossings can be designed in sync with pedestrian crossings.
- The advantage of a bi-directional cycle lane is that it can be provided one side of the road. This helps with planning the cycling network in station areas, as it may allow for the provision of dedicated trunk route connectivity on roads with constrained space availability.
Width

- Uni-directional cycle lane must be at-least 1.5m wide and it will depend on whether there is parking space or a bus lane on the adjacent space. This allows for some buffer from traffic moving in the adjacent lane.

- It however does not provide enough width for a faster cyclist to overtake a slower one. For long block lengths, it is recommended to provide pull-out zones to allow for cyclists to safely overtake.

- A bi-directional cycle lane must be at least 2.5m to allow for cycling units to pass each other.
Cycle lanes positioning across bus stops

The overlap of cycling routes and feeder bus routes can create potential safety conflicts. Buses need to stop next to the footpath to pick-up and drop-off commuters. This may mean that the bus has to cut into the cycle lane to access the bus stop. This is a potential safety risk, given the mass and speed of the bus in relation to the cyclist. This risk is further heightened by the fact that the bus driver has to change lanes behind the line of sight of the cyclist.

- It is recommended that cycling routes and bus-feeder routes be kept separate.
- Where sharing the route is unavoidable, the cycle lane be continued behind the bus stop.

Here, the bus stop area is separated from the footpath, and commuters will have to cross the cycle lane to access the bus stop.

A shared bus and bike lane (Left) versus Separate bus and cycle lanes, with cycle lane going behind the bus stop (Right)

A bus station bypass in Rio de Janeiro, Brazil that raises the bicycle lane to the sidewalk level while bypassing the bus waiting area.
(Source: © WRI)
Cycle lanes and on-street parking

- On-street parking creates potential safety conflicts for cyclists.
- Vehicles benefit from being parked as close to the footpath as possible. This requires them to cut across the cycle lane creating safety concerns for cyclists.
- Moreover, when the door of a parked car is suddenly opened on the side of the cycle lane, it creates a safety hazard for the cyclist.

- It is recommended that on-street parking be provided on streets with cycle lanes, only where there is a possibility to separate the parked vehicles from the cycle lane by a median.
- This median should be at least half a meter wide, to contain the width of an opened car door, and also allow people to enter and exit their car safely, without standing on the cycle lane.

Adequate buffer between cycle lane and parking lane allow for easy movement without hindrances.
Protected bike lanes with median as buffers are desirable.

Vehicles cutting across cycle lanes to access on street parking adjacent to footpath create safety hazards for cyclists.
Cycle lane designed closer to the footpath. Doors of cars opening on the side of cycle lane without adequate buffer may conflict with cyclists.
Cycle lanes and driveways

- The trunk cycling routes to the transit station must have a smaller number of interruptions.
- Frequent property driveways along the route impact the mobility and safety of the cyclists on the trunk route. It is recommended that vehicular driveways on the main cycling route be closed, with access provided from an adjacent street.
- Where driveways are unavoidable, the continuity and priority of the cycle lane be clearly defined and maintained.
- If there is a height difference between the cycle lane and the main carriageway / driveway, then the vehicle access should be brought up to the level of the cycle lane.
- The lane markings across the driveway should be continued to reinforce the priority of cyclists over the space.

Intersections and cyclist movement

The design of intersections is a crucial aspect for the overall safety of the cycling network. Several design alternatives have been developed, which have different benefits and disadvantages with respect to the mobility and safety of cyclists.

It must be noted that whenever there is a cycle lane at an intersection, the traffic lights should include a traffic signal for cyclists as well. These may be synchronized with pedestrian lights. In larger intersections with multiple lanes, an advance phase cycle signal may also be provided.

A bicycle signal is provided along a protected bicycle lane in Istanbul, Turkey (Source: © WRI)

REGULAR TRAFFIC-CALMED INTERSECTION

It is important to note that not every intersection in the cycling network of a station area requires definitive cycling infrastructure. Often, the safest and most appropriate measure is simply to design the intersection with adequate traffic-calming elements, such that it is safe for all road users, including cyclists.

- These design-appropriate measures include, tighter intersection corner curb radius, speed-tables and speed humps, mini-roundabouts, etc.

Refer 'Intersection design measures' section in TRAFFIC CALMING MEASURES FOR SHARED STREETS

- Regular traffic-calmed intersections are most appropriate on the internal feeder routes of the cycling network, that typically run along neighborhood-level streets. They are expected to carry a lower volume of cycling and motor-vehicular traffic.
ADVANCED TERMINATION OF THE CYCLE LANE

- A commonly applied measure is to terminate the dedicated cycle lane a few meters before the intersection.

- This allows cyclists who want to make a left turn, (in countries where traffic drives on the right), or right turn (in countries where traffic drives on the left) to leave the cycle lane and occupy the general traffic lane closest to the center of the road.

- Vehicular traffic that wants to make a free turn move in the lane closest to the footpath edge, in line with where the cycle would be if it wasn’t terminated.

- This design is not recommended as it eliminates the dedicated cycle lane at the intersection. Intersections are the highest locations of potential crash conflict, which is where the benefits of dedicated infrastructure are likely to be the highest.

- The lateral cross movement of lane-changing cyclists and motor-vehicles put them into direct conflict with each other.

TURNING LANE BETWEEN CYCLE LANE AND FOOTPATH

- A modification of the previous design involves the continuation of the cycle lane till the intersection, with the provision of a turning lane between cycle lane and footpath.

- This design allows turning vehicles to avoid a conflict with cyclists wishing to continue straight through at the intersection; and provides the latter with a dedicated lane up to the intersection.

- However, this design also does not resolve the potential safety issues concerning the lateral movements of cyclists and vehicles, to access their respective turning lanes, creates potential crash conflict risks.
CYCLE BOXES WITH 1-PHASE TURN

- Cycle boxes are dedicated waiting areas provided between the pedestrian crossing and an advanced stop line for general traffic.

- During a red signal phase, cyclists enter the cycle box and align themselves according to the direction they intend to go. The general traffic is not permitted to enter the cycle box during the red signal phase and waits behind the stop line.

- Normally, an advance green phase of a few seconds is provided to cyclists to allow them to clear the intersection area, before the light turns green for vehicular traffic.

- This design provides cyclists with a dedicated lane right up till the intersection. It also minimizes the possibility of conflict with turning vehicles.

- This design creates some ambiguity about where cyclists should wait when they reach the intersection during a green phase for vehicular traffic as they are expected to enter the cycle box only during a red signal phase for vehicular traffic.

CYCLE BOXES WITH 2-PHASE TURNS

- In a two phase turn, the cycle lane continues through the intersection till the mouth, closest to the footpath.

- If cyclists want to turn opposite to the side of drive, they are expected to continue straight across the intersection, during the first green signal phase and wait in the cycle box, which is the demarcated space between the stop line and the pedestrian crossing of the perpendicular street.

- The cyclists adjust their orientation to point in the direction they intend to turn. Then, when the light turns green on this street, the cyclist continues straight, thus completing the right turn in two signal phases.

- The advantage of this design is that it allows for the provision of a dedicated cycle lane right till the mouth of the intersection and reduces ambiguity about where the cyclist has to wait during a green signal phase on their street.

- The disadvantage of this solution is that cyclists need two signal phases to make a right turn at the intersection.
HOOKED CYCLE LANES

- A slight deviation in the cycle lane path is provided, to put cycle crossing adjacent to the pedestrian crossing, and functions in the same way.

- At a signalized intersection, they may share the same phase which makes the design clearer to all the different road users.

- This prevents cyclists from rushing into the intersection at high speeds and it aligns the cyclist perpendicular to traffic at the crossing, which allows for better visibility to the motorist and cyclist of each other.

- This design is also more conducive for bi-directional cycle lanes, as the cycle crossings behave similar to bi-directional pedestrian crossings.

- The disadvantage of this design is that it requires a longer maneuver to make a right turn (for traffic that drives on the left). Also, this design requires more intersection area than the cycle box design.

SCRAMBLE SIGNAL PHASE

- In a scramble signal phase, one phase in the signal cycle is dedicated exclusively for the movement of cyclists in all directions, while it is red light phase for vehicular traffic from all directions.

- Cyclists need to take precaution to avoid collision with one another. However, as cycles move much slower than motor-vehicular traffic, this is not much of a safety risk.

- The scramble signal phase for cyclists may be combined with a pedestrian scramble phase, if the numbers for both modes are conducive for such grouping.

- The advantage of a scramble signal phase is that it provides a dedicated crossing phase for cyclist, without potential for conflict with vehicular traffic and allows them to choose the shortest crossing distance across the intersection.

- On the other hand, the disadvantage of this design is that it adds one additional phase to each signal cycle, which may increase the delays for all other traffic at this intersection.
Comparison of Suitability of different intersection typologies for cycling infrastructure

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
<th>Advantage</th>
<th>Disadvantage</th>
<th>Suitability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regular, traffic calmed intersection</td>
<td>No definitive cycling infrastructure is provided; but intersection is designed with speed control standards of a shared street.</td>
<td>Easy to implement. Doesn’t require much street area.</td>
<td>It is not appropriate for high speed intersections, with high traffic volumes and/or high number of large vehicles.</td>
<td>Suitable for neighborhood, traffic calmed streets, that are normally unsignalized.</td>
</tr>
<tr>
<td>Advanced termination of the cycle lane</td>
<td>The cycle lane is terminated a few meters before the mouth of the intersection.</td>
<td>It allows motor-vehicles and cyclists to align themselves in the correct position at the intersection, depending upon the direction they intend to go.</td>
<td>No dedicated infrastructure for cyclists, where it’s need the most. There is a risk of collision between vehicles & cyclists, while they’re changing lanes.</td>
<td>Should be used very sparingly, only after all other options are considered.</td>
</tr>
<tr>
<td>Provision of a turning lane between the cycle lane & footpath</td>
<td>A left turning lane* for general traffic is provided between the footpath and the cycle lane.</td>
<td>It allows cyclists to continue straight through the intersection, without conflict with left-turning motor-vehicles.</td>
<td>There is a risk of collision at the place where the cycle lane and the motor-vehicular lane cross each other.</td>
<td>Should be used very sparingly, only after all other options are considered.</td>
</tr>
<tr>
<td>Cycle boxes with 1-phase right turn*</td>
<td>Cyclists align themselves in a cycle box, (provided between the pedestrian crossing & the stop line)</td>
<td>It provides dedicated infrastructure right up to the intersection mouth. It allows cyclists to complete a turn in one signal phase.</td>
<td>It creates some ambiguity on where the cyclist should wait if it reaches the intersection during the green signal phase for vehicular traffic on the same arm of the intersection.</td>
<td>Suitable for trunk cycling routes with a high volume of cyclists. It is especially useful when the majority of cyclist movement makes a right* at the intersection.</td>
</tr>
<tr>
<td>Cycle boxes with 2-phase right turns*</td>
<td>During the green signal phase, cyclists intending to turn right enter the intersection and align themselves in the cycle box of the perpendicular street.</td>
<td>It provides dedicated infrastructure right up to the intersection mouth. The design is more intuitive to both cyclists and motorists.</td>
<td>It needs 2 signal phases for cyclists to complete a right turn.</td>
<td>Suitable for trunk cycling routes with a high volume of cyclists. An appropriate universal design principle, as it is likely to fit most contexts.</td>
</tr>
<tr>
<td>Hooked cycle lanes</td>
<td>The cycle lane is slightly deviated at the intersection to align it with adjacent street pedestrian crossing.</td>
<td>It slows down cyclists as they enter the intersection area. It provides better visibility for cyclists and motorists of each other.</td>
<td>It creates some deviation from the shortest path across the intersection for cyclists. It requires a larger intersection area to be implemented.</td>
<td>Appropriate and safe option wherever there is adequate inter-section area. It can be used for both signalized and unsignalized intersections.</td>
</tr>
<tr>
<td>Scramble signal phase</td>
<td>A separate signal phase is provided for cyclists to move to and from all arms of the intersection; all motor-vehicular traffic has a red light.</td>
<td>An intuitive design that allows for the free movement of cyclists in any direction.</td>
<td>The addition of a signal phase may affect intersection through-put which may result in longer delays for both motorists and cyclists.</td>
<td>Appropriate when there is a high volume of cyclist, with no single dominant direction of movement. Suitable for intersections with more than 4 arms.</td>
</tr>
</tbody>
</table>

* Description is written on the context of countries where traffic drives on the left side of the road.
Vehicle lane eliminated to provide cycle lane with on-street parking and median buffer to protect cyclists from opening of car doors

Median refuge island

Segregated bus priority corridors

Cycle boxes for two-phase turns

Two-phase cycle turn at intersection with Bus priority lanes

(Source: © WRI)

Guide-rails along bus priority corridor to avoid jaywalking

Staggered stop lines for cyclists to ensure they are visible to right turning vehicles

Median bulb-out as horizontal traffic calming measure at the intersection

Curb-extension as traffic calming measure as well as to provide additional waiting area for pedestrians and space to accommodate utility such as cycle rack

Protected bike lanes with buffer
C. FEEDER TRANSIT AND PARATRANSIT INFRASTRUCTURE

Feeder transit (generally in the form of buses) and paratransit (in the form of vans, taxicabs or auto-rickshaws) provide a valuable service in enhancing the commutable distance for transit users. This is particularly important for station areas in lower density area, where distances from the station may be too long for walking and cycling to be the only feeder alternatives.

In most cases, feeder transit and paratransit services will share the same road infrastructure as general motor-vehicular infrastructure.

Bus stops near intersections

The intersection is an optimal location for a bus stop for two important reasons mentioned below:

1. A bus stop located at an intersection is likely to have a larger area within walking distance as compared to a mid-block stop, because of the intersection of streets moving in different directions.

2. It reduces the walking distance to transfer between two intersecting bus routes, if their respective bus stops are located at, (or near) the same intersection.
The presence of a bus stop in close proximity to an intersection can create certain challenges for traffic mobility and for safety.

- A bus waiting at its stop may hold up traffic trying to clear the intersection, which affects intersection throughput capacity.
- Furthermore, the waiting bus may act as a visual impediment for motorists and crossing pedestrians, which can have a negative impact on safety.

These issues raise some crucial concerns with respect to the design and positioning of bus stops at intersections.

If the bus stop were to be located just before the intersection, it may unnecessarily hold-up traffic behind it if the light is green as the motorists cannot overtake the bus and they would end up queuing behind the waiting bus.
A bus stop is best positioned a few meters after the intersection as the bus would have to cross the intersection before reaching the stop. The bus stop should be located some distance away from the intersection to allow for vehicles entering this arm of the road to move out of the lane occupied by the bus in order to overtake the waiting bus. The advantage of this positioning is:

- It allows all traffic, (including the bus) to queue up in the correct lane, depending on which direction they intend to move.
- It does not hold up traffic that wants to go through or make a turn at the intersection. This is especially important for signalized intersections.
- The pedestrian crossing for this intersection (which will also service the bus stop) will be located behind the bus.
- It ensures that most bus commuters will walk back to the intersection in order to cross the road, putting them out of the blind spot created by the bus.

Comparison of impact on moving traffic due to positioning of bus stops closer to the intersection (left) and after a short distance from the intersection (right).

Mid-block bus stops

In some cases, the distance between successive intersections may be very far, warranting the need for a mid-block stop. In other cases, adjacent land-use conditions may dictate the location of the stop. If a prominent node, such as an educational institution or a hospital, is located at the mid-block, then it may warrant the positioning of the stop as close to this node as possible.

There are certain aspects to be kept in mind regarding the provision of mid-block stops.

- Avoid locating the bus stops along curves or slopes in the roadway, as this effects visibility of crossing pedestrians.
- As a general principle, try to locate the bus stops on opposite sides of the road, such that they share a common pedestrian crossing that is located behind both stops.

Positioning of bus stops at mid-blocks. Locating mid-block stops along curved roads should be avoided and should be positioned in a way so that they share common crosswalk behind both the stops.
Paratransit nodes

Paratransit normally operates along the general traffic roadway in mixed traffic conditions. Typically, pick-up and drop-off happens all along the roadway, except where there are legal restrictions against stopping. As such, paratransit commuters do not normally require specific street infrastructure elements.

Places where there is a high demand for paratransit services such as shopping malls, educational institutes, office complexes, etc. there tends to be a concentration of paratransit vehicles waiting to pick-up passengers which affects both traffic throughout and safety of pedestrians.

- It is recommended to provide dedicated pick-up and drop-off infrastructure at all such nodes, to facilitate the orderly alignment of paratransit vehicles, which allow for passengers to embark and disembark these vehicles safely.

- The pick-up and drop-off zones function best when they are physically separated from each other, in a manner that allows for a paratransit vehicle to quickly move from the drop-off zone to the pick-up zone, (in order to pick-up new passengers). The length of each
A shared street is one where the infrastructure is designed to meet the mobility and safety standards of all road users. These standards are very different for motor-vehicle traffic than for non-motorized traffic. Thus, if a street is to be designed for all road users, it is essential that it meets the safety standards of the most vulnerable road users among them, namely pedestrians and cyclists.

The implementation of traffic-calming measures is an essential component of creating safe, shared streets. The provision of traffic-calmed, shared streets allows for the completion of the feeder networks, which is an essential principle of TOD access planning.

The most important aspects of developing safe, shared streets are:

1. **Slow down traffic speed** to decrease the probability of conflicts between road users, while also reducing the severity of a crash when it happens.
2. **Reduction of traffic volume** achieved mainly through the diversion of non-local traffic.

General design measures

This section considers some of the general traffic-calming design measures to make streets safe for all road users.

LANE DIET

The total width of the section of the road reserved for vehicular movement is often referred to as the carriageway. The width of this carriageway is a crucial factor in influencing traffic speed.

There are two aspects to be considered here:

1. **The traffic lane width** - Wider traffic lanes allow motorists to drive faster, because of perceived lower conflict risk with traffic in other lanes.
2. **Number of traffic lanes** - Greater number of traffic lanes result in increased carrying capacity, which improves traffic free-flow conditions, which further allows for faster travel.

- Streets in many urban areas are designed with lane width of 3.5m and more which allows for a design speed in excess of 50km/h, which is an extremely unsafe speed for urban conditions. The design speed should be ideally closer to 30km/h. And for local, neighborhood streets, an even lower design speed is desirable.

- A traffic lane width of 3m (upper limit) is recommended for all shared streets. An exception may be made for roads that are part of the transit bus network, where the lane utilized by the bus, (in most cases adjacent to the footpath), may be as wide as 3.5m.

- For neighborhood streets, and even narrower lane width than 3m is desired.

- Generally, a shared street must not have more than 2 traffic lanes in either direction. Anything more than 2 lanes makes it difficult to implement a design speed close to 30km/h. In most cases, 1 lane in each direction is adequate for local, neighborhood streets.
If an existing bi-directional road with two lanes in each direction is to be redesigned along shared street principles, then consider converting the additional lanes into a parking lane; or utilizing the additional road width to increase space for other street elements, such as footpaths.

Here, it must be noted that it is a common traffic calming practice to convert a unidirectional road with two lanes into bi-directional road with a single lane in each along with other horizontal and vertical measures (discussed later in this section). It may also be redesigned to accommodate a buffered cycle lane or shared bus lane (in the same direction) to improve capacity of the street and segregate the modes – as discussed earlier in PD-H07 (sub-section Capacity).
FREQUENCY OF INTERRUPTIONS

The design principles for a shared street are counterintuitive to the design principles of trunk routes.

Trunk Routes

It is desirable to minimize interruptions along the trunk route by restricting median cuts, eliminating intersections and discouraging property accesses.

However, on certain kinds of shared streets, the high frequency of such interruptions may actually be desirable, as it increases conditions that disrupt through flow movement; which results in slowing down traffic.

Non-Trunk Routes

The central median may be removed to allow vehicles to cut across the center line to make turns into driveways. However, if it cannot be entirely removed, then the number of median breaks may be increased to achieve similar results.

It is recommended to have fewer restrictions on property driveway accesses, as the frequency of the same, contribute to slowing down traffic.

URBAN DESIGN MEASURES

Traffic-calming measures include several engineering interventions to slow down of traffic. In addition, there are many urban design measures that act as visual cues, encouraging motorists to select the appropriate speed for this zone.

• The presence of setbacks along the road front have a psychological impact on speed selection.

• A street where buildings are set nearer the road edge are perceived to be narrower than streets of similar widths, but where the buildings are further apart. This induces motorists to driver slower on the former kind of street, due to the narrower visibility range.

• From a station area’s planning perspective, regulations can be implemented to relax frontage setback norms, (where appropriate), to encourage more compact development.

• Trees planted close to the carriageway edge have a similar impact on speed selection.

• Softer streetscape elements may also be considered to signal to the motorists that they have entered a traffic-calmed street. This include measures such as change of carriageway surface material and color, as well as the increased use of landscaping and other street furniture.

• Another measure is to include more diverse road users, such as on-street parking and street-vending. These uses increase the perceived disruptions to the motorist, which encourages them to slow down.

• If there are definitive entry points into a neighborhood from a main street, it is a good practice to install a gateway feature across the entry point, which informs motorists that they’re about to enter a different kind of right-of-way. This encourages them to slow down and choose the appropriate speed for this zone.
Mid-block design measures

SPEED HUMPS, SPEED TABLES AND SPEED BUMPS

There are three kinds of vertical deflectors, that are effective in controlling vehicular speed. They have slightly different design features which also impacts their functionality and applicability.

1. **Speed humps:** A speed hump refers to the curved, raised area, along the width of the carriageway, which causes a vertical deflection for vehicles as they traverse it, which induces motorists to slow down in order to cross the hump comfortably.

 ![Speed hump](image)

2. **Speed tables:** A speed table refers to an elongated speed hump, with a flattish section between the up and down slopes of the hump. A pedestrian crossing may be included along the flat section of a speed table.

 Speed humps or tables are recommended for local, neighborhood streets as a traffic-calming device. Speed bumps are normally not recommended for public streets, because of their abrupt impact on vehicles. They are more suitable for driveway or parkway entries.

 ![Speed table](image)

3. **Speed bumps:** A speed bump is significantly narrower in cross-sectional width than a speed hump, which causes a more striking vertical deflection for a traversing vehicle. A vehicle, normally, has to come to a near stop, in order to cross the hump comfortably.

 ![Speed bump](image)
The frequency of speed humps along a stretch of road should be such that it discourages speeding in-between two humps. It is a good idea to provide speed humps before pedestrian crossings, especially in cities where motorists are unlikely to slow down for a crossing pedestrian. If there is no median barrier on the roadway, it is better to locate the pedestrian crossing on top of the speed table.

If such vertical speed controls are needed near to an intersection, it is recommended to use a speed hump instead of a speed table so that pedestrians don’t confuse it with a pedestrian crossing.

Speed humps must be avoided along curved sections of the road, or in sections where forward visibility of the roadway is low. Speed humps should also be avoided on sloping sections of the road. Normally, a speed hump should not be installed just before a traffic signal, as it affects the green phase traffic throughput for this signal.

CHICANES, CURB-EXTENSIONS, BULB-OUTS AND STAGGERED ON-STREET PARKING

Speed humps, tables and bumps were examples of vertical traffic-calming deflectors. In addition, there are various horizontal traffic-calming deflectors that achieve a similar effect. The following types of horizontal traffic calming measures are applicable for both two-way and one-way streets.
1. **Chicanes:** These refer to the series of physical deflectors that are installed along alternating sides of the road, which result in the creation of a serpentine-like roadway. This forces motorists to slow down as they steer left and right through the successive chicanes. Chicanes are a useful retrofit for long, neighborhood streets, though consideration should be given to their impact on cyclists and emergency vehicle movement.

2. **Staggered on street parking:** A similar traffic-calming impact that chicanes provide can be achieved by staggering the provision of on-street parking. The presence of on-street parking has the added advantage of increasing perceived traffic disruptions, which induces motorists to drive slower.

3. **Curb Extensions:** This refers to the physical extension of the curb, (normally the footpath curb) into the carriageway, partly or fully cutting out a traffic lane. Curb extensions are also referred to as **Chokers**, because, they, in effect create a physical bottleneck, with the intention of choking traffic. This induces motorists to slow down while driving through the curb-extension area.

4. **Median Bulb-Out:** Curb-extensions may also be provided along a curbed median, which then creates, what is called a bulb-out in the center of the road. The advantage of such a bulb-out is that it allows for the inclusion of a pedestrian refuge area between the crossing, where pedestrians can stop and wait while crossing the road.

*Mid-block crossings in BRT lane as a combination of horizontal and vertical traffic calming measures
(Source: © WRI India)*
Intersection design measures

There are many physical design measures to slow down traffic crossing intersections that have been discussed in this sub-section.

TIGHTENING AND/OR EXTENDING CURB CORNERS

- The most important measure to reduce traffic speed at intersection is to minimize the radius of curb corners at intersections. A tighter corner induces motorists to slow down to make a turn, which adds to safety.
- It also increases the available footpath area at the intersection, which allows for safer crossing.
- When designing intersections, a common mistake is to provide an intersection corner radius big enough to accommodate the turning path standards of the design vehicle. In doing so, one neglects to consider the difference between effective turning path and curb corner radius.
- The effective turning path can be wider than what is determined by the corner radius, especially if there is a parking lane adjacent to the traffic lane.
- Furthermore, for traffic-calmed streets with low-to-mid volume, it is not essential that the vehicle completes a left turn, (in the context where traffic drives on the left), from the leftmost lane to the leftmost lane. It is acceptable for the vehicle to traverse into the adjacent lane, in which case, the effective turning width is much wider.
RAISED INTERSECTIONS AND MINI ROUNDBOUTS

- A raised intersection is an effective traffic-calming measure, applicable for unsignalized intersections between neighborhood streets.

- They are similar in profile to a speed table, wherein the entire intersection area is slightly raised to create a vertical displacement for traversing vehicles. This induces motorists to slow down when crossing the intersection.

- Mini-roundabouts are another kind of useful traffic-calming intersection feature. It consists of a small circle located within the intersection area, which creates a lateral displacement for vehicles, forcing them to slow down.

- They differ in form and function from conventional roundabouts, which are much larger, and their primary function is to channelize traffic circulation, rather than slowing down traffic.

- A mini-roundabout acts a good marker of an entry point into a traffic-calmed zone, encouraging motorists to drive at the appropriate speed.
RESTRICTING MOVEMENT AT INTERSECTIONS

- Traffic-calming at intersections can be achieved by eliminating movements in certain direction, through the installation of physical barriers. This primarily impacts the volume of traffic using this intersection, (and the adjoining streets), by curtailing thoroughfare traffic.

- One such measure is to continue the median barrier across an intersection to prevent turning movement in one direction and prevent through movement in the other direction.

- Another measure is to install a diagonal barrier across the intersection, preventing through movement in either direction.
The primary station area in the context of TOD, refers to the area immediately surrounding the transit station i.e. within 0 – 400m or 5 minutes walking, where the transfer of commuters between feeder modes and the main transit line takes place.

This is the meeting point for the trunk routes of all feeder modes. Hence, safety and mobility challenges are the most crucial at the station area, given the high concentration of commuters and traffic into a relatively small space. To ensure maximum safety, this area must be kept car free, with only designated routes for IPT and feeder services.

Infrastructure for the transfer of pedestrian commuters should be provided nearest to the station gates, followed by infrastructure for cyclists and feeder buses, then paratransit, and finally, for personal motor-vehicles. It is important to ensure that transit infrastructure, including station structures, do not impede the movement of any mode. It is commonly observed in many cities that the pillars of elevated transit stations completely block the sidewalks below them. In other cases, elevator shafts and stairways to the stations are placed across the sidewalk, forcing pedestrians to walk on the roadway.
Station access points

A transit station with one access point can become a potential bottleneck for commuter movement, especially during the peak commuting hours of the day.

- For a high-volume station, it is recommended to provide multiple entries and exits to the station, ideally connecting to different roads and different directions of the station area.
- Station access points can also be separated according to the transfer mode. For instance, a direct access link may be provided, connecting the station to the feeder bus routes - separating the movement of bus commuters from other commuters.
- Often local access needs are combined with station access points. Access to underground mass transit stations also double up as underpasses to cross major roads. Similarly, BRT stops are often in the middle of a highway and hence is not safe to provide at-grade access. FOBs with ramps or elevators to access the stops are provided. However, if these stations are not functioning during some hours or closed, then the local access can get impeded due to closing of the access facility as well. It is advisable to have these FOBs or underpasses to remain functional all day long and have a connection made from these off-road connectors to the transit facility.
- Grade separated infrastructure can be utilized in conjunction with sidewalks, to increase access points to the stations from important nearby land-uses that are likely to generate a high footfall of commuters. Care should be taken to see that the pillars and related civil infrastructure for such structures do not impede the movement of pedestrians on the sidewalks below.
- BRT services requiring dedicated lanes must be protected using railings and median barriers to avoid jay walking, with access to stops provided at intersections with wider crosswalks or at mid-block crossings. Additional button-activated mid-block crossings must be provided in the station area where the blocks are large or a high volume of pedestrian movement is expected.

Designed access to DN Nagar Metro Station Mumbai near an intersection
(Source: © WRI India)
Pedestrians crossing along the median, especially with longer BRT Green phase.
(Many Latin American BRT Systems have such design including Macrobus in Guadalajara)

Pedestrian access to a raised BRT station in the center of the ROW
(Source: © WRI)

Wide at-grade refuge island in the median to accommodate passengers entering and exiting the BRT Station using a protected ramp.

Cycle rack on sidewalk along the road perpendicular to the BRT lane, allowing riders to lock the cycles and transfer to BRT system.

Facilities for cyclists to access the BRT station along with pedestrians
(Source: © WRI)
NMT ACCESS STREET AT NAVANAGAR BRT STATION, HUBLI-DHARWAD, INDIA

The street leading to the Navanagar BRT station in Hubli-Dharwad in India, is designed as an NMT street. A cycle track and a pedestrian pathway are placed on either side of the street, and activity areas are carved out in the central area for multiple uses. These include a play area for children, a park for seniors, a community gathering space for the neighborhood etc.

Proposed NMT Street connecting from the school to the BRT station Plaza

Schematic section indicating range of activities along the length of the NMT Street

Visualization through a cross section of the NMT Street showing a shared use community gathering space
(Source: © WRI)
Transfer facility design

- Transfer zones should be provided in the vicinity of the transit station such that crossing requirements are eliminated or reduced.

- For instance, if a feeder bus-loop / terminal is located near the transit station, it is a good idea to ensure that there is no road in between the feeder bus-facility and the station access point.

TRANSMILENIO TERMINALS, BOGOTOA, COLOMBIA

A typical transfer station along Bogota, Colombia’s TransMilenio BRT corridor includes an integrated transfer facility between the trunk BRT route and the feeder service. These terminals are designed to have a common central platform where both the services can dock on either side of the platform. This allows the passengers to transfer by simply crossing across the platform.

It is important to have proper integration between the two types of services to avoid overcrowding of the platform. The platform must be designed with adequate space to accommodate the expected volumes of passengers. Due to overcrowding of platforms in these transfer stations, passengers very often walk and wait in the bus lanes. Another challenge that these transfer facilities face is at the access point of the station which may lead to bottlenecks and even collision of the two types of buses.

The diagram below along with photographs explain the transfer facility.

Platform height: Same as bus floor height

On this side of the terminal, the platform is 1 meter above street level, which would allow a typical high-floor, left-door bus to dock.

This side of the terminal should be used by high-floor BRT vehicles, it will likely be closed and feature onboard fare collection.

Platform height: 30 cm

The bus lanes on this side of the terminal are raised 30 cm above street level, so that the central platform can service low-floor buses on this side.

This side of the terminal should be used by conventional right-door buses. It can be open and feature onboard fare collection, but there must be guardrails on the outside of the terminal, to prevent pedestrians from crossing the bus lanes.

It is important to size the platform correctly so that it does not get overcrowded. Otherwise, there is a serious risk that some passengers will walk in the bus lanes.
• It may not always be possible to locate all transfer facilities on the same side of the transfer station. In such contexts, it is essential that safe crossing infrastructure is provided to access the station and a signalized crossing may be needed due to the high transfer volumes.

• If the transit station is located at a different level than the road, the grade-separated connector may be extended across the width of this road.

• Grade-separated structures are not recommended for crossing the road. However, they are acceptable if they provide direct connectivity to the grade-separated station.

• It is important to separate the para-transit drop-off zones from the pick-up zone, to allow for the smooth functioning of such facilities.

• The drop-off zone should be located before the pick-up zone, which allows the driver to enter the pick-up zone after dropping off passengers. There should also be a provision for the vehicle to leave the drop-off zone, in case the driver does not want to pick up new passengers.

• Physical segregation of respective zones can ensure that the movement of paratransit vehicles does not impede the movement of feeder bus services.
GRADE SEPARATED TRANSFERS AT THANE STATION AREA, THANE, INDIA

The Mumbai Metropolitan Region Development Authority and Thane Municipal Corporation implemented traffic management infrastructure projects around the Thane suburban railway station in the Mumbai metropolitan region. Public bus services and IPT infrastructure are grade-separated. An elevated deck is constructed for public and state transport buses. It connects to the suburban railway ticketing booths through sky-walks and foot over bridges. There are at-grade auto-rickshaw pick up and drop off points with waiting and queuing areas for passengers. A lane has also been reserved for private motorized vehicles.

Thane Suburban station in India with lower level for auto-rickshaws and upper levels for bus bays. It connects to the road level via elevated walkways (Source: © WRI India)

Grade-separated feeder service stop and access to station and connection to developments using non-motorized shared streets

IPT parking and waiting area, separate from vehicle parking.

Motor-vehicle free shared streets to access the transit station

Para-transit access and transfers to transit station and connections for vehicular traffic and through motor-vehicle free shared streets (Source: © WRI)
Bhubaneswar, India
Examples of land use and transportation integration that influenced significant improvements in cities
CURITIBA, BRAZIL

PROJECT INFORMATION

- **Location:** Curitiba, Parana, Brazil
- **Funding:** URBS (Govt.)
- **Timeline:** 40 Years
- **Project Settings:** Mixed-use (residential/commercial) main street

Overview:
Curitiba is home to nearly 2 million people. Between 1950-2005, Curitiba’s metropolitan area witnessed a sixfold increase in its population- from 300,000 inhabitants in 1950 to 1.9 million in 2005. It is one of Brazil’s wealthiest cities and has one of the highest private car-ownership rates in Brazil, yet it averages more transit trips than New York, Rio or Sao Paolo.

PROJECT STORY

1963-1965

The **URBS- Urbanization** of Curitiba was created in 1963 with the purpose of administering the Fund for the Urbanization of Curitiba, to develop infrastructure projects.

The Curitiba **Institute of Research and Urban Planning (IPPUC)** was created on December 1st, 1965 to execute and develop urban plans.

The 1965 Master Plan set the stage for Curitiba’s linear transit-oriented urban form by 1) limiting circular sprawl moving outward from the urban core, thus decreasing congestion focused downtown; 2) creating structural axes corridors, lined with high-density mixed-use development that would taper to lower-density away from the corridors; 3) typical structural corridors in a trinary road system.

Disclaimer: The Transit-Orientated Development Implementation Resources & Tools knowledge product is designed to provide a high-level framework for the implementation of TOD and offer direction to cities in addressing barriers at all stages. As the context in low and middle-income cities varies, the application of the knowledge product must be adapted to local needs and priorities, and customized on a case-by-case basis.

© 2021 International Bank for Reconstruction and Development / The World Bank
Walkability: Streets with an existing high-level of pedestrian activity have been pedestrianized, along with streets within 400m of the bus corridor, to minimize the need for vehicles.

Flexible planning: Along the structural axes, only the first two floors can extend to property lines. Half of the ground and first floors are mandated to be dedicated to retail uses. Retail-commercial uses at the street level are exempt from FAR calculation.

Compact development: The “structural axes” concept of high-intensity development has created corridors with high travel demand. Initially, FARs of 6.0 were permitted; later in the 1990s, maximum FARs were lowered to 5.0 for offices and 4.0 for residential. Incentives were given to developers to increase residential density close to the transit corridors.

Context: Transit for urban areas with high volumes of vehicles

Scale: Corridor | Station Area | Site

Related TOD Principles:
- Complete streets
- Managed parking
- Bicycle-friendly
- Architectural diversity

The first 20km were planned in 1972 and built in 1973 and the first two BRT corridors were opened in 1974. In 1979, feeder and inter-district buses were integrated with the BRT, creating the Rede Integrada de Transporte (RIT). Due to the success of the BRT, by 1982, all five BRT corridors were planned and fully functional.

In 1992, the iconic circular boarding platforms were introduced along with the use of biarticulated buses to increase system capacity.

The new Green line BRT corridor was opened.
MEDELLIN, COLOMBIA

PROJECT INFORMATION

Location: Medellin, Antioquia, Colombia

Funding: Municipal Corporation (Govt.)

Timeline: 13 Years

Project Settings: Urban area

Overview:
Medellin is the second largest city in Colombia and the capital of Colombia’s mountainous Antioquia province. Taking into consideration the large number of commuters from the slopes towards the city, and its own topographical restrictions for development, it came up with an efficient land use and transportation integration plan for the city.

PROJECT STORY

1930s

The cable-car technology was initially used for exporting coffee from the city of Manizales to the south of Medellin.

Mid-1990s -2004

When Sergio Fajardo became Mayor of Medellin in 2004, the “Medellin, Commitment of all the Citizens” plan for the city was enacted. One of its fundamental axes was described as “Social Urbanism.” One of the main guidelines was an Integrated Metropolitan Transport System that must be used as the organizing axis of mobility and projects in the city. All projects have to be directly linked to the main transport system.
The Northeastern Urban Integration Project in Medellín (Proyecto Urbano Integral, or PUI) was initiated by the City of Medellín in 2004. Working with the community to conceptualize, develop and construct new open-space networks, the designers of the PUI have sensitively integrated mobility infrastructure with the strategic goals of large and socially complex projects, by developing processes that promote ownership by the community.

DESIGN DETAILS

Complete Streets: Existing streets were redesigned to widen sidewalks, reduce automobile lanes and include and strengthen bicycle infrastructure. In hilly parts of the city, walkability was enhanced through escalators.

Seamless Integration of Modes: The transit system in Medellín is comprised of heavy rail, BRT, buses and gondola systems, which are effectively integrated to ensure reach to the farthest corners of the city.

Well Designed Transit Station: The metro-cable stations created plazas underneath the station platform and created pedestrian connections with the surrounding areas to improve connectivity.

Bicycle Friendly: Medellín’s bicycle infrastructure focuses on separated bike paths, located within sidewalks. There are also dedicated pelican signals at important intersections.

APPLICABILITY

Context: Transit for areas with topographical restrictions

Scale: Corridor | Station Area | Site

Related TOD Principles:

Urban parks and open spaces, public realm

The designers of the PUI have sensitively integrated mobility infrastructure with the strategic goals of large and socially complex projects, by developing processes that promote ownership by the community.

APPLICABILITY

Context: Transit for areas with topographical restrictions

Scale: Corridor | Station Area | Site

Related TOD Principles:

Urban parks and open spaces, public realm

LINE J

Line K was the initial line and was opened in 2004 and Line J in 2008. In 2010, Line L was introduced and was connected to Arvi Park. It is part of a social project to cater to the masses. Two additional lines H and M have also been introduced.
SHENZHEN, CHINA

PROJECT INFORMATION

Location: Shenzhen, Guangdong, China

Funding: Municipal Corporation (Govt.)

Timeline: Ongoing

Project Settings: Urban area, suburban areas

Overview: Shenzhen has become one of the frontier cities that is leading the economic growth of China, as the first of the nation’s five Special Economic Zones SEZ (The Economist, 2010). Since the early 2000s, Shenzhen has started to design a new development strategy for the city called the Shenzhen 2030 Urban Development Strategy.

PROJECT STORY

In late 1983, Party Secretary of Shenzhen Mayor Liang Xiang led a team to Singapore to study its mass transit system. Upon returning it was decided that 30 meters on each side of Shennan Avenue should be protected as a green belt and to set aside a 16-meter wide median reserved for a light rail or light metro line.

In 1984, it was concluded that a light metro system would not sufficient capacity for the growing population and traffic in Shenzhen, as indicated by the Shenzhen Special Economic Zone Master Plan (1985–2000).
Compact development: Large-scale construction has been led by the Master Plan (1996-2010) to develop a hierarchical city network. Shenzhen allows the densities for residential and office developments around transit stations to fluctuate within a certain range. This gives Shenzhen’s Planning and Land Resources Committee the discretion to change the densities based on context. For example, Bitou Station: Affordable housing—FAR 2.0, schools and residential housing—FAR 3.0, commercial and office developments—FAR 6.0.

Flexible Planning: Shenzhen expanded land development rights, issuing development rights according to land uses on different building floors. This encourages mixed-use development, as commercial, residential and underground transit building rights can be obtained separately.

Alternatively, a heavy rail subway line was proposed along Shennan Avenue. The Central Planning Department approved the Shennan Avenue line in 1992.

Beginning in 1994, the Shenzhen urban rail network master plan was drafted to be incorporated into the Shenzhen City Master Plan (1996–2010). Nine lines of rail defined the visions for the city urban rail network.

Phase I (1998–2004) - Line 1 and Line 4
Phase II (2007-2011) - network expanded from 64 km to 177 km.
Phase III (2012-2020) - Lines 6, 7, 8, 9, and 11

Context: Urban, Suburban, Greenfield
Scale: City | Corridor | Neighbourhood Station
Related TOD Principles:
Architectural variety, housing diversity, walkability
Small-scale iterative pedestrian friendly examples in low-middle income countries that influenced significant improvements in the area.
Location: Mumbai, Maharashtra, India
Project Size: 600m x 12 metres
Total Project Cost: 50 million (INR)
Funding: Municipal Corporation (Govt.)
Timeline: 5 Years
Project Settings: Mixed-Use (Residential/Commercial) Main Street

Overview:
Mumbai, the capital city of Maharashtra, is the most populous city in India and the fifth most populous city in the world. The city accounts for only 1.1 square meters of open space—gardens, parks, recreation grounds (RG) and playgrounds (PG)—per person (Open Mumbai, 2012). The site is located in one of the planned areas of Mumbai.

PROJECT STORY

1.5-km long and 17m wide flyover was built at a cost of 700 million (INR) from the Maheshwari Udyan to Tulpule Chowk flyover. The space under the flyover turned into a hangout zone for hawkers, gamblers, drug addicts as well as encroached by illegal parking.

Residents requested the Municipal Corporation (BMC) for barricading the entire stretch.

About 40 people crowd-sourced funds and hired 24X7 private security for two years.

Engaged 10-12 BMC sweepers to clean the stretch to avoid dumping and encroachment.
Walkway: Designed 600m long pathway in blue color to resemble River Narmada with some stretches designed as Narmada ghat where people can sit.

Safety: The stretch is equipped with rotatable CCTV cameras, colorful lights and security officials.

Public Convenience: Art installation, small plants and dustbins are lined up on both sides of the space.

Events: Activities are organized on Sunday morning dividing the area below the flyover into different zones like health, live performance, traditional games, indoor games and outdoor games zone.

Context: Underutilized spaces under the elevated transit corridors

Scale: Corridor | Station Area | Site

Residents formed a group ‘One Matunga’ and designed a children’s park with 600-meter long and 12-meter wide meandering jogging track that is shaped like the Narmada river.

The group presented the idea to various government authorities for developing a small garden in that space.

After successful petitioning, it got the final approval and in June 2015, BMC began to redesign the area.

Embroided in some political differences, the park was finally inaugurated in June 2016.
MEDELLIN, COLOMBIA, LATIN AMERICA

+ PROJECT FACTS

Location: Medellin, Colombia, Latin America

Project Size: Not Available

Total Project Cost: Approx 3.5 million USD

Funding: Government (City funding)

Timeline: 7 Years

Project Settings: Residential Neighborhood (Transit Connections - Streets & Plazas)

Overview:
Comuna 13 also known as San Javier, is one of the 16 barrios (neighborhoods) in Medellin. The neighborhood is built on steep hills outside of the main city consisting of tiny houses and cottages connected by streets, paths and stairs. Access to the barrio was a perennial challenge, making the provision of security as difficult as accessibility to schools.

PROJECT STORY

Known as one of the most violent cities in the world, Comuna 13 had an invisible territorial boundary set by a dominating group that led to strong social tensions, large class differences, and unemployment in the area.

1980’s-2000s

The Colombian army, police, air force and paramilitary groups launched the biggest military intervention Operation Orion to fight against illegal activities displacing and impacting displaced local residents.

2002

Residents protested against the violence in the area with white rags raised for peace and solidarity.

2002’s

Image: Nigel Burgher (Flickr)
Reproduced under CC-BY2.0 License
Street Art: The Streets were painted with graffiti depicting the authentic history of Comuna 13, and the huge impact on people’s lives.

Escalators: The installation of six sections of a giant 384 meters outdoor orange-roofed escalator was built into the mountainside for accessing neighborhoods on the hillside.

Shaded streets: Harvestable fruit trees are planned on the courtyard and along the pedestrian walkway to provide shade and comfort and to cool down the atmosphere in summer.

Public Space: Location for installation of six set of escalators were selected to connect libraries, schools, kindergartens, open sports facilities and public places.

Context: Creative solution to overcome accessibility challenges to transit stations in hilly regions.

Scale: Station Area | Corridor

DESIGN DETAILS

- Residents and local artists started painting walls with beautiful mural graffiti in memory of innocent people who died in the conflict.

- The elected mayor invested a huge amount of money in a new cable car line in San Javier Station to integrate this Comuna with other surrounding communities.

- The city created electric escalators to allow people to reach the station in 6-minutes instead of a 25-minutes climb. The escalators have decorative metal canopies, air-conditioning and connect to public plazas, terraces and amphitheaters.
BOGOTA, COLOMBIA, LATIN AMERICA

PROJECT FACTS

Location: Jimenez Avenue, Bogota, Colombia
Project Size: Not Available
Total Project Cost: Not Available
Funding: Government Funded
Timeline: 11 years (1996-2007)
Project Settings: Mixed-Use (Institutional/Commercial) Main Street

Overview:
The street originally built over the San Francisco River into a brick-paved paseo featuring native trees, ribbon-like water fountains running along the sloping course, and brick pavement for the Transmilenio. The effect was to create a friendly relationship between public transport and pedestrian traffic while revitalizing the public spaces.

PROJECT STORY

COLONIAL PERIOD
San Francisco River (today Jimenez Avenue) defined the City’s northern limit.

When the city started to grow beyond these natural limits, urban planners adapted the orthogonal geometry of the city to the river’s meandering path.

1990’s
By the early twentieth century, the San Francisco River was essentially a sewer and a garbage dump.
Public Place: The highly congested street was transformed into a partially pedestrian way equipped with street furniture to serve the Transmilenio system.

Landscaping: construction of a watercourse along the avenue, consisting of a continuous descending line of small basins or pools, makes reference to the San Francisco River.

Street Vendors: Accommodates many mobile vendors providing livelihood assistance.

Safety: The site is supervised by a dozen security guards who are recognizable by their uniforms gives certain people an ambiguous status of the place.

Urban Redevelopment: The old historical buildings were renovated along this axis for high-end housing, hotels and commerce.

DESIGN DETAILS APPLICABILITY

For reviving the old city center, the city first planned infrastructure investment for the new public transportation system (Bus Rapid Transit, named Transmilenio).

A decision was made to hire a renowned architect to design the segment that would enter the city center, through the Av. Jimenez.

The road was closed for private vehicles, creating a pedestrian plaza using cobblestone as opposed to asphalt and recovering the water element that was lost with development.

Context: Urban Redevelopment, creating pedestrian-only streets

Scale: Station Area | Corridor
PD-P01

TOD PLANS TERMS OF REFERENCE

Template for hiring a consultant to prepare TOD plans at the required scale.

Type: Reference Document
BACKGROUND

The Terms of Reference for a TOD Plan should provide the following background material:

- **Study Area**: The TOR must define the approximate area for which the Plan is to be developed. The study area must coincide as far as possible with jurisdictional boundaries for which population and employment data is readily available. The Background should also summarize the details of transport services including the primary and feeder modes available.

- **Existing Development**: The Background section should provide a summarized description of existing development and ongoing activities, including any information on real estate opportunities and challenges.

- ** Benchmarks and Guidelines**: The Background section should also provide information on resources that a consultant is expected to refer to while preparing the Plan, specifically including TOD Planning Guidelines or Design Standards.

- **Bibliography of Reference Plans, Policies and Studies**

- **List of Project Stakeholders**

OBJECTIVE OF THE ASSIGNMENT

The objective of the assignment is determined by the scale and context of the Study Area:

- **City-level TOD Plan**:
 - Prepare a basis for a spatial growth strategy and density optimization
 - Identify priority areas for investment for both transit and real estate development

- **Corridor-level TOD Plan**:
 - Prepare a land use and density strategy along the transit corridor to optimize transit availability and affordability
 - Identify multimodal integration strategies with supporting transit and feeder services.
 - Identify stations with high-level of challenges and/or opportunities.

- **Station Area Plan**:
 - Prepare a block plan for development prioritizing TOD principles
 - Prepare public realm plan for a high-quality walking and cycling experience outside the station
 - Identify catalyst projects for real estate development

- **Greenfield/Suburban TOD Plan**
 - Prepare a master plan that leverages transit connectivity in walkable neighborhood units

- **Urban Infill TOD Plan**
 - Prepare a plan that identifies opportunities for infill development to optimize densities around transit

- **Urban Redevelopment**
 - Prepare land restructuring plan to leverage transit connectivity
SCOPE OF ACTIVITIES

CITY-LEVEL TOD PLAN

TASK 1 – DATA COMPILATION AND INVENTORY:

- **Review of Existing Documents & Studies:** Compile and review of the previously completed and current planning efforts underway in the Study Area with the intent to identify gaps and consistencies of the various policies, strategies and development projects when assessed against a backdrop of TOD Principles (Refer Guidance Document) under the following broad categories:
 - Planning & regulatory context
 - Regional context
 - Mobility & Access
 - Land Use, Public realm & Urban Design

- **Undertake site visits(s) & prepare an inventory of the planning & physical characteristics of the Study Area** – The existing conditions inventory will include the preparation of a detailed base map and a series of inventory maps and photographs.

- **Existing Conditions Inventory:** Map the existing data using AutoCAD and GIS mapping procedures. Inventory will include the following at a minimum:
 - Existing land uses
 - Proposed land uses
 - Zoning
 - Major nodes & activity centers
 - Major roads & infrastructure (Parking)
 - Existing natural features
 - Proposed key developments

- **Develop Case Studies and Best Practices in Transit-oriented Development:** Select best practices that demonstrate successful TOD projects nationally and internationally in similar context. The case studies will highlight successes, failures and lessons learned.

- **Undertake focus group meetings & key interviews** with stakeholders to help generate buy-in, identify major issues confronting the project and the social, economic, and political goals for the project.

- **Review of existing real estate needs at the city-level** to summarize the findings of a city-level real estate analysis [see ASP01] in terms of demand of different types across the urban space.
TASK 2 – STUDY AREA ANALYSIS

- **Analysis, Baseline Conditions Assessment and SWOT analysis**: Undertake an analysis of baseline conditions and prepare Weaknesses & Threats maps - utilize the existing conditions inventory to evaluate the physical characteristics of the study area.

- **Identify priority transit corridors**: Prioritize the “right” corridor to determine momentum for TOD based on the following parameters:
 - Map existing land uses, proposed land uses and key developments to understand the distribution of residential, employment and institutional uses in the city.
 - Identify activity generators: Map housing, employment and recreational centers to determine the desired lines and identify routes of high commuter traffic.

- **Delineate influence zone of transit** to determine the area around transit routes or stations, where transit-supportive development needs to be prioritized based on:
 - Population Density
 - Employment Density
 - Accessibility
 - Environmental Context

- **Identify development context**: TOD Planning must take into consideration different aspects of the city and the context before beginning the planning of TOD. It helps in integrating sustainable development principles at the outset by respecting and nurturing existing environmental and settlements. The development context can be identified as:
 - Greenfield
 - Urban Infill
 - Redevelopment

- **Conduct an analysis of opportunities around all stations** to develop a preliminary typology of stations based on their node place, and market potential view (for example - see Salat and Ollivier Transforming the urban space through TOD: the 3V approach) with the existing transit network and the proposed future network.

- **Identify preliminary goals and targets** with respect to the institutional support, plans, policies and development market.

TASK 3 – VISIONING AND STAKEHOLDER ENGAGEMENT, TOD “CHARRETTE”

An organized design workshop; where more focus will be to create a vision for TOD plan. Invite and engage key stakeholders including elected officials and staff from various agencies to the visioning workshop. Focused charrette shall achieve the following objectives:

- Articulate quantitatively and qualitatively how TOD could support the city social, economic and environmental objectives;
- Discuss the integration of land use, transportation, and infrastructure and solicit implementation strategies from charrette participants;
- Share and revalidate the identified transit-first goals and targets;
- Prioritize goals into short-term, mid-term, and long-term opportunities; and
- Identify the market, generate project interest and solicit feedback.
TASK 4 – RESILIENCE STRATEGY – ANALYSIS OF RISKS & ADAPTABLE PLANNING

Unlike disaster preparedness, urban resilience should focus on strengthening the City-Level TOD Plan to adapt to and disruption that may occur. Traditional TOD/land use planning is built on assumptions about a future state considering population growth, modal split, market understanding and demand for specific development/land use types amongst others. However, the introduction of disasters such as resulting from climate change e.g. flooding or extreme weather events could significantly impact the TOD planning. An innovative City-level TOD Plan needs to better account for such uncertainty, and plan for adaptable methods that can respond to changes to the city’s physical, economic or social conditions.

- Assess risks specific to the City (including climate-related risks) that may impact the realization of the land use, transportation and infrastructure implementation to its fullest potential
- Develop objectives and goals related to resilience through a participatory process
- Provide risk-informed planning recommendations for the following to ensure adaptable planning and informed decision making for the TOD recommendations
 - Land Planning for Emergencies – Develop a strategy for during and post-disaster recovery to ensure critical emergency response
 - Land Planning for Adaptability – Develop a strategy for the zoning /land uses to adapt to the City’s physical, economic or social conditions.

TASK 5 – DRAFT TRANSIT-ORIENTED DEVELOPMENT RECOMMENDATIONS

- Prepare a draft conceptual TOD Plan: Recommend modifications to the Development Plan and/or land development regulations, policy changes, DCR amendments in order to achieve the desired intent of TOD within the city. Draft TOD Recommendations Plan should be inclusive of the followings:
 - Parking Management Tools
 - Infrastructure Upgrades
 - First & Last Mile Connectivity
 - Differential Densities
 - Desired Land Use Mix
 - Financial Strategy
 - Public Transport Goals
 - Affordable Housing
 - City-level amenities (such as parks, major health and education centers)

TASK 6 – IDENTIFY A FINANCING STRATEGY

- Develop an understanding of the city’s financing system impacting implementation of TOD related land development and infrastructure projects.
- Introduce innovative funding tools to integrate TOD within the city’s urban management and financing systems
- Develop a Capital Investment Strategy for TOD station areas and projects.

TASK 7 – IDENTIFY A PHASING AND IMPLEMENTATION STRATEGY INCLUDING CATALYST PROJECTS

- Prepare a phasing for the TOD Plan which includes preliminary recommendations to enable the City/development and planning agency to systematically implement the recommendations of the TOD Plan.
- Technical Capacity Building Recommendations: Assessment of existing capacity of the Planning teams and to identify gaps and to recommend measures of augmentation of Technical Capacity.
CORRIDOR-LEVEL TOD PLAN

TASK 1 – DATA COMPILATION AND INVENTORY:

- Review of Existing Documents & Studies: Review and analysis of the previously completed and current planning efforts underway in the Study Area with the intent to identify gaps and consistencies of the various policies, strategies and development projects when assessed against a backdrop of promoting TOD Principles under the following broad categories:
 - Planning & regulatory context
 - Regional context
 - Mobility & Access
 - Land Use, Public realm & Urban Design
 - Transit & Station Area

- Undertake site visits(s) & prepare an inventory of the planning & physical characteristics of the Study Area –The existing conditions inventory will include the preparation of a detailed base map and a series of inventory maps and photographs.

- Existing Conditions Inventory: Map the existing data using AutoCAD and GIS mapping procedures. Inventory will include the following at a minimum:
 - Existing land use
 - Proposed land uses
 - Land Ownership
 - Parking
 - Zoning
 - Major nodes & activity centers
 - Major roads & infrastructure
 - Existing Natural features
 - Parks and Open Spaces
 - Proposed key developments
 - Circulation and Accessibility, with special emphasis on Multimodal Integration and NMT infrastructure

- Develop Case Studies and Best Practices in Transit Oriented Development: Select best practices that demonstrate successful TOD projects nationally and internationally in similar context. The case studies will highlight successes, failures and lessons learned.

- Undertake focus group meetings & key interviews with stakeholders to help generate buy-in, identify major issues confronting the project and the social, economic, and political goals for the project.

- Review of existing real estate needs at the city-level to summarize the findings of a city-level real estate analysis [see AS-P01] in terms of demand of different types across the urban space.

TASK 2 – STUDY AREA ANALYSIS

- Study the transit and the station characteristics (planned/existing): There are key differences in TOD strategies for different transit mode. Undertake an analysis of baseline conditions and prepare SWOT maps- utilize the existing conditions inventory to evaluate the physical characteristics of the study area

- Delineate influence zone: Identify the catchment area around station by transit type where TOD interventions can be applied.
 - Boundary may be defined by a 5–10 minute walking distance
 - Larger catchment area can be defined as the areas that are accessible by feeder transit

- Identify preliminary goals and targets with respect to the institutional support, plans, policies and development market
TASK 3 – VISIONING AND STAKEHOLDER ENGAGEMENT, TOD “CHARRETTE”

An organized design workshop; where more focus will be to create a vision for TOD plan. Invite and engage key stakeholders including elected officials and staff from various agencies to the visioning workshop. Focused charrette shall achieve the following objectives:

- Articulate quantitatively and qualitatively how TOD could support the city social, economic and environmental objectives;
- Discuss the integration of land use, transportation, and infrastructure and solicit implementation strategies from charrette participants;
- Share and revalidate the identified transit-first goals and targets;
- Prioritize goals into short-term, mid-term, and long-term opportunities; and
- Identify the market, generate project interest and solicit feedback.

TASK 4 – DEFINE STATION AREA TYPOLOGIES AND PRIORITIZATION OF TOD AREAS:

- Identify Station Area Typologies in relation to the urban context and character - Station areas along a transit corridor are set in different urban contexts, play different roles in the transportation network, and present unique challenges and opportunities.
- Conduct an analysis of opportunities around all stations to develop a preliminary typology of stations based on their node place, and market potential view (for example - see Salat and Ollivier Transforming the urban space through TOD: the 3V approach) with the existing transit network and the proposed future network. The typologies will include the following at a minimum:
 - Urban Context
 - Station Area Character
 - Predominant land use & intensification potential
 - Land use mix and density & FAR's
 - Key site characteristics
 - Planning & development challenges
 - Ideal Land use mix
 - Transportation Parameters and location within the network
 - Multimodal Integration

- Create a vision for each of the identified station types in terms of ultimate character and development form: Based on this vision, land use mix, urban design and parking policies and a set of development standards should be developed in order to provide the basis of a regulatory framework that would allow this vision to be achieved.

- Develop a selection criteria matrix to identify the prioritized TOD areas: Based on the following (but not limited to) quantitative and qualitative parameters
 - Identify development/ redevelopment potential based on:
 » Land availability and ownership- presence of underutilized lots, vacant lots, lots of large block sizes, and properties in dilapidated conditions
 » Allowable land uses
 » Future/ proposed development patterns
 » Real Estate Market Potential
 - Higher transit ridership (expected/proposed)
 - Presence of intermodal service
 - Typology and applicability of the number of stations of the same typology
 - Higher land use mixes
o Station area character
o Market Potential - for residential, office, and retail mixed-use development based on interviews with knowledgeable real estate development groups and review of other studies and planning documents

TASK 5 – RESILIENCE STRATEGY – ANALYSIS OF RISKS & ADAPTABLE PLANNING

Resilience should focus on strengthening the Corridor-Level TOD Plan to adapt and respond to changes in the physical, economic or social conditions. Traditional TOD/land use planning at the station level is built on assumptions about a future state considering population growth, modal split, market understanding and demand for specific development/land use types amongst others. Introduction of disasters such as resulting from climate change e.g. flooding or extreme weather events could significantly impact the TOD planning. An innovative corridor-level TOD Plan needs to better account for such uncertainty, as well as be adaptable to changing market conditions.

- **Assess risks specific to the Corridor** (including climate-related risks) that may impact the realization of the land use, transportation and infrastructure implementation to its fullest potential
- **Develop objectives and goals** related to resilience through a participatory process
- **Provide risk-informed planning recommendations** for the following to ensure adaptable planning and informed decision making for the TOD recommendations
 - **Land Planning for Emergencies** - Develop a strategy for during and post-disaster recovery to ensure critical emergency response.
 - **Land Planning for Adaptability** – Develop a strategy for the zoning/land uses to adapt to the changes in the physical, economic or social conditions.

TASK 6 – DRAFT TRANSIT ORIENTED DEVELOPMENT RECOMMENDATIONS

- **Create a conceptual Corridor Plan**
 - **Establish and/or reconnect street grid** – develop a comprehensive street grid of small blocks, accommodating pedestrian, vehicular and cycling connections
 - **Summarize the potential overall development** (existing development, redevelopment or new development) along the corridor and at each station.
 - **Provide intermodal connections** - near transit stations, for IPT with the intention of establishing a well-connected, efficient, transportation system, providing robust connections throughout the community for all modes.
 - **Develop appropriate parking strategies** with reduced parking as the goal- Encourage use of on-street parking to meet parking requirements. Conceal parking structures within development or screen from view on low-value land
 - **Upgrade the Infrastructure carrying capacity** to support the increased demand
- **Integration of TOD Plan with Zonal Development Plan/ Local Area Plan**
- **Identify Priority Station Areas as TOD demonstration project.**

TASK 7 – IDENTIFY A FINANCING STRATEGY

- Develop an understanding of the city's financing system impacting implementation of TOD related land development and infrastructure projects.
- Introduce innovative funding tools to integrate TOD within the city’s urban management and financing systems
- Develop a Capital Investment Strategy for TOD station areas and projects.

TASK 8 – IDENTIFY A PHASING AND IMPLEMENTATION STRATEGY INCLUDING CATALYST PROJECTS

- **Prepare a phasing for the TOD Plan** which includes preliminary recommendations to enable the City/development and planning agency to systematically implement the recommendations of the TOD Plan.
- **Technical Capacity Building Recommendations:** Assessment of existing capacity of the Planning teams and to identify gaps and to recommend measures of augmentation of Technical Capacity.
STATION-LEVEL TOD PLAN

TASK 1 – DATA COMPILATION AND INVENTORY:

- **Review of Existing Documents & Studies:** Review and analysis of the previously completed and current planning efforts underway in the Study Area with the intent to identify gaps and consistencies of the various policies, strategies and development projects when assessed against a backdrop of promoting TOD Principles under the following broad categories:
 - Planning & regulatory context
 - Regional context and relevance within the network
 - Mobility & Access
 - Land Use, Public realm & Urban Design
 - Transit & Station Area

- **Undertake site visits(s) & prepare an inventory of the planning & physical characteristics of the Study Area** – The existing conditions inventory will include the preparation of a detailed base map and a series of inventory maps and photographs.

- **Existing Conditions Inventory:** Map the existing data using AutoCAD and GIS mapping procedures. Inventory will include the following at a minimum:
 - Existing land use
 - Proposed land uses
 - Land ownership
 - Parking
 - Zoning
 - Circulation and Accessibility, with special emphasis on Multimodal Integration and NMT infrastructure
 - Public facilities
 - Major nodes & activity centers
 - Public realm & urban design elements
 - Parks, Open Space and Plazas
 - Sidewalk conditions
 - Natural Features
 - Lighting and signage conditions
 - Utilities
 - Proposed key developments

- **Develop Case Studies and Best Practices in Transit Oriented Development:** Select best practices that demonstrate successful TOD projects nationally and internationally for similar station types. The case studies will highlight successes, failures and lessons learned.

- **Undertake focus group meetings & key interviews** with stakeholders to help generate buy-in, identify major issues confronting the project and the social, economic, and political goals for the project.
TASK 2 – STUDY AREA ANALYSIS

- **Delineate Boundaries for TOD Study Area and Influence Area:** Refine TOD study boundary taking into account the existing and proposed site conditions in the following order:
 - Walking Distance from Transit Station based on Willingness to Walk
 - Existing Road Network
 - Ped-Shed Analysis
 - Critical Destinations beyond 10mins
 - Natural Environment Boundaries
 - Existing Built Environment
 - Existing Land Ownership

- **Analysis, Baseline Conditions Assessment and SWOT analysis:**
 - Identify the development character of the station area based on:
 - Station Typology
 - Market Realities
 - Community Needs
 - Undertake an analysis of baseline conditions and prepare SWOT maps based on TOD planning Principles broadly classified into:
 - Accessibility
 - Urban Form and Development
 - Transit & Station amenities

- **Identify preliminary goals and targets** with respect to the institutional support, plans, policies and development market

TASK 3 – VISIONING AND STAKEHOLDER ENGAGEMENT, TOD “CHARRETTE”

An organized design workshop; where more focus will be to create a vision for TOD plan. Invite and engage key stakeholders including elected officials and staff from various agencies to the visioning workshop. Focused charrette shall achieve the following objectives:

- Discuss the integration of land use, transportation, and infrastructure and solicit implementation strategies from charrette participants;
- Share and revalidate the identified transit-first goals and targets;
- Prioritize goals into short-term, mid-term, and long-term opportunities; and
- Identify the market, generate project interest and solicit feedback.
TASK 4 – RESILIENCE STRATEGY – ANALYSIS OF RISKS & ADAPTABLE PLANNING

Resilience should focus on strengthening the Station-Level TOD Plan to adapt and respond to changes in the physical, economic or social conditions. Traditional TOD/land use planning at the station level is built on assumptions about a future state considering population growth, modal split, market understanding and demand for specific development/land use types amongst others. Introduction of disasters such as resulting from climate change e.g. flooding or extreme weather events could significantly impact the TOD planning. An innovative station-level TOD Plan needs to better account for such uncertainty, as well as be adaptable to changing market conditions.

- Assess risks specific to the station area (including climate-related risks) that may impact the realization of the land use, transportation and infrastructure implementation to its fullest potential
- Develop objectives and goals related to resilience through a participatory process
- Provide risk-informed planning recommendations for the following to ensure adaptable planning and informed decision making for the TOD recommendations
 - Land Planning for Emergencies - Develop a strategy for during and post-disaster recovery to ensure critical emergency response.
 - Land Planning for Adaptability – Develop a strategy for the zoning /land uses to adapt to the changes in the physical, economic or social conditions

TASK 5 – DRAFT TRANSIT ORIENTED DEVELOPMENT RECOMMENDATIONS

- Prepare a Conceptual Plan incorporating the TOD Planning Principles (TOD Guidance Document - 1.3) under the themes: Integrated Transportation | NMT Accessibility | Compact Development | Liveability.
- Prioritize—‘quick-win’ public realm investments as catalyst projects and low-cost demonstration projects to showcase future transformations envisioned in TODs.
- Prepare transit supportive development code at the station level which will include the following at a minimum
 - Develop appropriate parking strategies with reduced parking as the goal
 - Urban form- compact development, articulated densities, mix of uses, integrate informal sector, active building frontage, and housing typology

TASK 6 – IDENTIFY A FINANCING STRATEGY

- Develop an understanding of the city’s financing system impacting implementation of TOD related land development and infrastructure projects.
- Introduce innovative funding tools to integrate TOD within the city’s urban management and financing systems
- Develop a Capital Investment Strategy for TOD station areas and projects.

TASK 7– IDENTIFY A PHASING AND IMPLEMENTATION STRATEGY INCLUDING CATALYST PROJECTS

- Prepare a phasing for the TOD Plan which includes preliminary recommendations to enable the City/development and planning agency to systematically implement the recommendations of the TOD Plan.
- Technical Capacity Building Recommendations: Assessment of existing capacity of the Planning teams and to identify gaps and to recommend measures of augmentation of Technical Capacity.
SITE-LEVEL TOD PLAN

TASK 1 – DATA COMPILATION AND INVENTORY:

- **Review of Existing Documents & Studies**: Review and analysis of the previously completed and current planning efforts underway in the Study Area with the intent to identify gaps and consistencies of the various policies, strategies and development projects when assessed against a backdrop of promoting TOD Principles under the following broad categories:
 - Planning & regulatory context
 - Regional context
 - Mobility & Access
 - Land Use, Public realm & Urban Design
 - Transit & Station Area

- **Undertake site visits(s) & prepare an inventory of the planning & physical characteristics of the Study Area** – The existing conditions inventory will include the preparation of a detailed base map and a series of inventory maps and photographs.

- **Existing Conditions Inventory**: Map the existing data using AutoCAD and GIS mapping procedures. Inventory will include the following at a minimum:
 - Existing land use
 - Proposed land uses
 - Land ownership
 - Parking
 - Zoning
 - Circulation and Accessibility, with special emphasis on Multimodal Integration and NMT infrastructure
 - Public facilities
 - Major nodes & activity centers
 - Public realm & urban design elements
 - Parks, Open Space and Plazas
 - Sidewalk conditions
 - Natural Features
 - Lighting and signage conditions
 - Utilities
 - Proposed key developments

TASK 2 – STUDY AREA ANALYSIS

- **Identify development context**: TOD Planning must take into consideration different aspects of the city and the context before beginning the planning of TOD. It helps in integrating sustainable development principles at the outset by respecting and nurturing existing environmental and settlements. The development context can be identified as:
 - Greenfield
 - Urban Infill
 - Redevelopment
• **Analysis, Baseline Conditions Assessment and SWOT analysis:** Undertake an analysis of baseline conditions and prepare Weaknesses & Threats maps - utilize the existing conditions inventory to evaluate the physical characteristics of the study area.
• **Identify preliminary goals and targets** with respect to the institutional support, plans, policies and development market
• **Create a development program**
 o Site Layout Plan- proposed land use mix
 o Detailed Development Programme
 o Infrastructure Upgrades Plan
• **Prepare the Real Estate Market Feasibility Study based on**
 o Demand assessment of the site
 o Feasibility assessment/study of the proposal

TASK 3 – VISIONING AND STAKEHOLDER ENGAGEMENT, TOD “CHARRETTE”

An organized design workshop; where more focus will be to create a vision for TOD plan. Invite and engage key stakeholders including elected officials and staff from various agencies to the visioning workshop. Focused charrette shall achieve the following objectives:
• Discuss the integration of land use, transportation, and infrastructure and solicit implementation strategies from charrette participants;
• Share and revalidate the identified transit-first goals and targets;
• Prioritize goals into short-term, mid-term, and long-term opportunities; and
• Identify the market, generate project interest and solicit feedback.

TASK 4 – RESILIENCE STRATEGY – ANALYSIS OF RISKS & ADAPTABLE PLANNING

Resilience should focus on strengthening the Site-Level TOD Plan to adapt and respond to changes in the market conditions. Traditional TOD/land use planning at the site level is built on assumptions about a future state considering market understanding and demand for specific development/land use types amongst others. Introduction of disasters such as resulting from climate change e.g. flooding or extreme weather events could significantly impact the site plan. An innovative site-level TOD Plan needs to better account for such uncertainty, as well as be adaptable to changing market conditions.
• **Assess site-specific risks** (including climate-related risks) that may impact the realization of development potential
• **Develop objectives and goals** related to resilience
• **Provide risk-informed planning recommendations** for the following to ensure adaptable planning and informed decision making for the TOD recommendations
 o **Land Planning for Emergencies** - Develop a strategy for during and post-disaster recovery to ensure critical emergency response.
 o **Land Planning for Adaptability** – Develop a strategy for the zoning/land uses to adapt to market realities
TASK 5 – DRAFT TRANSIT ORIENTED DEVELOPMENT RECOMMENDATIONS

- **Prepare a Conceptual Master Plan** include the following at a minimum
 - **Built Form**
 - Site Layout Plan- proposed land use mix
 - Detailed Development Programme
 - Infrastructure Upgrades Plan
 - **Placemaking**
 - Public Realm Strategy
 - Access Management
 - Transit Plaza Design
 - Streetscape Improvement
 - **Mobility and Circulation Strategy**
 - Pedestrian Accessibility Plan
 - Traffic Circulation Plan
 - Road Network Design
 - Parking Management
- **Prioritize**—‘quick-win’ public realm investments as catalyst projects and low-cost demonstration projects to showcase future transformations envisioned in TODs.

TASK 5 – IDENTIFY A FINANCING STRATEGY

- Develop an understanding of the city’s financing system impacting implementation of TOD related land development and infrastructure projects.
- Introduce innovative funding tools to integrate TOD within the city’s urban management and financing systems
- Develop a Capital Investment Strategy for TOD station areas and projects.

TASK 6 – IDENTIFY A PHASING AND IMPLEMENTATION STRATEGY INCLUDING CATALYST PROJECTS

- **Prepare a phasing for the TOD Plan** which includes preliminary recommendations to enable the City/development and planning agency to systematically implement the recommendations of the TOD Plan.
- **Technical Capacity Building Recommendations**: Assessment of existing capacity of the Planning teams and to identify gaps and to recommend measures of augmentation of Technical Capacity.
DELIBERABLES

<table>
<thead>
<tr>
<th>TASK</th>
<th>DELIVERABLE</th>
<th>TIMELINE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Inception Report including problem statement, goals, objectives, study needs and methods</td>
<td>M + 2 weeks</td>
</tr>
<tr>
<td>2</td>
<td>Memo #1: Study Area Analysis</td>
<td>M + 2 months</td>
</tr>
<tr>
<td>3</td>
<td>Memo #2: Stakeholder Engagement Summary</td>
<td>M + 3 months</td>
</tr>
<tr>
<td>4</td>
<td>Memo #3: Resilience Strategy</td>
<td>M + 4 months</td>
</tr>
<tr>
<td>5</td>
<td>Memo #4: Draft TOD Plan Recommendations</td>
<td>M + 6 months</td>
</tr>
<tr>
<td>6</td>
<td>Memo #5: Financing and Implementation Strategy</td>
<td>M + 7 months</td>
</tr>
<tr>
<td>7</td>
<td>Final TOD Plan</td>
<td>M + 8 months</td>
</tr>
</tbody>
</table>

QUALIFICATION OF CONSULTANTS

The Consultant Team must have experience in at least:

A. One similar TOD Study
 OR

B. At least two Infrastructure Development Plans that followed compact development principles

The Consultant Team must include the following key expertise:

<table>
<thead>
<tr>
<th>Key Experts</th>
<th>Year of Experience</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Project Manager and Senior Urban Planner</td>
<td>15 years</td>
</tr>
<tr>
<td>2 Urban Planner</td>
<td>5-10 years</td>
</tr>
<tr>
<td>2 Urban Designer</td>
<td>5-10 years</td>
</tr>
<tr>
<td>3 Transport Planner</td>
<td>5-10 years</td>
</tr>
<tr>
<td>4 Environmental Planner</td>
<td>5-10 years</td>
</tr>
<tr>
<td>5 Regulatory Expert</td>
<td>5-10 years</td>
</tr>
<tr>
<td>6 Municipal Finance Specialist</td>
<td>5-10 years</td>
</tr>
</tbody>
</table>
The ‘Finance’ step of the TOD process outlines the processes for assessment of cost variables for transit infrastructure, cross-subsidization potential from revenue generating real estate developments, land value capture mechanisms & best practices, strategic private partnership advisory and financing tools.
ABOUT FINANCE

The ‘Finance’ stage presented in this section is applicable to large scale, mixed-use, urban transformative projects near transit stations and corridors that are typically financed by partnerships between public and private sectors. TOD projects are generally associated with complex site acquisition and land assemblage processes, as well as high capital investments towards generous public infrastructure investments (including higher percentage of open spaces, multimodal facilities, affordable housing). From a public sector perspective, these high investment costs require innovation in combining diverse municipal financing tools with strategic private sector partnerships to include market-driven revenue generating components that often deviate from traditional single use development projects. This section provides tools available through traditional municipal financing systems and fundamentals of real estate, project structuring including cost estimation for capital investment. These financial tools are supported by, enabling regulatory tools, guidelines and development incentives to forge partnerships for successful financial closure of TOD transformative projects.

Over the last two decades, World Bank client countries have employed diverse financing strategies to enable land value capture mechanisms paving way for viable models to promote TODs. These financial instruments require supporting policies at the national level to also provide for coverage of costs through recurrent revenues from alternate sources. Implementing these policies at the local level requires a detailed structuring of the project implementation parameters with strategic funding mechanisms, and ability to raise capital and allocate revenues. Phasing and timing for transit implementation and real estate development is generally asynchronous – for example, transit-oriented development projects take 10-15 years for implementation as opposed to a 3-5 year timeframe for real estate development projects. Therefore, devising a strategy for funding and aligning with overall project goals may be performed by a combining transit and real estate development processes from the inception of the transit project, including analysis of development potential, revenue earning potential, leveraging structure, risk sharing framework, from both public and private sector perspectives. This needs to be undertaken in a sequential format based on initial planning and then moving ahead on detailed analysis through the financial due diligence and implementation framework.

This section outlines the processes for assessment of cost variables for transit infrastructure, cross subsidization potential from revenue generating real estate developments, land value capture mechanisms & best practices, strategic private partnership advisory and financing tools.

REFERENCES

The following list of references were used to develop the “Assess” Knowledge Products:

• Urban Growth Company, Value Capture Framework and Toolkit, Sept 2017

The Knowledge Products presented as part of the ‘Finance’ stage include:

ANALYTICAL
- FI-A01 Infrastructure Capital & Operating Cost Estimates/ Ranges *(Spreadsheet + User Guide)*
- FI-A02 Real Estate Development Pro-Forma *(Spreadsheet + User Guide)*

‘HOW-TO’ GUIDES
- FI-H01 Land Value Capture Framework *(Step-by-Step Guide)*
- FI-H02 Private Sector Participation Framework *(Ref. Doc)*

RESOURCES
- FI-R01 Development Incentives *(Ref. Doc)*
- FI-R02 Land Value Capture Mechanism Best Practices *(Ref. Doc)*
- FI-R03 Municipal Finance Tools *(Ref. Doc)*
This Knowledge Product is intended to be used as a reference and an interactive Excel spreadsheet available online on the GPSC’s TOD website and the World Bank’s TOD CoP website. The reader should first review the summary presented in this section before using the spreadsheet tool.

Type: Spreadsheet + User Guide
INTRODUCTION

This tool has been structured to provide a broad reference for arriving at initial cost estimates of a transit infrastructure project. The costing has been considered for integrated developments with transit infrastructure comprising of allied real estate or other developments. The costing is calculated in three major portions as mentioned i.e:

- **Preparatory Activities** mainly comprising of engagement of consultants, etc.
- **Capital Cost** comprising all development costs, including land cost, if any;
- **Operations Cost** - broadly calculated based on the capital cost.

The tool provides a brief description of each item and a broad range of associated cost for development of infrastructure. The local requirements and conditions define the cost applicable, and accordingly, the appropriate cost may be selected for each of the components.

The land cost has not been provided considering the range for this component to be large, depending on the local conditions. Therefore, the applicable rate of land may be provided in the yellow box against the component.

The tool also includes a reference sheet containing details of transit infrastructure cost for various cities across the world.

Disclaimer: The Transit-Orientated Development Implementation Resources & Tools knowledge product is designed to provide a high-level framework for the implementation of TOD and offer direction to cities in addressing barriers at all stages. As the context in low and middle-income cities varies, the application of the knowledge product must be adapted to local needs and priorities, and customized on a case-by-case basis.

© 2021 International Bank for Reconstruction and Development / The World Bank
ASSUMPTIONS AND LIMITATIONS

- The tool utilizes per km average cost of transit infrastructure development based on type and category to arrive at total cost.
- The average per kilometer cost was available for the year 2013. The values have been adjusted with reference to the global inflation rate to arrive at rates for the year 2018.
- The ancillary costs listed in the tool are based on broad parameters as a derivative of the total cost of transit arrived at through above methodology.
- A reference to public transit fares has been provided based on available secondary data. No inferences have been drawn with respect to the fares data.

INTENDED OUTCOMES

- The tool aims to provide a block estimate for the transit infrastructure planned for city-wide, corridor or station area development, knowing the length and type of transit network.
- A reference sheet of transit fares across major cities in the world to assist in assessing approximate revenue from commuter/user fees based on the ridership estimates.
- Provide assistance in analyzing the mode of transit infrastructure with reference to the cost of such development.
HOW TO USE THIS TOOL?

First, the user should read the User Guide Tab before using the spreadsheet. The application of the Infrastructure Capital and Operating Cost Estimates tool consists of five basic steps:

STEP 1

Decide on the type or mode of transit infrastructure intended to be developed as part of the initial assessment plan.

STEP 2

Based on the transit type, the required length of transit infrastructure essential for the TOD needs to be ascertained.

STEP 3

The details on type and length of the transit shall have to be provided in **Cost Assessment tab**. The details of type of transit shall have to be selected from the pre-defined list of Bus Rapid Transit (BRT), Light Rail Transit (LRT), Light Rail Transit (LRT) and Heavy Rail Transit (HRT). The BRT is further sub-divided into Gold, Silver, Bronze and Basic categories.

STEP 4

The tool automatically calculates the total cost of transit based on pre-defined data and the inputs provided, as above. Also, in cases where the land cost is a component to be incurred for development of transit then that cost must also be provided in the **Cost Assessment tab**.

STEP 5

Based on the average range for the ancillary costs, the tool also calculates other costs that may have to be incurred towards project management, conceptualization, design etc.
FI-A02
REAL ESTATE DEVELOPMENT
PRO-FORMA

This Knowledge Product is intended to be used as an interactive Excel spreadsheet available online on the GPSC’s TOD website and the World Bank’s TOD CoP website. The reader should first review the summary presented below before using the spreadsheet tool.

Type: Spreadsheet + User Guide
ABOUT THE REAL ESTATE DEVELOPMENT PROFORMA TOOL

PURPOSE
This Transit Oriented Development Financial Analysis Tool is structure to present transit agencies, local governments, and private sector investors a preliminary assessment of potential return on investments (ROI) based on certain basic project development parameters assumed for TOD projects. The goal of this tool is to help organize the TOD project’s total development budget, projected operating revenue and expenses to determine the cash flow over time, and identify the project’s potential sources of funding including grants, debts and private sector equity.

The accompanying Excel worksheet calculates the cost of a typical TOD development project based on block cost estimates on per unit area method. It also assists in calculating the projected revenue from different sources through calculation based on the average market rate for capital and rental values in the micro-market. However, it is important to note that the tool is not a discounted cash flow analysis and therefore, does not take into account time value of money in the calculation of return on investment.

ASSUMPTIONS AND LIMITATIONS
• The tool is based on several assumptions and requires several data inputs to be diligently filled for appropriate outputs.
• Broad parameters have been taken into consideration enlisted in Risk Assessment tab, which may be referred to arrive at different scenarios of financial and market parameters.
• Every project requires its own customization, therefore, the tool is developed on basic factors to derive cash flows separately for transit infrastructure and real estate components.
• The tool requires inputs like operations cost and transit revenue to be assessed through other tools forming part of the TOD Knowledge Product.

INTENDED OUTCOMES
• An assessment of value generation by the development of real estate components forming part of the TOD.
• Derivation of cross-subsidization capacity within an integrated development of TOD with real estate as the significant revenue generator for the infrastructure.
• Determination of viability gap in the development of transit infrastructure.
• Assessment of returns for the developer on equity scale post debt amortization.

Disclaimer: The Transit-Orientated Development Implementation Resources & Tools knowledge product is designed to provide a high-level framework for the implementation of TOD and offer direction to cities in addressing barriers at all stages. As the context in low and middle-income cities varies, the application of the knowledge product must be adapted to local needs and priorities, and customized on a case-by-case basis.

© 2021 International Bank for Reconstruction and Development / The World Bank
HOW TO USE THIS TOOL?

First, the user should read the User Guide Tab before using the spreadsheet. The application of the Real Estate Development Pro-Forma tool consists of five basic steps:

01 **STEP 1**

Provide inputs related to the area statement of various development components envisaged as per the plan and design exercise in the TOD in the *Area Statement tab*.

02 **STEP 2**

Other details related to costing, occupancy, revenue, debt structure, interest charges etc. are to be provided in the *Data Sheet tab*.

03 **STEP 3**

The development timeline and revenue realization timelines need to be provided in the *Timelines tab*.

04 **STEP 4**

Based on the inputs provided in the above steps, the value are auto-calculated in the subsequent sheets of *Capex tab* (Capital Expenditure), *Opex tab* (Operations Expenditure), *Revenue tab*, *Interest Charges tab*, *cf – Infra tab* (Cashflow for infrastructure) and *cf – real est tab* (Cashflow for real estate).

05 **STEP 5**

The risk assessment of the overall financial analysis can be made through broad parameters provided in the *Risk Analysis tab*.
FI-H01
LAND VALUE CAPTURE FRAMEWORK

This Knowledge Product is intended to be used as a process toolkit available online on the GPSC’s TOD website and the World Bank’s TOD CoP website. The reader should first review the summary presented below before exercising the tool in detail.

Type: Step-by-Step Guide
Land Value Capture (LVC) has been categorized as a profound means for routing revenue from development potential of land. It refers to a broader term, generally used for a policy approach of sharing increases in land values (generated by urbanization, public infrastructure projects, zoning changes, and/or other government initiatives) between private and public sector. The effective application of land value capture systems typically requires a robust real estate market, conducive legal and regulatory framework, strong property tax collection systems, including clear land tenure systems, strict enforcement and adequate training of relevant stakeholders. Land value capture tools often found in varying forms in World Bank client countries include: transferable development rights (TDR), impact fees, public land leasing, increased densities, business improvement districts, and tax increment financing.

Primarily, the techniques support all forms where infrastructure cost or other investments are expected to be incurred for enhancement of land values. Such enhancement or betterment of land value through Land Value Capture (LVC) frameworks provide support for infrastructure development. In lieu, the betterment of land values requires substantial public investments ranging from new infrastructure, such as parking and utility capacity upgrades to open spaces, streetscapes and multimodal facilities, in response to increased densities allowed “by-right” or as a premium to private landowners. Different means for capturing the land value are being exercised across the world. Examples of such initiatives include municipal borrowing against future property tax increments (California, USA) or through charging vacant land tax in TOD areas (Bogota, Colombia).

Disclaimer: The Transit-Orientated Development Implementation Resources & Tools knowledge product is designed to provide a high-level framework for the implementation of TOD and offer direction to cities in addressing barriers at all stages. As the context in low and middle-income cities varies, the application of the knowledge product must be adapted to local needs and priorities, and customized on a case-by-case basis.

© 2021 International Bank for Reconstruction and Development / The World Bank
PURPOSE

Financing Transit-oriented Development with Land Values (Suzuki, Murakami, Tamiyose, World Bank 2015), is the main resource that directly addresses the issues and opportunities in applying LVC instruments in low and middle-income countries. The development of transit infrastructure benefits several stakeholders, direct as well as indirect. In most cases, these benefits remain with the beneficiary and in no manner contribute towards financial sustainability or growth of infrastructure. Therefore, it is needed to devise mechanisms to capture these benefits getting created in transit-influenced catchment areas. There are established mechanism and tools devised across the globe for such practices. The Land Value Capture is important among such tools to be used for funding transit infrastructure projects.

At large, there are many land value capture tools being practiced and documented globally. This step-by-step guide elaborates on the processes to be referred to for assessing and implementing land value capture mechanisms in the identified transit-oriented development zones and areas.

In principally, the various methods being used by different countries, governments and land owning agencies are provided below:

- DEVELOPMENT CHARGES - Typically, fees collected by the planning/municipal authority from developers and builders prior to development of a land for issuing a building permit to offset the cost of infrastructure required to provide municipal services to the new development.

- TAX INCREMENT FINANCING - Municipal Authority earmarking future increases in revenue of property tax generated in an identified district/area, from new real estate developments, for financing present infrastructure projects.

ASSUMPTIONS AND LIMITATIONS

- The framework aims at providing broad level strategy and an overall guidance for taking steps towards supporting TOD through land value capture.
- The implementation of land value capture requires an enabling environment with statutory and legislative support to develop a framework for its implementation. This varies from region to region depending on the local government policies, and need not be similar for applicability to all.
INITIATION OF THE PROJECT

- A detailed study of the legislative framework, comprised of rules and regulations in force, for governing land value capture mechanisms, shall have to be conducted.
- The applicability of existing or approved mechanisms with the rules and regulations will have to be assessed for identification of appropriate techniques.
- In case the existing tools or mechanisms are inadequate, there may be requirements to introduce new tools as per the needs of the project. All regulatory reforms concerning the project and required for introduction or enactment of the new tool, may be proposed at once to the government or the approving authority. It is essential that benchmarking and comparative analysis with similar regions and neighborhoods should be conducted in the process to identify new LVC tools, prior to proposing it for approval.

1 Similar cities, towns, governance pattern etc. Also, further similarity in terms of demographics and economic conditions may be considered.

PLANNING

- Planning is needed to identify the catchment area getting influenced due to the new transit project, corridor or planned area. The value of land and other properties will increase in the area of influence.
- The identified would need to be surveyed to collect data on the land ownership pattern.
- Based on land ownership, different tools, like land amalgamation, etc., will need to be planned and structured.
- Identify potential land in separate categories of government and non-government lands.
Based on the land ownership and the location plan, the land value capture mechanism shall be identified:

<table>
<thead>
<tr>
<th>Area of Influence</th>
<th>Government</th>
<th>Non-Government</th>
</tr>
</thead>
<tbody>
<tr>
<td>500m</td>
<td>Hold the land for densification / property price appreciation</td>
<td>Government land - hold the land for densification / property price appreciation Non-Government - Land Development Charges, land Value Tax, Land Use Conversion Charges etc.</td>
</tr>
<tr>
<td></td>
<td>Land development with allied revenue generating components</td>
<td>Government land - land development with allied revenue generating components Non-Government - Land Development Charges, land Value Tax, Land Use Conversion Charges etc.</td>
</tr>
<tr>
<td></td>
<td>Land required for transit - joint development, else separate development of government land and tax increment and other charges applied for non-government land</td>
<td>Land required for transit - joint development, else separate development of government land and tax increment and other charges applied for non-government land</td>
</tr>
<tr>
<td>400m</td>
<td>Hold the land for densification / property price appreciation</td>
<td>Government land - hold the land for densification / property price appreciation Non-Government - Land Development Charges, land Value Tax, Land Use Conversion Charges etc.</td>
</tr>
<tr>
<td></td>
<td>Land development with allied revenue generating components</td>
<td>Government land - land development with allied revenue generating components Non-Government - Land Development Charges, land Value Tax, Land Use Conversion Charges etc.</td>
</tr>
<tr>
<td></td>
<td>Joint development with allied revenue generating components - financing and contractual arrangements to be made accordingly</td>
<td>Tools like land amalgamation to be applied, then joint development with allied revenue generating components</td>
</tr>
<tr>
<td>300m</td>
<td>Land development with allied revenue generating components</td>
<td>Government land - land development with allied revenue generating components Non-Government - Land Development Charges, land Value Tax, Land Use Conversion Charges etc.</td>
</tr>
<tr>
<td></td>
<td>Tools like land amalgamation3, if required to be applied and then joint development</td>
<td></td>
</tr>
<tr>
<td>200m</td>
<td>Land development with allied revenue generating components</td>
<td>Government land - land development with allied revenue generating components Non-Government - Land Development Charges, land Value Tax, Land Use Conversion Charges etc.</td>
</tr>
<tr>
<td></td>
<td>Joint development with allied revenue generating components - financing and contractual arrangements to be made accordingly</td>
<td></td>
</tr>
<tr>
<td>100m</td>
<td>Land development with allied revenue generating components</td>
<td>Tools like land amalgamation to be applied, then joint development with allied revenue generating components</td>
</tr>
<tr>
<td></td>
<td>Tools like land amalgamation3, if required to be applied and then joint development</td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Typical LVC strategy for land parcels within radial distance of 500 meters of the transit infrastructure and depending on land ownership

2Here, allied refers to supporting real estate developments for cross subsidizing capital / operational cost of infrastructure development and/or maintenance, as applicable.

3 Land amalgamation refers to the framework for enabling and also requiring private land owners to come together for a purposeful development that supports the transit-oriented development approach of governments.
In order to maintain transparency, accountability and to reduce unnecessary reconciliation issues, separate financial accounts with the bank may be maintained by the implementing agency for revenue and expenditure. This helps distinguish and segregated identification of fund flows for complex projects with longer durations.

It would be essential to execute formal agreements with detailed terms based on the land development / settlement strategy agreed upon between the parties for a land value capture mechanism. Such agreements shall be governed by the prevailing legislative framework and the terms of arrangement shall have to abide by the available framework within the permitted laws.

In order to protect the interest of either party and to facilitate financial protection towards shared revenue, if applicable, the arrangement of an ESCROW account with a bank may be considered by the parties for operationalizing the value capture mechanism.

The following documents (including but not limited to) shall be placed in public disclosure:

1. Planning and Methodology of TOD Area Development
2. Proposed Transit Infrastructure Development
3. Prevailing norms of land value capture mechanisms, approved by local or regional government

The details of the land value capture mechanism will be shared with each individual owner and also placed in the public domain.

The procedure of the deposition of funds and the approval or clearance, thereupon, shall be put in place for non-government land/properties.

A monitoring and evaluation mechanism of the land value capture shall have to be put in place in the following forms:

(i) Identification of Key Performance Indicators and their measurement from time to time;
(ii) Constitution of monitoring team / committees with assignment to conduct regular review of the progress and effectiveness of the implementation framework
(iii) Regular financial and performance audits to keep check on irregularities and system slack, if any.
(iv) Any other method or institutionalization that the implementing authority or the Government may perceive are required for effective monitoring and control.

In case of joint developments, the contractual arrangements, including the terms and conditions, shall be placed in the public domain to follow open and transparent procedure.
FI-H02
PRIVATE SECTOR PARTICIPATION FRAMEWORK

Project structuring process or planning of financial resources to meet the project cost

Type: Step-by-Step Guide
INTRODUCTION

PURPOSE
Developing capital intensive public transit infrastructure projects require a robust financial strategy to be in-place for gaining the confidence of private sector investment in real estate. The resulting transit and real estate projects are generally vulnerable to several risks during their life cycle. It is advised to appropriately share and mitigate the risks with the right stakeholders and partners.

It is often witnessed that the land owning agency and/or the implementing agency for transit infrastructure projects would be government bodies. Technical capacity constraints and limitations in understanding real estate markets are a common challenge with government agencies in the case of developing long-term TOD transformational projects.

While public-private partnerships (PPPs) in infrastructure projects, such as highways and public rail-based transit, have shown success in different parts of the world, successful TOD and real estate projects are found mostly in strong and emerging real estate markets. Several countries have formulated robust frameworks for developing Public-Private Partnership (PPP) projects under their legislative guidelines. The general methodology for such arrangements in project implementations is moreover common in all countries, with project to project customization based on different parameters.

CONTEXT
The understanding of Public-Private Partnership is important before initiating the project structuring process or the planning of financial resources to meet the project cost. This tool elaborates on the basic understanding of the PPP framework followed globally. It includes an introduction on the stakeholder arrangement, project structuring mechanisms, legislative, implementation and monitoring frameworks, post implementation management and brief case studies.

STAKEHOLDERS
In public-private partnerships, the identified stakeholders, i.e. those providing resources, those approving the implementation, who exploit resources to develop the project and who receive the services or benefits out of the envisaged plan, are contractually bound based on their responsibilities. These stakeholder can principally be identified as:

- **Government– Legislative Body/Approving Authority–** Generally responsible for ruling and monitoring the legislative framework for PPP arrangements in their jurisdiction and are also often the approving authority for the project.
- **Landowning Agency(ies)–** Generally, the land for transit infrastructure projects are owned by government agencies, different from the project implementing agencies. There may also be private land owners falling in this category.
• Project Implementing Agency(ies)—In most cases, there is a government agency that is entrusted with the responsibility to undertake the implementation of the project. The agency analyzes and proposes the implementation structure for the project, whether through public-private partnership or otherwise.

• Private partner—These are the private partner(s) participating in the implementation and operations, either as developers, investors or the concessionaire for the project.

• Lenders—The lenders are the important stakeholder in the whole business of public-private partnership projects, as they generally bring in the maximum financial resources to the project and their interests have to be protected at all times. They may be senior lenders or subordinate lenders, depending on the financial structuring of the project.

• Users/Occupiers/Buyers—These are the users of the project components, whether it be transit facility or other such public components. It also includes the purchasers and buyers of properties and assets developed within or allied to the project. Generally, they are not any direct party to the project development and operations contracts, but their interests are protected in the project through warranties, representation and responsibilities of other parties.

A schematic matrix of the relationship among these stakeholders is presented below for reference:
PROJECT STRUCTURING

The structuring of public-private partnership projects depend on several factors and requires project level, detailed analysis before arriving at any specific model. These include the sharing of the following between the implementing agency and the private partner:

- Scope in development of project
- Provisioning of resources
- Operation and management responsibilities
- Project risks, including revenue risks
- Monitoring and control

Based on these shared responsibilities, the public-private partnership projects may be classified as following:

- Management or Service Contracts
- Lease and Affermage Contracts
- Concessions/Build-Operate-Transfer (BOT)/Design-Build-Operate (DBO)
- Joint Ventures
- Privatization

The selection of an alternative is the result of the assessment of project and stakeholder requirements. A reference framework providing benchmarks for this purpose is provided below:
It is important for the project formulator(s) to have an in-depth understanding of the legislative framework governing the development and operations of the project. The project structure, including tenure of development and operations, financial and land resources, stakeholder and partner selection, rights and responsibilities, compliance requirements, revenue-based rules and guidelines, etc. shall all be required to adhere to the policies and regulations, brought in force specific to the area or generic to the jurisdiction of government.

In case of complications or requirements of clarifications, formulation of consultative committees and making reference to approving authorities at a preliminary stage is highly recommended. Some specific projects may also require reforms to the norms laid down by government for PPP projects, land development or land transfers, etc. These should be undertaken in priority, before proceeding further on the project structuring and implementation.

Based on the decided project implementation structure, the procurement is undertaken through standard terms and conditions of bidding documents and the draft contract agreement appended to it. The draft contract agreement generally addresses all aspects of project structure parameters and aligns a risk sharing framework in the contractual terms and conditions. All federal government and in many contexts, the provincial or local government, prescribes standard bidding documents for PPP procurement as a reference. These documents may be followed with customizations to suit the requirements of project. These documents are generally termed as model concession agreements and model request for proposal documents.

It is also important that there is efficient contract management and project monitoring. For this purpose, the implementing agency may institutionalize a separate team or engage a specialized consulting organization(s) for this purpose. There is a specific role of independent engineer for all milestone certifications and minor dispute resolutions. These are independent consultants engaged by either the implementing agency or jointly, by both the parties, to check the quality of development and protect the interest of the project.

In general cases, the implementation of the project is undertaken by the private partner, independently. However, the partner takes all prior and post-implementation approvals from the implementing agency, independent engineer or any other third party, as defined in the terms of the agreement.

The agreements govern the entire period of the contract/concession from the date of engagement till the handover of assets back to the implementing agency, if applicable. The contract management team of the implementing agency is responsible for overseeing and monitoring the overall performance of the contract by either parties, especially the private partner. Site programming for soft components such as destination management, placemaking, safety, and overall place branding are factors that should continue through the life-cycle of the project in order to increase the value proposition for the site in the overall market.
A guide of financing tools for planners and economic development specialists

Type: Reference Document

© 2021 The World Bank
INTRODUCTION

Since TOD is a deviation from traditional single use development models, incentives are often used to attract developers and investors in developing the TOD area, especially in the case of peripheral areas of the city or greenfield contexts. Some incentives are also aligned towards the citizens, encouraging heightened community participation in the development process. This helps in ensuring that the project is co-created with impacted stakeholders, and chances of delays in obtaining project approvals and implementation are minimized. The following outlines the potential development incentives that can be implemented:

<table>
<thead>
<tr>
<th>INCENTIVE</th>
<th>OUTCOME</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increased densities offered right around transit nodes, as well as density bonuses in exchange for public amenities and infrastructure such as safe access to transit, and NMT infrastructure constructed by private sector, subject to market demand.</td>
<td>Conducive to development and reduce infrastructure expansion costs</td>
</tr>
<tr>
<td>Local Growth Management Strategies and incentives to promote TOD and road safety infrastructure in such areas to land developers and investors at the local level</td>
<td>Provides better urban planning and growth guidelines with people friendly environment thereby increasing the attractiveness potential of the area</td>
</tr>
<tr>
<td>Incentives to developers in the form of technical assistance for architectural design, road safety and safe system designs, site plan approval, understanding zoning regulations.</td>
<td>Resulting in quality development</td>
</tr>
<tr>
<td>Incentive to developers by relaxing height restrictions and reducing the requirement for providing car parking. These may be justified where the development is located near shops and close to public transport, as envisaged in TOD, depending on market demand.</td>
<td>Opportunity for mixed-use, compact development and encouraging users to switch to NMT and public transport</td>
</tr>
<tr>
<td>For projects with a strong focus on transit use, incentives can include full or partial fee rebate on development application fees.</td>
<td>Reduces processing time and improves efficiency</td>
</tr>
<tr>
<td>Financial assistance for activities such as organizing initial community consultation and integrating affordable housing and community facilities as part of the TOD project.</td>
<td>Participatory planning</td>
</tr>
<tr>
<td>Incentives such as fee waivers, expedited processing of development applications to streamline approval process.</td>
<td>Value addition to the service improves project delivery</td>
</tr>
</tbody>
</table>
MODIFY MAXIMUM BUILDING HEIGHT
Increased allowable height may vary depending on the current zoning and the location in relation to transit nodes, but would increase buildable area.

MODIFY MAXIMUM LOT COVERAGE
Increased maximum lot coverage may vary depending on the current zoning and the location in relation to transit nodes, but would increase buildable area.

MODIFY ALLOWABLE RESIDENTIAL DENSITY
Decreasing the required land area per dwelling unit creates an opportunity for increased housing density near transit and more housing flexibility and choice.
MODIFY PERMITTED USES
Amending principal permitted uses, to include a full range of residential and commercial uses within a walkable distance of transit, reinforces pedestrian activity.

INCENTIVIZE MIXED USES
Requiring or incentivize a mix of uses increases the opportunity for a vibrant place that contributes to active and walkable transit.

INCENTIVIZE RESIDENTIAL CONVERSION
Incentivize existing structures to convert to residential uses would enable more contiguous, walkable districts to occur near transit stations.
INCENTIVIZE SPECIFIC DESIRED USES
Providing additional height or density entitlements to specific uses, in specific locations, creates the opportunity to align private and public investments.

INCENTIVIZE SPECIFIC DESIRED USES
Incentivize parcel assembly creates new opportunities for larger scale redevelopment where desirable.

INCENTIVIZE HOUSING CHOICE / OPPORTUNITY
Variation in housing opportunities strengthens compact, walkable neighborhoods and builds upon the strengths of residential demand.
INCENTIVIZE PROPERTY EASEMENT
Incentivize private developers of large plots, bordering two parallel streets or two different sides of a city block or near a station, to grant easement access to pedestrians and non-motorized transport users through their properties.

INCENTIVIZE AMALGAMATION OF SETBACKS
Incentivize developers of adjacent parcels for amalgamating adjoining setbacks between buildings to create new rights-of-way restricted for pedestrian and NMT movements.

INCENTIVIZE SUB-DIVISION OF LARGE PARCELS
Requiring or incentivizing sub-division of parcels, beyond a given area, with public rights-of-way created in between.
INCENTIVIZE DIRECT LINKS TO STATIONS

Incentivize directly linking properties to the transit station using partnership model between City and developers, through a combination of at-grade and grade-separated networks like sky-walks and subways.

Sky-walks in China SAR connecting commercial and business destinations to transit stations
(Source: © WRI India)
PARKING INCENTIVES

DEFINING PARKING LOCATION AND ORIENTATION
Parking located at the interior of blocks, behind buildings or concealed by landscape buffers, provides a more walkable and uninterrupted environment to support transit use.

MODIFY PARKING REQUIREMENTS
Reducing required parking allows a larger proportion of a parcel to be used for redevelopment, increasing the residential and commercial space.

ESTABLISH PARKING MAXIMUMS
Parking maximums can be used to limit the amount of land area devoted to parking capacity by parcel or by district.
ESTABLISH PARKING ACCESS RESTRICTIONS
Reducing parking access to a single curb cut on a secondary street minimizes disruption to the pedestrian environment.

REQUIRE PARKING LANDSCAPE/BUFFERS
Landscape buffers and islands can help to screen parking areas from view and reduce large expanses of impervious surfaces.

INCENTIVIZE SHARED AND OFF-SITE PARKING
Parking resources between adjacent sites can be combined and shared to increase capacity, shared between various uses or combined with on-street parking to be more efficient.
FINANCIAL INCENTIVES

PROMOTE TAX CREDITS
Several types of tax credits— at the federal and state level— offer opportunities that would be applicable to potential redevelopment in the transit nodes.

INVEST IN INFRASTRUCTURE AND STREETSCAPE
Investments in streetscape and infrastructure are critical to creating a pedestrian-friendly and private investment-friendly environment. Developers may be given incentives to “adopt” sidewalks adjacent to their property and ensure that it is well maintained and cleaned as per City guidelines and policies. In many cities, sidewalk maintenance and upkeep is the responsibility of the residents or business owners for example removal of snow and ice to ensure safe walking space for pedestrians. These weather related situations sometimes arise when the sidewalks are narrow or have utility fixtures that may not be suitable for snow clearing machines.

OFFER PROPERTY TAX ABATEMENTS
Property taxes are a component of redevelopment projects that the city can modify to be used as an incentive to encourage specific projects.
OFFER EXPEDITED PERMITS AND APPROVALS
Unpredictable approvals processes become a major impediment to implementing redevelopment improvements. A special expedited review for certain project types can be used as an incentive.

ESTABLISH TARGETED LOAN FUNDS
Targeted and revolving loan funds can be used to provide financial assistance to small businesses within the transit nodes, resulting in improvements and increased activity in these districts.

ESTABLISH GRANT PROGRAMS
Targeted grant programs to improve storefronts in commercial districts are an example of leveraging public funds to incentivize private investment that is aligned with city goals.
Examples of land value capture tools employed in World Bank client countries to help fund transit projects.
INTRODUCTION

PURPOSE
Pressure from urban agglomeration, coupled with related infrastructure problems and rising cost, forces policymakers running on tight budgets to improve critical transport infrastructure. There are techniques to facilitate these transit facilities with use of various land value capture (LVC) tools, which generate funds from the uplift in property values that results from new transit lines and stations. In LVC deals, governments share in the profits, rather than concede them to developers or landowners. There are many types of LVC instruments, but generally, they are either fee-based, such as land taxes, or development-based, such as joint development. If executed properly, these tools could provide a more sustainable source of financing to prudent governments and better align public and private sector participation. Their ability to boost area density also allows cities to include LVC in transit-oriented development strategies, now a popular practice across urban planning departments.

Disclaimer: The Transit-Orientated Development Implementation Resources & Tools knowledge product is designed to provide a high-level framework for the implementation of TOD and offer direction to cities in addressing barriers at all stages. As the context in low and middle-income countries varies, the application of the knowledge product must be adapted to local needs and priorities, and customized on a case-by-case basis.

© 2021 International Bank for Reconstruction and Development / The World Bank

STRUCTURE
Cities have been identified from low and middle income countries, where LVC instruments have been used to fund transit development projects. Each city story is briefed under the following subheadings, representing different phases of the transit project completion:

- **Scoping**: explains the underpinnings of the project and feasibility assessments.
- **Planning**: explains the planning process followed in the respective case.
- **Institutions**: explains the institutional roles and responsibilities to use LVC.
- **Financing**: talks about the different financial tools adopted by the city for the funding of the project.
- **Implementation**: explains how the LVC tool was implemented
- **Outcomes and Lessons**: explains the outcomes of the LVC implementation and lessons learned.
NANCHANG RAILWAY TRANSIT GROUP

Nanchang, China

CONTEXT

Nanchang is a provincial capital in southeastern China and also a major regional center for agriculture, manufacturing and commerce. Considering factors like high GDP and the population growth rate of the city, construction of a rail transit system in Nanchang was first proposed in 2000. The population of the urban core of Nanchang is projected to reach 3.5 million people by 2020. Annual gross domestic product (GDP) growth in 2007–11 was a very robust 16–22%.

Incorporated in 2008, the Nanchang Railway Transit Group (NRTG) in Nanchang, China adopted development-based land value capture (DBLVC), as part of the funding strategy for the Nanchang Metro Line 1 (28.7 kilometers), Line 2 (23.3 kilometers), and Line 3 (18 kilometers), with full support from the Nanchang Municipal Government (NMG). NRTG’s DBLVC approach involves direct property development on excess land around transit stations, acquired through the NMG public land leasing scheme during transit construction.

SCOPING

In August 2005, Jiangxi Provincial Development & Reform Commission and Nanchang City Government replied to the proposal of building a metro system and the city considered listing the proposal in the budget plan. In November, a plan of 4 metro and 1 light rail was drafted. After continuous deliberation with successive levels of governments in the hierarchy, the construction of Nanchang Metro was formally included in the priority agenda.

PLANNING

Public transport accounted for only 13.5% of total daily trips in the city. Moreover, roads in southern Nanchang see heavy congestion, while in other parts, cars are favored due to the availability of wide roads. In southern Nanchang, the Nanchang municipal government (NMG) plans to decrease the population in the historic core, lower its development densities, lessen traffic congestion and preserve historic buildings. To achieve these goals and resolve the growing congestion, NMG has designed an extensive public transport system with fully integrated bus services and metro railway networks to facilitate smooth travel. NMG plans to build five metro lines; two are under construction. Once complete, the metro railway network will be about 160–170 kilometers long with 128 stations. With a target completion date of 2020, lines 1, 2, and 3—60–70 kilometers in all—will form the basic structure of the metro railway network, connecting major business centers, the financial district, recreational areas, sport facilities, two industrial parks and three universities.

INSTITUTIONS

NMG delegated the responsibility for city-level land use planning and investments in local infrastructure and services to the established Nanchang Railway Transit Group Co. Ltd. (NRTG), which plans to build and operate the metro system. To better
leverage the private sector’s expertise, NRTG set up a special property management division with key staff recruited from the private sector to manage all real estate assets owned by the company. It also acts as a key liaison between government agencies to coordinate their planning and review of metro railway investments and projects.

FINANCING

NRTG’s estimated investment in direct development schemes is $1.4 billion (USD). However, the expected revenues from the overall development scheme for the 2012–2015 period include:

- Sale of development rights: $574 million
- Sale of 500,000 square meters of commercial property: $1.5 billion
- Average annual rental income: $65.6 million
- 2012–2015 annual rental income: $198 million
- Projected 2015 net profit: $1.1 billion dollars (20.5% of the construction costs for line 1 and 2)

Overall, the projected financial benefits of NRTG’s future real estate investments (including land development, station rental, property sales and property lease) along the Nanchang Line 1 and Line 2 rail corridors will be $2.2 billion for the 2012-2016 period and $3.6 billion for the 2012-2020 period. NRTG’s DBLVC (Development-Based Land Value Capture) program is a model for other Chinese cities considering transit value capture financing.

IMPLEMENTATION

Upon acquisition or lease of excess land by the NRTG from the Nanchang Municipal Government (NMG), the government, in return, increases the allowable floor space within 500 meters of stations to make DBLVC ventures profitable. It employs transit-oriented development principles on transit adjacent land to generate real estate revenues for transit construction and operation. NRTG develops above ground and underground development at select rail stations. As a business policy, it first develops high-density mixed-use development around station areas that are close to the city center. Similar developments are then replicated on a smaller scale at station areas located in the suburbs, to improve the overall financial viability of direct property development ventures. NRTG is developing 23 mixed-use developments above stations, five of which are being directly financed and developed, while the other 18 developments are being co-financed and developed with private developers. In addition, NRTG is building five underground developments, three of which will be directly finance and developed, while two will be co-financed and developed with private developers.

OUTCOMES AND LESSONS

The following are the inferences drawn out from the case study:

- Economy-induced population growth rate offers better job opportunities for city dwellers and promotes healthy migration. This could be capitalized on by offering good real estate opportunities for the people along a mass rapid corridor within the city.
- Marketing and business development is a key attribute for the success of TOD via any LVC tool, as they help investors and developers understand the benefits of such an intervention.
- Ample backing from ULB or a city-governing institution for LVC helps to expedite the transaction.
- Empowering the ULB to make all the decisions pertaining to transit development is important. This could be phased, by inducting a pool of experts and devolving funds and power.
- The lack of urban redevelopment schemes is a critical constraint for implementing TOD and LVC in mass transit investment at city- and region-wide levels.
- LVC tools must be able to capture the long-term increase in value brought by mass transit and meet the need for recurrent financial support for operation, maintenance and renewal.
- Mechanisms shall be applicable to mass transit agencies to share recurrent revenues fairly with developers. This can be achieved through development-rights arrangements or other financial instruments that capture long-term increases in land value, such as property taxes, impact fees and betterment taxes.
DELHI METRO RAIL CORPORATION
New Delhi, India

CONTEXT
The Delhi Metropolitan Area consists of the National Capital Territory of Delhi (NCTD) and the first ring of towns around the capital, including Ghaziabad, Loni, Noida, Faridabad, Gurgaon, and Bahadurgarh. Home to more than 22 million inhabitants within 1,483 square kilometers, it is projected to increase to 33 million inhabitants by 2025. The NCTD’s per capita income is 2.4 times higher than the national average, so its population ratio below the poverty line is also around half the national figure. Greater economic opportunities are adding more immigrants to the city and, as such, augmentation of transit infrastructure remains a primary focus.

SCOPING
The Mass Rapid Transport System (MRTS), forms a roughly 250-kilometer network of underground, elevated and surface lines across the territory by 2021. It is expected that after the full network is developed, about 60% of the urbanized area of Delhi will be no more than a 15-minute walk from an MRTS station. Such investments are also expected to generate greater opportunities for economic growth and employment by calling for selective redevelopment and densification of the existing built-up areas, given local conditions and informal settlement patterns such as land pockets of slum and Jhuggi Jhoppadi (a cluster of slum colonies).

PLANNING
The Master Plan of Delhi recommends a comprehensive redevelopment scheme of the catchment areas of MRTS stations be created, with multiple land use categories and floor area ratios. The Delhi Development Authority (DDA) with the help of Unified Traffic and Transportation Infrastructure Planning and Engineering Centre (UTTIPEC), proposes to greatly raise FARs in Delhi under MPD-2021. A 500-meter wide transit-oriented development (TOD)/multi-use zone would be overlaid on both sides of the metro corridor to encourage a mix of commercial and employment-generating activities along with residential developments. Higher FARs would be permitted subject to certain setback and height restrictions. One redevelopment package will be included in the influence zone if more than 70 percent of the site area falls inside the 500-meter buffer. Property developments around the MRTS stations, up to a maximum area of 3.0 hectares, will be allowed in all use (mixed land use) zones, with some exceptions. This flexible land use coordination could lead to a mix of residential and commercial uses, as well as densely built areas, but whether this actually triggers redevelopment along the corridor is yet to be ascertained.

INSTITUTIONS
DMRC has decision-making power in railway business practices, while the exercise of land development rights remains with government authorities. The Ministry of Urban Development often intervenes in DMRC’s station plans with property development projects. DMRC has to get statutory clearance from multiple government stakeholders at NCTD level. For architectural and conceptual plans, clearance is derived from the Delhi Urban Arts Commission; land use changes—DDA; building plans—municipal authorities; no objection certificates—the Land and Development Office and DDA; archaeological surveys—the Archaeological Survey of India; fire-fighting clearance—Delhi Fire Service; and environmental clearance—the Ministry of Environment.

FINANCING
The current and proposed Delhi MRTS network combined is about 293 kilometers long and has three project phases (table 7.3). The national government’s direct participation in project funding in the three phases was required to secure concessional Japanese yen loans (30 years, including a 10-year grace period, with an interest rate of about 1.8 percent) from the Japan International Cooperation Agency (JICA).
IMPLEMENTATION

The land parcels belonging to the various bureaus, agencies, and municipalities are transferred to DMRC at intergovernmental transfer rates decided by the Ministry of Urban Development for a 99-year lease. The Delhi government is essentially in charge of acquiring private lands for public projects and then transferring them to DMRC. In some locations, DDA also provides the land for free to DMRC. The cost of land acquisition is treated as a premium to be recovered, as an interest-free subordinate debt over a 25-year period in the fund allocation schemes.

Sales of development rights are undertaken in two steps. After the land transfers are obtained from multiple government agencies, DMRC usually invites shortlisted bidders to make concession agreements with successful tenders for the development rights. Most residential development projects on depot and standalone plots with 90-year leases generate substantial upfront payments, whereas commercial properties within station buildings with short (6–12-year) leases and on large plots outside stations with medium-term (20-year) leases produce more recurrent revenue streams.

OUTCOMES AND LESSONS

The following are the inferences taken from the case study:

- Good purchasing power and consumer-driven economy is an indicator for applicability of TOD.
- The parameters or LVC tools shall be determined not based on fixed standards, but on local site conditions, network wide node characteristics and market-based demands.
- The slow and convoluted process of land transfer through multiple organizations held up project prospects for DMRC and private developers, the main barrier to delivering property development projects on MRTS station sites.
HYDERABAD METRO RAIL LIMITED
Hyderabad, India

CONTEXT
Hyderabad, the capital of Telangana, has long been the international corporate hub for service and knowledge-based industries. More than 7.5 million people live within the 7,257 square kilometers of the Hyderabad Metropolitan Development Area (HMDA), which includes the Greater Hyderabad Municipal Corporation (GHMC). Hyderabad’s metropolitan population is projected to grow to more than 11.6 million by 2025.

SCOPING
Moreover, the majority of the rise in population is anticipated to occur in the surrounding municipalities of GHMC. Hence, there is a need to think long-term about public infrastructure investments and land use regulations, reflecting population growth patterns and the emerging industrial clusters across the whole metropolitan area.

PLANNING
Hyderabad’s master plans have been updated to address emerging population growth patterns and business location shifts for the long-term. Once the metro development plan was complete, the master plan of the GHMC was amended by the state government to introduce a 300-meter wide “multi-use zone (mixed land use)” on both sides of the metro corridor. This amendment would promote commercial and office uses, which can also benefit from transit services.

INSTITUTIONS
HMDA has the spatial control in the planning and regulation of the region. The state government intended to provide a rail system for 71.16 kilometers on elevated structures in Hyderabad via design-build-finance-operate-transfer invited proposals from bidders. Larsen & Toubro Limited (L&T) won the bid, as it asked for the lowest viability gap funding (VGF) (Rs 1,458 crores/$230 million) and signed the concession agreement with the state government for the project over 35 years, of which 5 years are for construction. Hyderabad Metro Rail Limited (HMR) was enacted as a special purpose vehicle. In this framework, HMR is an intermediary, ensuring that L&T gets the right-of-way for the metro construction, coordinating with the GHMC, traffic and police departments and utility agencies for multiple clearances. Two important obligations of the concessionaire are to achieve integration with the surrounding landscape, by engaging architects and town planners to design the metro system to accommodate interchange facilities with other transport modes and new corridors.

FINANCING
The government meets 40% of the project costs—half from the national government and half from the state government. The balance of 60 percent has to be provided by L&T Metro Rail. A consortium of 10 banks led by the State Bank of India provided financing. The debt to equity ratio set out for this rail project was 2:1. L&T Metro Rail foresees around 50% of corporate revenue coming from fares, about 45% from real estate development, and 5% from adverts and parking fees. The total project costs are $3.07 billion, which include $0.41 billion for real estate development along the metro rail corridors.

IMPLEMENTATION
L&T Metro Rail is entitled to use the stations’ parking and circulation spaces offered by government for real estate development on the 25 sites, accounting for 23 hectares and a maximum floor area of 557,000 square meters. L&T Metro Rail is expected to provide public amenities, specifically where a 300-meter wide band from the metro corridor is envisaged for TOD at higher densities.

OUTCOMES AND LESSONS
The following are the inferences drawn from the case study:

- The PPP project is a perfect example for transaction and implementation of future Metro rail projects for cities aspiring to augment their transport infrastructure.
- Giving private sector the opportunity to engage with TOD projects will bring the much required expertise and efficiency in execution of the project.
AIR RIGHT SALES
São Paulo, Brazil

CONTEXT
São Paulo, Brazil’s vibrant financial center, is among the world’s most populous cities, with numerous cultural institutions and a rich architectural tradition. The city’s gross domestic product increased 10 times and the population quintupled to up to about 12.1 million people. But since the 1990s, São Paulo’s economy has become heavily deindustrialized.

SCOPING
The high pace of income and population growth linked to unstable political and financial conditions, as well as inadequate implementation of a spatial development vision and strategy in past years, have led to urban expansion.

While the city-region boundaries persistently drive outwards, the central area presents a high concentration of job openings, educational activities, public services, businesses and entertainment activities. These have generated excessive commuting patterns between the city center and surrounding municipalities, where the majority of people live.

PLANNING
Several laws and master plans guide São Paulo’s urban development and transit investment across federal, state and municipal governments. An urban operation (Operacion Urbanisica/UO), defined by the City Statute as a tool to promote the restructuring of large areas of the city through land-based incentives, is offered to public-private partnerships (PPP), including local public authorities, developers, landowners and other stakeholders as independent investors. UOs are implemented through instruments called Operações Urbanas Consorciadas (Consortia Urban Operations). The urban infrastructure investments in UOs will be financed by the incremental value created by public investment, land use and zoning change.

INSTITUTIONS
State and municipal governments have formed multiple departments and agencies for regional and local transport systems. The state Secretariat of Metropolitan Transport (STM) has three operating companies: São Paulo Company of the Metropolitan (METRO), São Paulo Metropolitan Trains Company (CPTM) and Metropolitan Urban Transportation Company (EMTU). Within the STM, the tasks for public transport and traffic management are split between SPTrans (São Paulo Transporte S.A.) and CET (Traffic Engineering Company). As a primary transit agency, SPTrans coordinates all municipal bus services, which are operated by eight private companies within the city of São Paulo. Important transit projects are being undertaken by two units: STM and the Municipal Secretariat of Urban Development. The latter works mostly on urban planning and design around new transit corridors and terminuses, controls land regulations and oversees the municipal urban development company (São Paulo Urbanismo).

FINANCING
The funding for most transit projects in the city of São Paulo and surrounding municipalities relies heavily on local government resources, especially São Paulo state government’s general budget for metro, commuter rail and intercity bus transit investments. To raise the capital funds required in the coming decades, Integrated Urban Transport Plan 2025 examined financing scenarios for transit investments, based on conventional tax resources and innovative financing schemes, including value capture. According to the funding arrangement models analyzed in the master plan, substantial development benefits could be captured by air rights sales in urban intervention areas, accompanied by PPP initiatives and congestion charges.

IMPLEMENTATION
In São Paulo, the city planning department sets the “base” FAR for the city at 1.0–2.0, though specific FARs within this range depend on location and land use. If landowners want to build beyond “as of right” development up to the maximum allowable
FAR (1.0–4.0 depending on location and land use), they have to buy additional FARs. The as of right base FAR in certain areas is lower than the pre-existing basic FAR. The revenues generated from the sales of OODC (Outorga Onerosa do Direito de Construir) are deposited in the Urban Development Fund, which finances public urban investments, including slum upgrading within the city boundary.

CEPACs, Certificate of Additional Construction Potential, are a market-based instrument to finance public urban investments through air rights transactions within designated UOs. Through CEPACs, municipalities can raise infrastructure investment funds by selling the bearer additional building rights, such as a higher FAR and possible land use changes that should induce private investments in the transformations wanted by urban development policy.

OUTCOMES AND LESSONS

The following inferences are drawn from the case study:

- High market demand, government capacities to create and manage auction markets, political will and regulatory capacity to ensure enforcement for additional required development rights were key attributes for success of this model in São Paulo.

- The greatest advantage of tradable air right sales is that local governments in developing countries, with limited developable lands, can produce substantial upfront cash flows for capital intensive urban infrastructure projects, without increasing their public debt.

- A transparent project finance scheme has to be developed, with clear rules and mechanisms to share profits and risks among multiple agencies, local government, transit agencies, landholders, residents, developers and investor. Coordination mechanisms must also exist between stakeholders in planning, financing and implementing transit and urban development.

REFERENCES

FI-R03

MUNICIPAL FINANCE TOOLS

This Knowledge Product is intended to be used as a reference sheet available online on the GPSC’s TOD website and the World Bank’s TOD CoP website. The reader should first review the summary presented below before using the reference sheet.
INTRODUCTION

TOD often requires significant investments in infrastructure and community facilities for the type of development envisioned in TOD planning principles such as streetscape improvements, plazas and open spaces, utility capacity enhancements, land acquisition costs, and other supporting investments. In addition to initial capital improvement costs, operation and maintenance costs are also an added burden on the high-quality urban spaces that are promoted as part of TODs.

With limited financial capacities, unclear land entitlements, and low property tax collection revenues, local governments in low and middle-income countries continue to struggle to raise finances to support the types of investments that TODs aim to achieve.

PURPOSE

While the fundamental principles of municipal financing tools are similar globally, how cities deploy these tools depends on the local context including the regulatory processes, legal context and political will. This tool presents a comprehensive listing of financing instruments employed in many countries to fund public infrastructure and services.

ASSUMPTIONS AND LIMITATIONS

- The list of financing tools is generic in nature and will need to be contextualized as per each city’s legal and regulatory policies.
- Several tools may require an enabling legislative framework or may be more market driven. Such an assessment should be conducted as part of due diligence while analyzing the applicability.
ORGANIZATION OF TOOLS

FINANCING

MUNICIPAL FINANCE TOOLS
- Capital Investment Planning
- Intergovernmental Transfers

LAND-SPECIFIC FINANCIAL AND REGULATORY TOOLS

Public land
- Sale or long-Term Lease
- Arms-Length Transaction
- Strategic Negotiated Transaction
- Land Swaps
- As “In-Kind” Payment
- As Equity Contribution towards a Joint Venture

Private land
- Financial Tools
 - Noncapital Markets
 - Developer Extractions/Impact Fees
 - Betterment Levies
 - BID
 - Capital Markets
 - TIF
 - PILOT
 - Special Assessment Districts
- Regulatory Tools
 - Policy
 - Density Bonus
 - Up-Zoning
 - TDR
 - Fiscal
 - Direct Grants
 - Low Cost Loans
 - Tax Incentives
LAND VALUE CAPTURE (LVC)

LVC tools are generally used to finance infrastructure improvements by setting aside a pre-determined share of the increase in values or savings resulting from public investment in infrastructure improvements.

Cities using this tool: New Delhi (India), Tokyo (Japan) and Hong Kong SAR, China

TAX INCREMENT FINANCING (TIF)

TIF is a method to use future gains in taxes to finance current improvements (which theoretically will create the conditions for those future gains). When a development or public project is carried out, there is often an increase in the value of surrounding real estate, and perhaps new investment. This increased site value and investment sometimes generates increased tax revenues. The increased tax revenues are the tax increment. Tax Increment Financing dedicates tax increments within a certain defined district to finance debt issued to pay for the project. TIF is designed to channel funding towards improvements in distressed or underdeveloped areas, where development might not otherwise occur. TIF creates funding for public projects that may otherwise be unaffordable to localities, by borrowing against future property tax revenues.

Cities using this tool: Arlington, Chicago (USA)

LAND READJUSTMENT

Land readjustment is an effective tool in allowing local governments to take on TOD projects, especially in greenfield contexts, in partnership with original residents and landowners as. Public amenities and infrastructure is then provided, using government funds or loans, and then the serviced plots are sold at market rates. The increment in the land value goes to the development agency instead of the original land owners, which can again be used to finance infrastructure upgrades. In return, each land owner receives a serviced plot of smaller area, but often at much higher value within the same neighborhood.

Cities using this tool: Mumbai and Gandhinagar (India)

DEVELOPER FEES AND EXACTIONS

This financing tool is often collected in the form of impact fees, as a one-time fee, and used as part of the city’s general fund to finance public infrastructure improvements, such as utilities and transportation. Developer exactions are also used for dedication of land for public benefit, construction of public improvements such as sidewalks, parks or recreation center in a TOD area, sometimes in exchange for higher densities.

Cities using this tool: Bengaluru (India)
One of the oldest financing mechanisms used for financing development by transit agencies, this tool is a form of public-private partnership involving real estate development on public owned land with private investment.

Cities using this tool: Seoul (Republic of Korea), Bengaluru (India)

MUNICIPAL BONDS

These are debt obligations issued by municipalities to fund urban infrastructure projects and various municipal services. Purchasing municipal bonds means lending money to the government body, which in return pays specified interest throughout the locking period and returns the principal amount at the end of tenure. Municipal bonds are available in both taxable and tax exempt formats. There are two types of bonds: General Obligation Bonds (GO) and Revenue Bonds. GO bonds, issued to raise immediate capital to cover expenses, are supported by the taxing power of the issuer. Revenue bonds, which are issued to fund infrastructure projects, are supported by the income generated by those projects.

Cities using this tool: Ahmedabad (Ahmedabad Municipal Corporation), New Delhi (India)

BANK LOANS AND FINANCING

The most conventional methods for financing urban infrastructure projects are term loans from bank or other lending institutions. The steps involved are:

1. Municipal council/standing committee approval to issue debt
2. Technical approval from the concerned local authorities
3. Apply for term loan, with brief description of the proposed project, DPR with an accompanying financing plan, past budget documents and necessary approvals
4. The lending institution establishes the loan terms based on the risk perception of the project and the applicant's financial viability

Cities using this tool: Tamil Nadu Urban Development Fund (India)

DIRECT FEES THROUGH TOOLS LIKE CONGESTION PRICING & PARKING FEES

Direct fees are user charges for public amenities and infrastructure, such as transit, toll roads, bridges and parking facilities. Direct fees are dependent on local conditions and case-specific based on the demand. Normally these fees are collected by public and private authorities to recover capital cost and operation and maintenance costs of the infrastructure.

Cordon area congestion road pricing is a system of charging users for entering and using roads in a demarcated or restricted area that is subject to congestion due to excess demand. This helps regulate demand and managing congestion. The revenue collected is used to support and improve transit services and transportation systems.

Cities using this tool: Singapore, London (UK)
GRANTS

Grants are non-repayable funds disbursed by one party (grant makers), often a government department, corporation, foundation or trust, to a recipient, often (but not always) a non-profit entity, educational institution, business or an individual. In order to receive a grant, some form of “grant writing,” often referred to as either a proposal or an application, is required. Most grants are made to fund a specific project and require some level of compliance and reporting. The grant writing process involves an applicant submitting a proposal (or submission) to a potential funder, either on the applicant’s own initiative or in response to a Request for Proposal from the funder.

Cities using this tool: Singapore, London (UK)

SPECIAL FUNDS SUCH AS URBAN TRANSPORT FUND (UTF)

The Ministry of Urban Development, Government of India recommended the creation of a dedicated transport fund, both at the state and the city-level, for funding urban transport initiatives. Creation of the Urban Transport Fund is a mandatory reform under JnNURM guidelines. The UTF will be collected in the form of a surcharge on the sale of petrol, taxes on existing personalized vehicles and an Urban Transport tax on the purchase of personalized vehicles. It will be used for traffic transportation studies, capacity building, awareness building and projects aimed to promote public transport, NMT and accessibility to public transit.

Cities using this tool: Indian Infrastructure Debt Funds

CROWDFUNDING

Crowdfunding is an Internet-enabled way for businesses or other organizations to raise money – typically from about US$1,000 to US$1 million – in the form of either donations or investments, from multiple individuals. This new form of capital formation emerged in the wake of 2008 financial crisis in response to the difficulties faced by early-stage enterprises in generating funding. In less than a decade, crowdfunding has spread across the developed world, and is now attracting considerable interest in the developing world as well. Crowdfunding began as an online extension of financing by friends and family: communities pool money to fund members with business ideas. During crowdfunding’s early stages, capital came in the form of donations, but increasingly it takes the form of debt or equity investments targeting high-growth entrepreneurs – only one of many ways the model is evolving as awareness spreads. Crowdfunding uses web-based technology and the knowledge and wisdom in communities to determine which projects should receive funding and how much funding they should receive, as well as providing real-time feedback on start-ups and small businesses. It leverages the power of technology, particularly social media, to market the idea, raise funds, and hold entrepreneurs accountable. Developing economies may have the potential to capitalize on this new funding mechanism. Countries wishing to implement crowdfunding ecosystems need to understand how crowdfunding works, the role that government and regulation should play and the technological infrastructure requirements involved.

LOCAL CURRENCY LOAN

A decade ago, the lending markets were less vulnerable to the currency exchange rates. Borrowings were happening in the preferred currency of lender putting the currency exchange risk in borrower’s basket. The revenue currency being different from the lending currency posed risk and required to always keep a watch on the volatility in currency exchange rates. Thereafter, the need for a sustainable lending term and conducive environment for private sector development was observed. Accordingly, the lenders identified a mechanism to support lending in the local currency, by absorbing the risk of currency rates.

Local currency loans capture the financial benefits within local area to promote local economy. Loans in local currency can eliminate the currency exposure for companies operating in developing countries. A company may prefer a local currency loan instead of a foreign currency loan if it has its main income in a local currency or if it wants to minimize the credit risk and uncertainty connected with a foreign currency loan. Loans in local currency can be provided to new as well as ongoing project companies.

IBRD offers local currency financing through (i) loan conversion options, and (ii) free-standing local currency swaps. i) Local currency conversion option: The conversion option is included in the loan agreement to enable borrowers to convert current disbursements (Automatic Conversion of Loan Currencies or ACLC) and disbursed and outstanding loan balances (DOB) into local currency; all subject to market availability. IBRD may provide the conversion by a) hedging through swap market transactions, or b) funding through local currency bond issuance (back-to-back financing).

IBRD Local Currency Financing, The World Bank | Treasury

As an internationally rated AAA institution, IFC leverages its powerful credit to provide customized local currency products to private sector clients. The local currency can come directly from IFC in the form of a local currency loan or swap. IFC also mobilizes other sources of local currency, like local banks and capital markets, through credit enhancement. Whether the client prefers senior debt, quasi-equity, funding from IFC or from some other source, IFC stands ready to provide flexible, market-based instruments.

IFC and Local Currency Financing, International Finance Corporation, World Bank Group
DISCRETIONARY TRANSPORTATION IMPROVEMENT GRANTS

The since 2009 United States Department of Transportation (USDOT) offers discretionary grants through the “Better Utilizing Investments to Leverage Development, or BUILD Transportation Discretionary Grant program” (formerly known as the Transportation Investment Generating Economic Recovery, or TIGER Discretionary Grants). Funds are awarded to agencies at State and local levels for funding innovative capital projects. The program uses merit-based evaluation criteria to select projects. The project types that have received funding include road and highway improvement projects, transit projects, rail freight projects, port development projects, and bicycle and pedestrian infrastructure projects. These discretionary funds could be used for funding road safety projects within a TOD area.

ROAD SAFETY FUNDS

A road safety fund has been established in many states in India. The source of the fund is from the revenue collected from traffic fines and registration of the vehicles, along with contributions from State and Federal governments. States like Bihar, Odisha, Maharashtra, Kerala, Punjab etc have developed guidelines and enabled legislations for maintaining this fund and usage including road safety studies and research, road crash data analysis, road safety awareness programs, identification of accident-prone areas and corrective measures, training programs, and trauma care. The legislations also included regular road safety audits and elaborated on the roles and responsibilities of the operating agency: including receiving proposals, selection of programs that will receive funds, and allocation of funds.

Cordon area congestion road pricing can also be used as a source for a road safety fund. Started in 1998, Singapore’s Electronic Road Pricing (ERP) scheme, which is managed by the Land Transport Authority (LTA), is a fully automatic network of gantries monitoring congestion. The overhead gantries detect each vehicle’s ‘in-vehicle unit’ when passing beneath to deduct the fee from a smart card. The variable prices are reviewed quarterly to manage traffic demand depending on the location, traffic direction, day of the week, time, and type of vehicle.

In countries, like Argentina, a percentage of money collected as insurance fees is directed to Agencia Nacional de Seguridad Vial (ANSV) – the nodal agency in charge of road safety.
The Argentinian government passed a law creating the nodal agency responsible for road safety – Agencia Nacional de Seguridad Vial (ANSV). It was created as a decentralized entity with sustained funding (1 percent of all vehicle insurance premiums) and a legal mandate to manage road safety across the country. Following its creation, the Argentinian Government sought the World Bank’s financial and technical support to address challenges in its Road Safety Project such as achieving coordination and accountability in a federal system and maintaining social and political support.

In addition to national road safety funds, there are global programs funded by international organizations such as the UN, and different philanthropies and donors.

The United Nations Road Safety Fund (UNRSF) was established in 2018 as a UN Multi-Partner Trust Fund. It deals with the Sustainable Development Goals (SDG) targets to halve the number of global deaths and injuries from road traffic accidents; and to provide access to safe, affordable, accessible and sustainable transport systems as well as improve road safety for all, respectively. This fund aims to finance actions in low- and middle-income countries to:

- Substantially reduce death and injuries from road crashes
- Reduce economic losses resulting from these crashes

Similarly, the Bloomberg Initiative for Global Road Safety (BIGRS) is multi-country initiative that aims at reducing fatalities and injuries from road traffic crashes in low- and middle-income countries and cities by strengthening road safety legislation at national level and implementing proven road safety interventions at city level. These chosen cities will be receiving the following assistance:

- Senior-level, full-time staff to work within city governments on their road safety initiatives for up to 5 years
- Comprehensive technical assistance from the world’s leading road safety organizations
- Training for police officers and other relevant city staff
- Support to create hard-hitting mass media campaigns

During 2010-2019, it has committed $125million each in two phases, and has committed an additional $240 million for a renewed Phase 3 (2020-2025).
Tie the diverse interventions needed to ‘Make TOD happen’ from prioritizing projects, to capacity building and monitoring.
ABOUT IMPLEMENT

Developing successful TOD projects requires mobilizing a multitude of resources, partnerships and innovative implementation mechanisms that help leverage public sector investment in transit and infrastructure with private sector development. The ‘Implement’ stage is a discussion of programs and interventions that can convert plans into reality.

Once the visioning and detailed planning stage is completed, the stage to turn ideas into reality starts to take shape. Similar to any urban transformation project, the implementation of TOD projects typically takes place over 10-20 years, with public and private sector interests being constantly balanced. Developing successful TOD projects requires mobilizing a multitude of resources, forging partnerships, balancing trade-offs, complex negotiations, and constant monitoring to ensure success.

This section builds on the previous research related to TOD implementation, that suggests a sequencing of implementation steps with a caveat that the steps typically do not follow a linear process, but instead is often an iterative process with continuous feedback loops. Two key sources - Regenerating Urban Land (Amirtahmasebi, et al. 2016) and Module 6: Sequencing for Implementation of the TOD Corridor Course (World Bank Group and WRI 2015) - inform the key components of the TOD Implementation Framework:

- Monitoring and Evaluation
- Phasing Strategy
- Capacity Building

The impacts of key planning and policy interventions can never be anticipated fully and accurately. The process of monitoring and evaluation allows an agency to learn and understand the comparative ability of specific strategies to cause change in their respective context. Key Performance Indicators (KPI) provide a way for cities to measure the performance of their TOD initiatives against larger, global standards and outcomes. Smaller TOD projects need individual monitoring and evaluation frameworks that should be developed based on the specific project objectives. A number of performance indicators for TOD were considered in deriving the Monitoring and Evaluation Knowledge Product, including the TOD Standard (ITDP 2017), Module 8: Monitoring and Evaluation of the TOD Corridor Course - (World Bank Group and WRI 2015), and the LEED v4 for Neighbourhood Development (USGBC).

Capacity building has become one of the recurring themes in institutional literature and in the agenda of public administrations, international agencies, government and nongovernment organizations. The United Nations Development Programme (UNDP) sees capacity development as the process through which individuals, organizations and societies obtain, strengthen and maintain the capability to set and achieve their own development objectives over time. The UNDP Primer on Capacity Development (UNDP 2009) has informed the Capacity Development Knowledge Product.

Implementing TOD is both a time and resource-intensive undertaking. As such, a phased approach to transit-oriented development is key to success over the long-term. Phasing allows for development to be scheduled based on factors such as overall time frame, resource availability, priority to the city, possible risks and the required stakeholder responsibilities. ‘Quick Wins’ are generally the first activities to take place in a TOD, as they bring about positive changes for a city with little risk or financial/time constraints. This allows the, often controversial, transit-oriented development to enhance public buy-in and reputation. Consequently, activities that are higher risk and financially or resource intensive are scheduled for the long-term, providing a buffer for contingencies, potential resource delays and budgetary constraints.

While some of the components identified above are covered in previous frameworks, products for the ‘Implement’ Framework, presented in this section, are repurposed to be applied in the context of World Bank client cities, with an emphasis on highlighting the challenges faced from a political, regulatory, enforcement, financing, and other factors related to monitoring and evaluation of TOD projects, establishing Key Performance Indicators (KPI’s) for TOD projects, project phasing and capacity building.
ANALYTICAL

- **IM-A01** Monitoring and Evaluation *(Spreadsheet + User Guide)*
- **IM-A02** TOD KPI *(Spreadsheet + User Guide)*

COMMUNICATION

- **IM-C01** Applying Safe Access in TOD Areas *(Ref Doc.)*

‘HOW-TO’ GUIDES

- **IM-H01** How To Undertake Capacity Building *(Step-by-Step Guide)*
- **IM-H02** How To Develop A TOD Phasing Strategy *(Step-by-Step Guide)*

PROCUREMENT

- **IM-P01** Capacity Building Terms Of Reference *(TOR Template)*
REFERENCES

IM-A01

MONITORING AND EVALUATION FRAMEWORK

Analytic methodology to define the appropriate monitoring and evaluation framework for the TOD project or program

Type: Spreadsheet + User Guide
ABOUT THE MONITORING AND EVALUATION TOOL

PURPOSE

The impacts of key planning and policy interventions can never be anticipated fully and accurately. The process of monitoring and evaluation allows an agency to learn and understand the comparative ability of specific strategies to cause change in their respective context.

Monitoring primarily refers to monitoring “outputs” of a plan, policy, or program, with respect to defined targets. Project outputs are the particular goods or services provided by a project intervention, for example, the length of sidewalks constructed is a project output.

Evaluation primarily refers to evaluating “outcomes” of a plan, policy, or program, with respect to idealistic goals. Project outcomes measure the extent to which a project achieves a long-term, wide-scale objective, for example in the case of the same project, the increase in the modal share of people walking to transit stations is a project outcome.

This Monitoring and Evaluation Framework Knowledge Product provides guidance on defining a framework for project-specific needs. It illustrates the potential methodology to define the baseline, followed by collecting the relevant data to compare using analytic means. It also includes typical indicators that can be used to construct a project-specific framework.

Disclaimer: The Transit-Oriented Development Implementation Resources & Tools knowledge product is designed to provide a high-level framework for the implementation of TOD and offer direction to cities in addressing barriers at all stages. As the context in low and middle-income cities varies, the application of the knowledge product must be adapted to local needs and priorities, and customized on a case-by-case basis.

© 2021 International Bank for Reconstruction and Development / The World Bank

References

HOW TO USE THE TOOL?

This Tool should be read in combination with an Excel Spreadsheet that contains a series of project output and outcome indicators that will help monitor and evaluate the performance of projects against TOD goals.

The overall framework is largely organized along the lines of the WRI and World Bank generated Corridor level Transit-Oriented Development Course and uses indicators from the ITDP TOD Standard v.3.0, and the LEED v4 for Neighbourhood Development. The TOD benefits measured using this framework are related to Mobility, Social, Environmental, and Economic Benefits. Project-specific project outputs and outcomes would need more detailed indicators, which would need to be developed as per project specifics. For each indicator, the framework provides methods of measuring, the scale of application, the best visualization method, and the expected TOD goal.

Some examples of how the monitoring and evaluation framework can be used for project-specific needs are given below:

- TOD Planning Project: Use the framework to monitor if the agency is performing the required planning tasks.
- Implementation of a Transit Construction Project: Use the framework to monitor if the agency is prioritizing key TOD requirements and causing minimum damage to the existing public environment.
- Implementation of a Parking Pricing Policy: Use the framework to evaluate the impact of the policy on the pedestrian environment and travel behavior.
- Evaluating Statutory Plans: Use the framework to evaluate the impact of the plans on the ability to plan for TOD.
DEFINE THE FRAMEWORK

TOD PRINCIPLES AND KPIs

REFLECT AND INFORM THE PLANNING PROCESS

DEFINE THE FRAMEWORK

EVALUATING OUTCOMES

DEFINE DESIRED OUTCOMES
HOW SHOULD THE PROJECT IMPACT LIVABILITY?

DEFINE INDICATORS
SPECIFIC, MEASURABLE, RELEVANT

DEFINE MEASURES OF SUCCESS
BENCHMARKS, STANDARDS

DEFINE EVALUATION TIME FRAME

MONITORING PROGRESS

DEFINE IMPLEMENTATION GOALS AND PROJECT OUTPUTS
WHAT SHOULD THE POLICY OR PROJECT ACHIEVE?

DEFINE TARGETS
SPECIFIC, MEASURABLE, TIME-BOUND

DEFINE MEASURES OF PROGRESS
INCREASE, DECREASE, % ACHIEVEMENT

DEFINE MONITORING FREQUENCY
HOW TO MEASURE PERFORMANCE

THE IMPORTANCE OF ASSESSING AVAILABILITY AND QUALITY OF DATA TO INFORM THE MONITORING AND EVALUATION FRAMEWORK

The process of measuring is critical to ensure successful outcomes from a monitoring and evaluation framework, which is influenced largely by the availability and quality of data. It is extremely important to understand the prevailing data limitations in the context before defining the monitoring and evaluation framework. Overestimating the ability of an agency to collect reliable data can compromise the effectiveness of the monitoring and evaluation framework to offer constructive lessons for the future.

DEVELOPING PROXY INDICATORS

Where data availability for a particular target or indicator is unreliable or is of poor quality, it is recommended to utilize proxy indicators that allow for reliable prediction of the performance against the desired outcome.

SAMPLE FRAMEWORK

Two sample frameworks are suggested on the next page. Use the criteria from the Excel Spreadsheet to populate any one of the two frameworks, as preferred for the project goals.
MOBILE AND TRAVEL BEHAVIOUR

<table>
<thead>
<tr>
<th>Features</th>
<th>Yes</th>
<th>No</th>
<th>N/A</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>Desired Outcome 01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A2</td>
<td>Desired Outcome 02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A3</td>
<td>Desired Outcome 03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sub - Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This framework allows for a qualitative measurement of the OVERALL performance of a TOD project or program, with respect to desired goals or outcomes.
IM-A02

KEY PERFORMANCE INDICATORS FOR TOD

This Knowledge Product is intended to be used as an interactive Excel spreadsheet. These tools are available online on the GPSC’s TOD website and the World Bank’s TOD CoP website. The reader should first review the summary presented below before using the spreadsheet tool.
ABOUT THE TOD KEY PERFORMANCE INDICATORS

PURPOSE

This TOD Key Performance Indicator (KPI) tool provides a way for cities to measure the overall performance of their TOD initiatives against larger, global standards and outcomes. Smaller TOD projects need individual monitoring and evaluation frameworks that should be developed based on the specific project objectives (Refer IM-A01). This tool allows a city to measure how the city is performing as a whole, with respect to TOD.

Structurally it follows the same organization as the Monitoring and Evaluation Framework Tool, along with the Corridor-level TOD Course (WRI and World Bank 2015), including Mobility, Socio-Economic, and Environmental Benefits.

The ratings for each indicator are simplified from the ITDP generated TOD Standard v3.0 (ITDP 2017).

Disclaimer: The Transit-Orientated Development Implementation Resources & Tools knowledge product is designed to provide a high-level framework for the implementation of TOD and offer direction to cities in addressing barriers at all stages. As the context in low and middle-income cities varies, the application of the knowledge product must be adapted to local needs and priorities, and customized on a case-by-case basis.

© 2021 International Bank for Reconstruction and Development / The World Bank

References

THE TOOL INCLUDES:

- USER GUIDE
- MOBILITY ASSESSMENT
- SOCIO-ECONOMIC ASSESSMENT
- PHYSICAL ENVIRONMENT ASSESSMENT
- SUMMARY SHEET
- ASSESSMENT SCORING

Within EACH ASSESSMENT TAB, a list of key performance indicators are provided under three main CRITERIA:

A. SUPPORTIVE PLANNING FRAMEWORK: Under this criteria, the tool evaluates the existence and effectiveness of key planning instruments required to enable change.

B. PERFORMANCE OF INVESTMENTS: Under this criteria, the tool evaluates the ability and commitment of public and private investment to create the kind of change desired. This includes providing more mobility options, improving the public realm, improving the value of land and increasing accessibility for poorer populations.

C. DESIRED OUTCOMES: Under this criteria, the tool evaluates the impact of TOD initiatives on the larger behavioral aspects and quality of life for all citizens.
HOW TO USE THE TOOL?

01 ENTER INPUTS IN ASSESSMENT TABS

EACH ASSESSMENT TAB consists of indicators and measures. The indicators include the parameters that must be considered in the performance evaluation. The measures include a description of how each indicator should be rated.

Read the measure carefully and select the rating that should be applied to each indicator. While most indicators are measured qualitatively, some quantitative measures are also included.

02 VIEW RESULTS IN THE SUMMARY TAB

The Assessment Scoring Tab is where the raw calculations of the TOD performance are determined. These automatically populate **THE RESULTS CHART** in the Summary Tab as shown below.
Ciudad Cayala, Guatemala City
IM-C01

APPLYING ‘SAFE ACCESS’ IN TOD AREAS

Activity designed to identify and prioritize strategies for safe access in TOD

Type: Reference Document

© 2021 The World Bank
INTRODUCTION

OBJECTIVE

To identify concerns around a given station area, and develop implementable solutions based on safe access principles, using an interactive ‘hands-on’ activity involving all stakeholders.

The Safe Access Manual – Safe Access to Mass Transit Stations in Indian cities (WRI India, 2014) aims at addressing challenges within a station area. It outlines five principles which define the ‘Safe Access’ approach:

1. Pedestrian and Cyclist Priority
2. The Public Realm
3. Feeder Services
4. Parking Management
5. Safety and Security

These principles are chosen such that people of all ages, gender and physical abilities are given the highest priority and are able to make the most of the public services provided to them.

[Refer to EN-C02 ‘TOD Role-out Game’ for detailed description and understanding of the five principles of Safe Access]

DOWNLOAD SAFE ACCESS MANUAL HERE

Or Visit the link below to download the manual.
www.wrirosscities.org/research/publication/safe-access-mass-transit-manual
FORMAT: Design charrette

TYPICAL TIME: This session typically takes 1.5-2 hours.
As it involves developing interventions around a station area, it is advisable to include a station area visit beforehand. This generally would take 2.5-3 hours. It is however optional, and can be replaced by presentation about the pre-selected station area.

SESSIONS:
The game includes two sessions:
» Presentation of Safe-Access principles
» Formulating key strategies and interventions for the station area based on the five principles of Safe Access

AUDIENCE(S):
A list of stakeholders (but not limited to) of the station area who can participate are mentioned below:
» Residents and station area users
» Representatives of residents’ associations, shop associations, market associations, business owners and others
» Institutional representatives, i.e. schools, colleges, hospitals and others
» Traffic and transport representatives, i.e. traffic police, wardens, etc.
» Elected representatives, decision makers and experts in the area
» Government officials

Note: The participants of the activity should be chosen, such that they represent the diversity of the population/users in the station area. This can be achieved by identifying the nature of activities in the station area and identifying representatives from the same.

IDEAL ENGAGEMENT SIZE:
30-40 participants. Minimum 12.
HOW TO PLAY

01 CHOOSING THE STATION
Identify a prime mass transit station (i.e. a Bus Rapid Transit station or a metro station) which has a high inflow of users, with a vibrant mix of land use and other activities.

02 BASE MAP
This map showing important landmarks serves as a reference for the participants, to better identify issues and strategies for the chosen station area with two circles: one of 150m radius (core area) and the second one of 1km radius (buffer area). An additional circle with 1250m is marked on the map to set a context of the surroundings.

03 ‘SAFE ACCESS’ PRESENTATION
A presentation is made to the participants to set out the principles and strategies of safe access.
The coordinators also explain the role-play activity to the participants.

04 STATION AREA VISIT
The moderators and participants visit the station area to gain a first-hand experience of safe access issues and opportunities in the station area, by using the mass transit and feeder systems present and walking in the station area.
In case there is no station area visit, organizers should select a station area themselves – preferably within the same city, and give a short presentation about the site explaining challenges and opportunities within the station area.

05 HANDS-ON ACTIVITY
The groups choose a principle from the five safe access principles. Then the participants are asked to identify issues and opportunities for the given station area, based on their chosen principle.
The participants then collectively identify short term and long term strategies for the station area based on the chosen principle and then prioritize them.

06 PRESENTATION OF STRATEGIES
At the end of the session, the teams present their strategies which is followed by any ‘Question and Answer’ session. After presentations by all the groups, top 10 strategies are collectively chosen by the participants for the station area.
HOW TO UNDERTAKE THE CAPACITY BUILDING PROCESS

Guide to building the institutional arrangement for TOD projects or programs

Type: Step-by-Step Guide
ABOUT THE IMPLEMENTATION TOOL

PURPOSE
Capacity building is emerging as one of the most critical challenges in World Bank client cities. The lack of institutional and technical capacity has resulted in the improper implementation of large-scale projects including TOD interventions. Capacity building refers to the process of education and optimizing the skills of individuals and institutional support of one or more organizations.

This Knowledge Product is informed by the Capacity Building Primer developed by the United Nations Development Programme (UNDP 2009).

Disclaimer: The Transit-Orientated Development Implementation Resources & Tools knowledge product is designed to provide a high-level framework for the implementation of TOD and offer direction to cities in addressing barriers at all stages. As the context in low and middle-income cities varies, the application of the knowledge product must be adapted to local needs and priorities, and customized on a case-by-case basis.

© 2021 International Bank for Reconstruction and Development / The World Bank

UNDP’s APPROACH TO CAPACITY DEVELOPMENT
UNDP sees capacity development as the process through which individuals, organizations and societies obtain, strengthen and maintain the capability to set and achieve their own development objectives over time. It involves employing, educating and empowering individuals, leaders, organizations and societies in order to help them achieve the desired targets.

In particular, the UNDP’s approach stresses that “developing countries should own, design, direct, implement and sustain the process themselves”

OBJECTIVES OF CAPACITY BUILDING
In keeping with the UNDP’s approach to capacity building, the following results can be derived from successful capacity building applications in World Bank client cities:

- Make the most of local resources—people, skills, technologies, institutions—and builds on these
- Favor sustainable change
- Take an inclusive approach in addressing issues of power and inequality in relations between rich and poor and mainstream and marginalized (countries, groups and individuals)
- Emphasize deep, lasting transformations through policy and institutional reforms
- Value ‘best fit’ for the context over ‘best practice’; as one size does not fit all

References

Developing capacity is a process of growth and evolution. The capacity development process uses a five-step cycle to organize programming work:

1. **STEP 1:** Engage Stakeholders on Capacity Development
2. **STEP 2:** Assess Capacity Assets and Needs
3. **STEP 3:** Formulate a Capacity Development Response
4. **STEP 4:** Implement a Capacity Development Response
5. **STEP 5:** Evaluate the Capacity Development
Implementing TOD projects at any scale requires the coordination of multiple public and private sector entities. However, too often, these sectors work in silos and fail to align efforts to achieve common goals. Identifying the agencies that would have a role in a TOD project, and their effective collaboration, is essential to successfully plan for and implement TOD and ensure safety for all users.

02A
ASSESS THE TECHNICAL CAPACITY OF AGENCIES

Assess the gaps in the capacity of the technical and management staff with regard to:

- INSTITUTIONAL ARRANGEMENT
- LEADERSHIP
- KNOWLEDGE
- ACCOUNTABILITY

Actions for successful implementation of the TOD principles by concerned agencies should be assessed as fully realized, partially realized, and not realized.

For greater details, refer to 02A

02B
ASSESS FINANCIAL CAPACITY OF AGENCIES

One of the biggest barriers to TOD planning in cities is the lack of adequate budgets to hire and retain the requisite technical capacity. It is therefore essential to assess the financial capacity of the organization in order to suggest viable capacity building responses. Additionally, funding available with the institution should be assessed as well to determine implementation of capital projects, particularly for road safety improvements.

For greater details, refer to 02B

03
FORMULATE THE CAPACITY BUILDING RESPONSE FOR TECHNICAL CAPACITY

Strategies to augment the current staff capacity with regard to TOD practices and planning processes should be undertaken. The type of shortages should be identified for potential responses.

- INSTITUTIONAL ARRANGEMENT
- LEADERSHIP
- KNOWLEDGE
- ACCOUNTABILITY

For greater details, refer to 03

04
DEFINE CAPACITY BUILDING PRIORITIZATION NEEDS DEPENDING ON CITY NEEDS

Prioritize the capacity building response based on the urgency of the needs.

- IMMEDIATE NEED
- MID-TERM NEED
- LONG-TERM NEED

05
CREATE A 5-YEAR RESOURCING PLAN TO ENSURE CONTINUED FINANCIAL SUPPORT FOR CAPACITY BUILDING

It is essential to identify the required budgetary needs and prepare a 5-year plan, to ensure committed and continued support to the resourcing plan.
2A ASSESS THE TECHNICAL CAPACITY OF AGENCIES

HOW TO ASSESS TECHNICAL CAPACITY?

INSTITUTIONAL ARRANGEMENTS
- Are there existing institutions, such as line agencies or special purpose vehicles, which are used to convene multiple sectors around a development project?
- Does the agency have an institutional mandate to enable TOD?
- Does the agency have a larger vision of ensuring road safety and reduce crashes?
- Do these entities engage private sector and civil society groups?

KNOWLEDGE
- What is the number of technical resources in the organization?
- What are their qualifications?
- How familiar are they with TOD concepts and planning processes?
- Do they have experience in designing complete streets?
- Are they aware of safe systems approach in enabling road safety?

ACCOUNTABILITY
- Is there a mechanism to ensure accountability?
- What is the quality of enforcement?

LEADERSHIP
- Is the leader aware of and supportive of TOD?
- Is there an existing political will for TOD?
- Is the leader aware of road safety concerns in urban areas?
- Is there a political will for implementing road safety strategies?

2B ASSESS THE FINANCIAL CAPACITY OF AGENCIES

HOW TO ASSESS FINANCIAL CAPACITY?
- Do they have financial capacity to hire the required resources?
- Do they have local/municipal financing means to fund TOD capital investments?
- Do they have budget allocated to conduct road safety studies and implement safe system infrastructure?
- Do they have access to external sources of funding for TOD and road safety?
- How well do current policy and regulatory tools foster and incentivize TOD?
- Are there any incentives for developing non-motorized infrastructures and ensuring road safety?
- What funding sources can be unlocked over the course of the investment?
The existing capacity is assessed (in Step 2) to identify the gaps and shortages. These are overcome by forming capacity development responses and can collectively cater to immediate needs, mid-term needs and long-term needs.

HOW TO FORMULATE A RESPONSE?

INSTITUTIONAL ARRANGEMENTS

<table>
<thead>
<tr>
<th>TYPES OF SHORTAGE</th>
<th>POTENTIAL TYPE OF RESPONSES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lack of Single Nodal Agency</td>
<td>• Formulate an agency with dedicated roles and responsibilities for implementing a TOD Project</td>
</tr>
<tr>
<td>Lack of mandate for road safety in TOD areas</td>
<td>• Create a larger city vision and mandate for road safety in TOD areas.</td>
</tr>
<tr>
<td></td>
<td>Having a larger vision will ensure that it is included in future plans, policies and guidelines across various agencies and ensure necessary steps are taken towards it.</td>
</tr>
<tr>
<td>Lack of Coordination</td>
<td>• Set up a TOD Organization / Task Force</td>
</tr>
</tbody>
</table>

LEADERSHIP

<table>
<thead>
<tr>
<th>TYPES OF SHORTAGE</th>
<th>POTENTIAL TYPE OF RESPONSES</th>
</tr>
</thead>
<tbody>
<tr>
<td>No knowledge of TOD or safe systems approach to ensure road safety</td>
<td>• Meeting/Workshops with international experts/leading think tanks, such as WBCoP, ITDP and WRI</td>
</tr>
<tr>
<td></td>
<td>• Leadership training including site visits</td>
</tr>
<tr>
<td>No political support</td>
<td>• Gather political support to include road safety as a priority by generating public support around road safety in high density and TOD areas.</td>
</tr>
</tbody>
</table>

KNOWLEDGE

<table>
<thead>
<tr>
<th>TYPES OF SHORTAGE</th>
<th>POTENTIAL TYPE OF RESPONSES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insufficient skilled resources</td>
<td>• Internally hire resources with TOD skill sets, experience in land use planning and street design, and knowledge of safe systems approach.</td>
</tr>
<tr>
<td></td>
<td>• Hire a consultancy for a TOD-specific project who have prior experience in road safety and street design.</td>
</tr>
<tr>
<td></td>
<td>• Set up a TOD Knowledge Centre</td>
</tr>
<tr>
<td>Insufficient TOD and road safety understanding</td>
<td>• Conduct Monthly Training Workshops for the staff in collaboration with NGOs, institutions, or Think Tanks</td>
</tr>
<tr>
<td></td>
<td>• Set up a TOD Knowledge Centre</td>
</tr>
</tbody>
</table>

ACCOUNTABILITY

<table>
<thead>
<tr>
<th>TYPES OF SHORTAGE</th>
<th>POTENTIAL TYPE OF RESPONSES</th>
</tr>
</thead>
<tbody>
<tr>
<td>No systematic mechanism to identify liable/ responsible personnel</td>
<td>• Set up horizontal and vertical mechanisms to evaluate progress on TOD</td>
</tr>
<tr>
<td></td>
<td>• Conduct sensitization program with enforcement agencies</td>
</tr>
</tbody>
</table>

*For greater detail, Refer to [EN-H01](#) How to build a TOD Institution

TOD Knowledge Center: An in-house expert pool of practitioners, researchers and consultants including road safety experts, along with existing technical staff, to collectively build the capacity of the agency for a TOD project.
IM-H02
HOW TO DEVELOP A TOD PHASING STRATEGY

Methodology to help develop phasing strategies for a TOD project or program

Type: Step-by-Step Guide
Implementing TOD is both a time and resource-intensive undertaking. As such, a phased approach to transit-oriented development is key to success over the long-term. Phasing allows for development to be scheduled based on factors such as overall time frame, resource availability, priority to the city, possible risks and the required stakeholder responsibilities. ‘Quick Wins’ are generally the first activities to take place in a TOD, as they bring about positive changes for a city with little risk or financial/time constraints. This allows the transit-oriented development to enhance public buy-in and reputation. Consequently, activities that are higher risk and financially or resource intensive are scheduled for the long-term, providing a buffer for contingencies, potential resource delays and budgetary constraints.

Disclaimer: The Transit-Orientated Development Implementation Resources & Tools knowledge product is designed to provide a high-level framework for the implementation of TOD and offer direction to cities in addressing barriers at all stages. As the context in low and middle-income cities varies, the application of the knowledge product must be adapted to local needs and priorities, and customized on a case-by-case basis.

© 2021 International Bank for Reconstruction and Development / The World Bank

PURPOSE

This tool aims to assist with the creation of a phasing strategy for TOD that accurately represents city priorities, the resource considerations at play and the possible risks during each stage of activity. Establishing ‘quick wins’ in the short-term and achieving overall goals and visions in the long-term will become possible through the scheduling resources available with this tool. An overall phasing strategy, guided by the underlying resource, budgetary and time constraints, should be determined through the step-by-step process provided. An effective phasing strategy for the implementation of TOD must include risk management strategies that can avoid common pitfalls. (Carlton and Fleissig 2014).

References

TIME FRAME

The total time required to complete each activity must be estimated as shown below:

<table>
<thead>
<tr>
<th>Stage No.</th>
<th>Time estimation</th>
<th>Required time buffer</th>
<th>Total time required</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Define the number of hours/days required to complete each stage)</td>
<td>(Estimate buffer time to be prepared for any contingencies)</td>
<td>(Sum of the previous two columns)</td>
</tr>
<tr>
<td>S1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RESOURCE IMPLICATIONS

The human resource and financial requirements for every stage of the activity must be taken into account while scheduling the activity.

<table>
<thead>
<tr>
<th>Stage No.</th>
<th>Resources</th>
<th>Budget Responsible</th>
<th>Risk Management**</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Define the financial resources and/or number of hours/days required per annum to sustain this stage)</td>
<td>(Specify which organization will provide the required human and/or financial resources)</td>
<td>(Describe the risks for each stage and list out measures that are set in place, in order to proactively manage them)</td>
</tr>
<tr>
<td>S1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

** Risk Management:** Some common risks associated with TOD implementation (Carlton and Fleissig 2014) include:

1. Components of affordable housing and placemaking investments increase the cost and resource ambiguities associated with implementation.
2. Redevelopment or land amalgamation projects tend to overstep timelines because of complexities related to a large number of stakeholders.
3. Higher level planning decisions are not always responsive to market trends and demands, which may increase the time taken for projects to be adopted for development. This may also cause miscalculations of finance needs.
4. Market conditions may change during the process of TOD implementation. News of TOD planning can cause market speculation that can change market conditions also.
5. Feasibility studies may miscalculate the viability of TOD projects. This may not bring in the returns envisioned in the initial assessment and lead to derailment of the financing order.
6. Other parallel activities such as infrastructure investments can influence the implementation of dependent TOD activities.
7. It is important to know where gap funding may be needed, so as to keep the project on track.
Many smaller activities need to be identified and listed, specifically related to addressing the desired outcomes of the TOD Plan. For example, improving pedestrian mobility requires activities such as widening of sidewalks, improving crossings, building pedestrian facilities, etc. As such, each activity should be listed against the TOD desired outcome.

‘Quick Win’ Activities should be identified at this stage. These are projects that have minimal risks associated with them and are capable of assured success. These projects help to set the stage for the rest of the project, enabling greater public acceptance.

Define the stages that each activity has to go through from inception to completion, such as pre-planning, planning and design, implementation and monitoring. For each stage, resource requirements vary and these need to be considered in Step 4.

For each stage within each activity, define the amount of time required and the resource and budgetary needs. Ensure that a buffer is considered for contingencies, to avoid delay or cash flow issues during subsequent stages of the activity.

Scheduling and phasing of activities should be defined based on the following:

- **Prioritization** depending on immediate needs, ease of implementation or definition of ‘Quick Win’ projects.
- **Resource considerations** such as availability of equipment or staff. The Critical Path Method or similar should be used to appropriately plan resource distribution
- **Possibility of risks** during each stage of the activities. Risks should be minimized through scheduling in the appropriate season or similar.

Define roles and responsibilities clearly for each activity, including planning, implementation and post-implementation responsibilities. Identify regular accountability mechanisms to ensure the timely delivery of the project.
Create a detailed list of activities required to complete the project and specify the following for each of them:

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>Strategies</th>
<th>Activity</th>
<th>Time frame for each activity</th>
<th>Budget Requirement</th>
<th>Resource Requirement</th>
<th>Agency/Organization Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Input the overall outcome required)</td>
<td>(Define the broad strategies required to achieve the desired outcome)</td>
<td>(Describe the activity type. For eg. Project Program Policies)</td>
<td>(Total time duration to complete each activity including all stages)</td>
<td>(Financial requirement to sustain each activity)</td>
<td>(Resource requirement for each activity)</td>
<td>(Organization responsible for planning and implementation of this activity)</td>
</tr>
</tbody>
</table>

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SCHEDULING AND PHASING

Taking into consideration the time frame for each activity, financial and human resource availability and the risks involved in each activity, the project must be scheduled and phased as shown below. It must take into account activities that have the possibility to be implemented in parallel and the activities that require the completion of a previous task before augmentation.

<table>
<thead>
<tr>
<th>Activity No.</th>
<th>PHASE 1</th>
<th>PHASE 2</th>
<th>PHASE 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Y1</td>
<td>Y2</td>
<td>Y3</td>
</tr>
<tr>
<td>1</td>
<td>S1</td>
<td>S2</td>
<td>S3</td>
</tr>
<tr>
<td>2</td>
<td>S1</td>
<td>S2</td>
<td>S3</td>
</tr>
<tr>
<td>3</td>
<td>S1</td>
<td>S2</td>
<td>S3</td>
</tr>
<tr>
<td>4</td>
<td>S1</td>
<td>S2</td>
<td>S3</td>
</tr>
<tr>
<td>5</td>
<td>S1</td>
<td>S2</td>
<td>S3</td>
</tr>
</tbody>
</table>

Potential risks and mitigation strategies
IM-P01
CAPACITY DEVELOPMENT STRATEGY TERMS OF REFERENCE

Template to outsource capacity building and training exercises for spreading awareness about TOD

Type: TOR Template

© 2021 The World Bank
BACKGROUND

The Terms of Reference for Capacity Development for TOD should provide the following background material:

A. **Existing Institutional Structure**: The Background section should provide a snapshot of the existing institutional set-up for which the capacity development strategy is being formulated.

B. **City Profile**: The Background section should also provide information on the city for which the institutional structure exists. This includes details such as city population, economy, municipal jurisdictions, transit system and other municipal services.

C. **Bibliography of Reference Laws and Acts**

D. **List of Project Stakeholders**

OBJECTIVE OF THE ASSIGNMENT

The objective of this assignment is to conduct a technical capacity gap and needs assessment of relevant organizations involved in transportation and land use planning and related subjects in the City. This assignment will lead to the preparation of a technical capacity development strategy and action plan for building technical capacities in the respective organizations with respect to TOD planning, road safety, and supplementary activities.

SCOPE OF ACTIVITIES

The scope of activities for the Capacity Development Strategy Study primarily consists of the tasks described below. The proposer is encouraged to provide suggested refinements to the work plan and schedule based upon experience with similar economic and market studies, and in compliance with national and state policies, where applicable.

1. **Project Initiation**: The selected Consultant will first and foremost review relevant background material provided by the client on the existing institutional framework in the city, before scheduling a kick-off meeting. At the meeting, the Consultant will present their understanding of the consultancy, as well as the proposed methodology and guiding framework. The preliminary identification of key stakeholders should be conducted at this meeting. Based on the discussion, the Consultant will produce an Inception Report, comprising of the proposed approach including specific method(s) and guiding principles; the final proposed work plan; and identification of issues crucial to the viability of the consultancy. The Inception Report must propose guiding values for technical capacity, for eg. Number of urban planners per 1000 population, against which technical capacity shall be assessed in Task 2.

 • **Deliverables**: Inception Report including proposed approach, methods and guiding principles, work plan and identified issues and limitations.

2. **Technical Capacity Assessment**: The Consultant will review relevant past assessments undertaken in the City, if any, to gain insight on technical capacity trends in the city or organization. The Consultant will then, as per the proposed methodology, conduct surveys, meetings or workshops to summarize the current strengths and capacity gaps of organizations under consideration, with respect to institutional arrangement, leadership, knowledge and accountability. The assessment parameters will include number of staff, operational procedures related to their mandates, technical expertise against the departments’ respective mandates, and measures of accountability. In particular, the Consultant must assess the familiarity and understanding of TOD, urban street design and concepts of road safety including safe system approach among the leaders and technical staff in the organization. The Consultant must also assess the channels of communication to determine multi-stakeholder coordination challenges, if any. The Consultant will develop a baseline assessment, against which the success of the capacity building strategy will be measured at the end of the project.

 • **Deliverables**: Technical Capacity Assessment Report including identification of capacity gaps and baseline assessment.
3. **Technical Capacity Development Strategy and Action Plan:** Based on any technical capacity gaps identified in the final Technical Capacity Assessment Report, the Consultant will prepare specific and practical strategies and associated activities to address such gaps within the expected time-frame (i.e. in-country training delivered by a think-tank, formulating a TOD hand-holding unit led by a TOD expert, workshops to disseminate knowledge about safe systems approach and safe access to mass transit led by relevant road safety experts and urban designers, sending staff members to an international conference, hiring a private consulting firm to undertake project-specific planning, transfer of employees to a technical agency to obtain relevant skills on-the-job, a short course at a regional university, etc). The Consultant will be expected to study the feasibility of the strategies proposed with respect to cost and availability, before adding them to the Action Plan. The Consultant will prepare a Capacity Development Strategy and Action Plan Report including the conclusions of the capacity needs assessment and the proposed capacity development approach for each concerned government organization and department. Building on the baseline assessment, a monitoring framework should be identified with proposed indicators, timelines and targets.

- **Deliverables:** Capacity Development Strategy and Action Plan including proposed capacity development responses to existing gaps, and time-frame for implementation.

DELIVERABLES

<table>
<thead>
<tr>
<th>TASK</th>
<th>DELIVERABLE</th>
<th>TIMELINE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Inception Report</td>
<td>M + 2 weeks</td>
</tr>
<tr>
<td>2</td>
<td>Technical Capacity Assessment Report</td>
<td>M + 2 months</td>
</tr>
<tr>
<td>3</td>
<td>Capacity Development Strategy and Action Plan</td>
<td>M + 3 months</td>
</tr>
</tbody>
</table>

QUALIFICATION OF CONSULTANTS

The Consultant Team must have experience in at least:

- A. One similar Capacity Development Study

 OR

- B. At least two studies or project reports which included at least two of the following components: Technical Capacity Assessment, Planning Framework formulation, TOD Planning, complete street design (including road safety aspects).

The Consultant Team must include the following key expertise:

<table>
<thead>
<tr>
<th>KEY EXPERTS</th>
<th>YEARS OF EXPERIENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Project Manager and Senior Capacity Building Expert</td>
<td>15 years</td>
</tr>
<tr>
<td>2 Human Resource Specialist</td>
<td>10 years</td>
</tr>
<tr>
<td>3 TOD Specialist</td>
<td>10 years</td>
</tr>
<tr>
<td>4 Road Safety Expert/ Complete Street Designer</td>
<td>8-10 years</td>
</tr>
</tbody>
</table>

Disclaimer: The Transit-Orientated Development Implementation Resources & Tools knowledge product is designed to provide a high-level framework for the implementation of TOD and offer direction to cities in addressing barriers at all stages. As the context in low and middle-income cities varies, the application of the knowledge product must be adapted to local needs and priorities, and customized on a case-by-case basis.

© 2021 International Bank for Reconstruction and Development / The World Bank
CASE STUDIES

COMPILATION OF GOOD AND INNOVATIVE PRACTICES
LEVEL 1 SCREENING

A comprehensive list of cities from low-middle income countries were shortlisted as potential candidates for case studies. This list of case studies was derived from:

- Case studies already included in World Bank publications/workshops and presentations
- Part of GPSC/World Bank-identified city TOD list
- Representative of the TOD framework as well as geographic distribution:
 - Scale- City/Corridor/Station
 - Context- Urban/Suburban/Greenfield
 - Mode of higher order transit- BRT/MRT/Heavy Rail
 - Size of city- Large and medium-sized cities (Tier 1 and Tier 2)

LIST OF BEST PRACTICE CITIES

1. Mexico City, Mexico
2. Bogota, Colombia
3. Lima, Peru
4. Recife, Brazil
5. Curitiba, Brazil
6. Mumbai, India
7. Delhi, India
8. Hubli-Dharwad, India
9. Nanchang, China
10. Shenzhen, China
11. Guangzhou, China
12. Shijiazhuang, China
13. Tianjin, China
14. Hong Kong SAR, China
15. Ho Chi Minh City, Vietnam
16. Hue, Vietnam
17. Kuala Lumpur, Malaysia
18. Jakarta, Indonesia
19. Addis Ababa, Ethiopia
20. Dakar, Senegal
21. Abidjan, Africa
22. Johannesburg, South Africa
23. Cape Town, South Africa
24. Santiago, Chile
25. Dar es Salaam, Tanzania
The following table provides the updated list of relevant case studies based on World Bank’s input, case studies recommended by experts and peer-reviewers, WRI/ITDP and IBI projects that explain good practices and innovative strategies from countries at low to medium income levels. The intent is also not to duplicate existing case studies already compiled by World Bank. E.g. Kings Cross TOD, London, UK. Relevance of the Case Study to the Scale and Development context is also provided along with relevance to specific knowledge product(s). Key criteria for selection were based on the following factors:

- Is there policy-level support for promoting TOD at one or more governmental levels- central, state, local?
- Has TOD been applied at more than one scale- City/ Corridor/ Local (neighborhood)/ Station?
- Are there any TOD projects at the station scale implemented (operational/ under construction/ tendered/ development agreement in-place)?
- Does the city/ example represent a case where the conventional planning paradigm was challenged to implement TODs (e.g. land banking, land readjustment, PPPs).

Disclaimer: The Transit-Orientated Development Implementation Resources & Tools knowledge product is designed to provide a high-level framework for the implementation of TOD and offer direction to cities in addressing barriers at all stages. As the context in low and middle-income cities varies, the application of the knowledge product must be adapted to local needs and priorities, and customized on a case-by-case basis.

SOUTH ASIA | CASE STUDY

DELHI, INDIA

Source: Unified Traffic and Transportation Infrastructure (Planning & Engineering) Centre (UTTIPEC) 2018 ©UTTIPEC. Reproduced with permission from UTTIPEC; further permission required for reuse.
URBAN CONTEXT

The National Capital Territory (NCT) of Delhi is the fastest growing city-region and the second most populous urban area in India. The metropolitan region spans a collection of cities and suburban settlements across the three states of Delhi, Uttar Pradesh, and Haryana. In 20 years between 1991 and 2011, the city region has grown in size from 685 to 1114 sq km, and grown in population from 8.7 to 16.3 million. The steep rise in population can be contributed primarily to migration from smaller towns and villages from across the country attracted by growing job opportunities in new developments in the outskirts of the city. This growth of working-class households was supported significantly by the first-of-its-kind metro system network developed by the Delhi Metro Rail Corporation (DMRC) in 2002. An average of 2.6 million commuters use the metro daily.

Much of Delhi’s growth is observed along the outskirts of the city in areas like Gurgaon, Noida, Ghaziabad and East Delhi. The city at large exhibits large block sizes, low densities, segregated land uses etc. which reflects vehicle-centric planning. This has not only had catastrophic effects on the air quality of the city but has also resulted in congestion that can now essentially be described as a gridlock. In response, the DMRC began construction of the metro network in 2002. By 2018, until the writing of this study, DMRC has built over 8 lines spanning 332 km. The metro network has brought huge relief to the average commuting population. However, the sprawled nature of Delhi has made it difficult for the metro to expand its accessibility as effectively. In 2006, the National Urban Transport Policy was launched, which emphasized the importance of public transport and the need for Transit-oriented Development to leverage this investment. The Unified Traffic and Transportation Infrastructure Planning & Engineering Center (UTTIPEC), formulated to envision a unified and integrated mobility outlook for the entire region, identified a need for Transit-oriented Development (TOD) to accompany metro development in the city-region and began creating the TOD Draft guidelines in 2008.

QUICK FACTS

Geographic Context
South Asia (India) – National Capital Region, India

Scale
City, Corridor, Neighbourhood, Station

Context
Urban, Suburban, Greenfield

Mode of Higher Order Transit
Metro (Delhi Metro Rail Corporation)

Size of City (Population)
16.7 million (Tier-1)

Case Study Covered in WB Publication
No
OVERALL TOD STRATEGY

The Delhi Metro Rail Corporation (DMRC) was jointly set up by the Government of India and Government of Delhi in 1995. The construction of the network was planned in 4 phases.

Phase I: A total of 65km of rail with 58 stations was planned for Phase I. Initial rail development was constrained within the Delhi limits and stations were built and opened between December 2002 and November 2006.

Phase II: A total of 124.63 km long network with 85 stations and 10 new routes and extensions were built, out of which seven are an of the Phase I network. Color-coded lines and lines connecting to adjacent cities were created (Yellow Line to Gurgaon, Blue Line to Noida and Blue Line to Ghaziabad). These stretched from the national capital region, outside the physical limits of Delhi state, to the states of Haryana and Uttar Pradesh. At the end of Phases I and II, the cumulative total length of the network became 189.63km, including 143 stations over time. Operation of the network initiated between June 2008 to August 2011.

Phase III: Consisted of 11 extensions to the existing lines and two additional ring lines (Pink and Magenta lines). This expansion included 28 underground stations and a total of 167.27km.

Phase IV: is expected to be complete in 2021 which totals to 100km.

The TOD Policy in Delhi was framed within the Influence Zone along MRTS corridor, designated as the Transit-oriented Development (TOD) Zone in the Master Plan for Delhi 2021, modified with the latest revisions in 2017. This zone comprises of all the areas lying within 500m of the metro transit corridor on either side. This area is expected to be delineated in the Zonal Development Plans to avoid ambiguity. The Master Plan incorporates TOD as a redevelopment strategy, encouraging private landowners to assemble and redevelop lands that have high TOD potential.

The Transit-oriented Development Principles adopted by the TOD Policy to guide the framing of regulations include:

1. Pedestrian and Non-Motorized Transport Friendly Environment
2. Connectivity and Network Density
3. Multi-modal Interchange
4. Inducing Modal Shift by easing access to public transport and dis-incentivizing private motor vehicle use.
5. Placemaking and Ensuring Safety
6. High-Density, mixed-use, mixed-income development near Stations

INFRASTRUCTURE PROVISION FOR DENSITY

The Master Plan of Delhi 2021 suggests requirements for decentralized infrastructure and resource conservation facilities, specifically including:

- Recycling of treated wastewater with a dual piping system
- Groundwater recharge through rainwater harvesting, conservation of water bodies and regulating groundwater extraction
- Treatment of sewage effluent for recycling for non-potable uses such as gardening.
- Passive cooling systems to ensure energy efficiency
- Solar heating systems are recommended on all plots for roofs of 300sqm or above.
- Incentive FAR and ground coverage is offered for implementation of the above.
Sub Regional Transport Network Plan for Delhi

Figure 2: Delhi MRTS and Transport Corridors (Source: Master Plan of Delhi 2021)

Figure 3: Delhi MRTS and Transport Corridors | Source: Master Plan of Delhi 2021, 2007 ©Delhi Development Authority.
KEY ROLES AND RESPONSIBILITIES OF STAKEHOLDERS

The stakeholders involved in implementation of the Delhi TOD Policy include primarily the Delhi Development Authority (DDA), whose responsibility it is to evaluate TOD schemes and give development permissions; Competent Authority (CA) instituted under the respective State Acts, whose responsibility it is to acquire public amenity land and issue development permissions; and the Developer Entity (DE), who undertakes to participate in the TOD scheme. The roles and responsibilities of each entity during the development permitting process is shown below:

Step process for TOD

STEP 1 Pre-approval Stage

1. DDA delineates TOD Zone in the ZDP and notifies the same. DDA constitutes & notify CA.
2. CA is appointed by the concerned local bodies under their respective acts for implementation of TOD regulations.
3. Competent Authority along with assistance from DDA to prepare/ approve conceptual Influence Zone Plans (IZP).
4. DDA sets up TOD Fund to be used exclusively for maintaining and operating the services within the TOD scheme area.
5. Applicant self-evaluates the site on a geospatial interface to check to ascertain eligibility.
6. Developer entity (DE) prepares TOD scheme based on the criteria specified in the MPD-2021 and the TOD regulations.
7. DE submits scheme and other required documents in the prescribed format for approval of Competent Authority.
8. Competent Authority reviews and processes submitted application under computerized single window clearance system.
9. Competent issues the approval of scheme to the DE.
10. DE to pay CA, 1st instalment equivalent to 25% of the External Development Charges (EDC) as may be prescribed before the approval of the Layout Plan/ TOD scheme.
12. DE to complete construction within 5 years for projects ≤10 Ha, or within 7 years for all target projects counted from the date of its issuance, failing which all approvals would need to be renewed.

STEP 2 Preparation

13. Penalty is imposed on the developer entity in case of delay in completion of development; DE has to re-apply for approval.
14. In the event of non-completion of the project beyond the deadline, the validity of the sanctioned TOD integrated scheme/building plan shall be deemed cancelled, and re-approvals have to be taken by DE before any work is taken up.
15. The CA shall recover the additional FAR charges and balance EDC (excluding the 25% of EDC) from the DE if the project is declared completed in 4-6 instalments, before the issue of completion certificate to the DE.
16. A - Competent Authority issues completion and occupancy certificate.
 B - Completion certificate can be issued for partial/ building level plan within any approved phase of development, subject to obtaining the part/ full completion certificate for infrastructure development works of that phase.
17. DE can sell or transfer saleable component under its shareholding to the prospective buyers only after the prescribed land (public spaces, public roads, public parking, etc) and EWS housing component is handed over to the DDA/Delhi Govt.
18. The EWS housing component created by the DE shall be subject to quality assurance checks, as prescribed in this regard by Govt./DDA.
19. Monitoring mechanisms for public spaces, public roads, public parking, etc. post completion and take appropriate penal action in case of violation of norms.
20. Surplus funds reserved by local body by way of EDC charges, FAR charges, auction of advertisement rights and donations received for upgradation of the amenity shall be invested in high interest yielding government securities.
21. Accorded interest; Public parking charges shall be used locally by Local body also be utilized for creation, upgradation and maintenance of public roads, especially footpaths, cycle tracks, public transport systems and all public amenities available/ to be provided within the public RoWs within TOD zone.

STEP 3 Implementation

STEP 4 Certification

- Status of TOD scheme is submitted for implementation.
- Monitoring mechanisms for public spaces, public roads, public parking, etc. post completion and take appropriate penal action in case of violation of norms.
- Surplus funds reserved by local body by way of EDC charges, FAR charges, auction of advertisement rights and donations received for upgradation of the amenity shall be invested in high interest yielding government securities.
DESIGN STRATEGIES TO ENCOURAGE TRANSIT USE

The TOD Policy Manual suggests design strategies for TOD that govern the Development Control Regulations incorporated in the Master Plan of Delhi 2021. The Development Control Norms include the following strategies for land parcels measuring 1 HA or more:

- **FAR and Density**: Higher densities are allowed for all developments that are planned on individual or amalgamated land parcels of size of 1HA or more. A minimum mandatory Floor Area Ratio (FAR) is imposed for housing for the economically weaker section. This norm is intended to encourage land pooling as a redevelopment strategy in the TOD influence zones. Larger land parcels allow DDA to extract land for public use including open spaces and transit plazas.

- **Mix of Uses**: Minimum 30% residential use, 10% commercial use, and 10% public amenities are compulsorily required on all land parcels irrespective of their dominant land use as per the Master Plan. Within the minimum residential area requirement, the Master Plan mandates housing units to be of smaller sizes. This is intended to encourage economic diversity within transit influence zones. Smaller unit sizes allow buyers the flexibility of purchasing small units in case of budget limitations and purchasing multiple units and combining them in case of larger family sizes. However, in practice, this requirement has been the most difficult to meet, because it increases the planned density of the development substantially. This, in turn, increases the infrastructural and parking requirement for the development.

- **Road Network**: A minimum 20% of the land is required to be reserved for roads, adhering to principles of 250m c/c road density of vehicular roads and 100m c/c density of the pedestrian network. These roads will be handed over to the Government as public roads, but will be maintained and kept encroachment free by the DE.

- **Open Spaces**: A minimum 20% of the land is required to be reserved for green open spaces for public use, adhering to principles of inclusion and another 10% green space for private use. In parcels smaller than 1 HA, private open space is allowable in the form of common terraces, rooftops or podiums.

- **Public Facilities**: Public facilities like schools and health facilities are required to be provided as part of the development.

- **Green Buildings**: The built form of the development is required to achieve a minimum of 3 stars or gold rating as per the Indian Green Building Standards

- **Traffic Impact**: Is expected to be assessed and mitigated through traffic management measures.

In addition to the above norms, the Master Plan also prescribed Street Design Regulations to be followed within the streets planned in a development under the TOD scheme. The street design elements are intended:

- **To promote Preferable Public Transport Use**
- **For Safety of All Road Uses by Design**
- **For Pedestrian Safety, Comfort and Convenience on All Streets**
- **To ensure universal accessibility and amenities for all street users**
- **To reduce Urban Heat Island Effect and Aid Natural Storm Water Management**

FINANCIAL MODEL

There is no single financial model that can be identified in Delhi. Some of the expected sources of revenue are through the sale of FSI, external development charges (EDC) and betterment charges.

Extra FSI charges as per the Master Plan are as per standard rates, irrespective of land use/ use premises, to avoid any complications to change the use of FSI in future. This is both an advantage and a disadvantage as the uniform FSI rates for commercial and residential in Delhi, either adversely affect the affordability of residential or there are chances for the government to lose the opportunity to earn from the commercial FSI.

Though the resources of finance (direct collection and land value capture) have been identified, the use of revenue generated from TOD is not ensured through the regulations.
IMPLEMENTATION STRATEGIES

TIMELINE:

- **1991**: Region was 685 sq km with a population of 8.7 million
- **1995**: DMRC was jointly set up by the Government of India and Government of Delhi
- **2002**: Began construction on first metro network by Delhi Metro Rail Corporation (DMRC)
- **December 2002**: Phase 1 starts
- **2006**: National Urban Transportation Policy was launched
- **November 2006**: Phase 1 competes
- **2008**: UTTIPEC began creating the TOD Draft Guidelines
- **June 2008**: Phase 2 begins
- **2011**: Region was 1,114 sq km with a population of 16.3 million
- **August 2011**: Phase 2 completes
- **2017**: Modified and revised Master plan for Delhi 2021
- **2018**: DMRC metro network has 8 lines spanning 332km
- **2021**: Phase 4 expected completion

ACTIONABLE STEPS

The TOD Policy Framework has been tested in different models of TOD pilots in Delhi, the most well-known being the Karkadooma station in East Delhi. The proposed site of the pilot TOD project of Karkadooma lies within Zone- E of the Zonal Development Plan, the land use of which is residential. More than 70% of the site falls within the 500m influence zone of two metro stations at Karkadooma, therefore the norms for ‘Influence Zone’ shall be applicable. The figure below illustrates three conceptual designs that follow the TOD norms.

Design option two was favored during the stakeholder consultation process which was conducted to prioritize civic amenities.

The stakeholders consisted of resident welfare associations, trade associations, NGOs and civic society institutions, schools and local ward counselors.
KEY LESSONS

The following key takeaways should be derived from the Delhi example:

- The TOD policy in Delhi prescribes strict norms to follow and is, therefore, a comprehensive approach to planning TOD.
- Delhi is trying to provide affordable housing in TOD but with the strict percentage, it can restrict the market to participate.
- With regards to parking, Delhi is adopting a one-size fits-all approach even with various TOD typologies: city center TOD, suburban TOD, commercial TOD, Residential TOD.
- Even though Delhi has stringent TOD policies and urban design guidelines, there is still a lack of clarity in terms of the implementation process.

REFERENCE

SOUTH ASIA | CASE STUDY

HUBLI DHARWAD, INDIA

Source: Hubli-Dharwad BRTS Company Ltd 2016. ©HDBRTS. Reproduced with permission from HDBRTS; further permission required for reuse.
HUBLI DHARWAD, INDIA

QUICK FACTS

Geographic Context
South Asia (India) – Karnataka, India

Scale
Regional, Corridor

Context
Urban, Suburban, Greenfield

Mode of Higher Order Transit
Bus Rapid Transit System (Hubli Dharwad BRTS Company Ltd.)

Size of City (Population)
0.97 million (Tier-2)

Case Study Covered in WB Publication
No

CITY SUMMARY

Hubli and Dharwad are twin cities in the state of Karnataka and located at a distance of around 20 km from each other. Hubli-Dharwad is the oldest city in Karnataka state with strong cultural and historical importance and is also the second-largest urban settlement in Karnataka after Bengaluru. While Dharwad is the district headquarters and Hubli is the business hub.

According to Census 2011, the city had a population of 9.43 lakhs. HDMC’s population accounts for 4% of the urban population of the state and 90% of the urban population of the district. The population density in Hubli-Dharwad has been on an increase during the past three decades. The density increased from 1,837 persons per sq. km in 1971 to 4,292 persons per sq. km in 2011. However, the area of the corporation remained the same.

There is a steady and high volume of passenger traffic between the twin cities. Currently, this demand is catered by the NWKRTC through a bus-based system and private vehicles. Though buses account for only 7-11% of total traffic flow on the road between Hubli and Dharwad, they carry about 70-80% of people. A BRTS has been conceived along the P.B. road between Hubli and Dharwad, in order to meet the increased demand for ridership.

URBAN CONTEXT

The urban character of both Hubli and Dharwad cities is found to be complex, and the old city areas in both cities have been retained their original and traditional character. They are acting as religious nodes and are with narrow streets and inefficient infrastructure services. However, in other areas, due to the availability of services, cultural attractions, proximity to city core has always been under constant development pressure and resulted in over densification. While fringe areas are exhibiting a different development pattern which is comparatively organized growth pattern. Both cities exhibit medium density with medium-rise buildings with average 3-4 storeys.

As per the Karnataka Town and Country Planning Act, 1961, the Hubli-Dharwad Urban Development Authority (HDUDA) was constituted in the year 1987 for undertaking the responsibility of physical planning, and its jurisdiction includes the HDMC area and about 10 km area beyond HDMC, to include villages that could eventually become part of the urban area in future¹.

- Disjointed City Form: Hubli Dharwad grew organically as two different cities, which were amalgamated in 1964 into a single municipal corporation. Even though their economies are interdependent, structurally these cities have remained disjointed connected only by the present-day BRT corridor. Most development between the 2 cities is sprawling in
nature, which physically divides the 2 cities and forces intense urban development outwards and away from the primary corridor.

- **Urban Sprawl**: Availability of large tracts of land with urbanizing potential and very little demand has led to proliferating urban sprawl. Sprawl poses a threat to the forested and agricultural lands around the city cores.

Hubli-Dharwad today stands on the brink of a reformation in urban development. There the Spatial Development Framework created as a guide for the City Development Framework (2030), seeks to address five major issues in Hubli-Dharwad’s spatial and social landscape:

- Lack of spatial vision for the cohesive development of the city
- Urban sprawl and fragmentation
- Increasing pressure on the natural environment infrastructure
- Spatial inequalities and the jobs-housing mismatch
- Exclusion and disconnection emanating from
- High potential underused areas
- Disconnected street networks
- Inefficient residential densities and land use diversity

The strategies towards setting the TOD framework and the implementation strategies have been adopted from the Hubli Dharwad 2030 City Development Framework. They have been summarized below.

OVERALL TOD STRATEGY

Hubli-Dharwad area is currently undergoing rapid population growth. The proposed BRT will further fuel this growth. To cope with this, transit-oriented development is proposed along the corridor. This BRT system will minimize sprawl and will serve as a ready to use commuter system for the additional population. Also, the proposed revision of the comprehensive development plan (CDP) for Hubli Dharwad in 2015 is an opportunity to incorporate the TOD principles. Incorporating TOD into the development plan will help in delivering efficient, comfortable and affordable mobility options to its citizens. The urban cores of Hubli and Dharwad are 22km apart which is one of the primary factors defining the spatial growth pattern of the twin-city region.

Hubli-Dharwad has a road network which is dense but with constrained right-of-ways in the city cores. The two city cores are connected by P.B Road, the only arterial road in the twin cities, which was also formerly a national highway. National Highway, radiating from Hubli center, including NH4, which is recently developed to bypass the traffic passing through these city cores. The constraints in road ROWs in the employment centers limits densification potential and results in congestion.

The spatial vision envisaged by the CDF 2030 is a compact polycentric city with dense urban cores linked by efficient public transport networks to mixed-use, complementary sub-centers, situated within a protected and integrated natural environment. Development triggers in the area are ongoing projects like the widening of P.B. road, upcoming Hubli Dharwad BRT, Hubli airport modernization, proposed electrification and doubling of the railway line, inland container depots, goods yard along with improved Mumbai-Chennai road corridor etc. High land values in Hubli and Dharwad have led to haphazard development adjoining PB road and it needs to be streamlined to ensure optimal utilization of the road widening as well as the upcoming Hubli Dharwad BRT. The City Plan (Vision 2030) promotes land use that supports transit. The Development Density Framework suggests a differential density paradigm for the city. It proposes higher densities and FAR allowances for areas with higher amenities and higher accessibility to jobs and city services. Primarily, the framework is defined with the metropolis boundary as the base.

- **The Metropolis Boundary - Reimagining the Metropolis Boundary as a potential Urban Growth Boundary (UGB) allows for enforced limitations to new development outside of it. This area measures 220 sq km. However, developing the entire metropolitan area with the same density of development will lead to sprawled development. Accordingly, the next layer of density is defined, a high growth Zone measuring 83 sq km.**

- **High Growth Zone – Proposed Zone A** – This zone includes all high demand and high opportunity areas as well as future strategic areas of growth. Within this zone, larger mix of uses and higher FAR should be proposed to enable compact and mixed-use development. The HDUDA Master Plan already recommends more intensive uses in “Zone A”. It is proposed therefore that the High Growth Zone be considered for inclusion in the Master Plan as Zone A. However, unlike the Master Plan, this zone must be allowed higher FARs to accommodate the market demand.
The final layer of the differential density is the TOD Zone, the areas within walking distance of the new BRT corridor connecting Hubli and Dharwad. TOD Zone - This zone has the advantage of access to a high capacity, high-frequency public transport system, which is expected to catalyze compact, mixed-use, and inclusive development.

The development structure of a city must be imagined in parallel with a transportation network that can support its growth and ensure equitable accessibility at all stages of growth. In addition to the BRT Corridor and the Proposed Bypass Road, a network of priority roads and corridors are identified, that contribute to the spatial strategy of growth.

Figure 6: Density Framework for TOD | Source: Hubli Dharwad 2030 City Development Framework 2014 ©IBI Consultancy India Pvt Ltd.
KEY ROLES AND RESPONSIBILITIES OF STAKEHOLDERS

The Hubli Dharwad 2030 City Development Framework (CDF), as the first of its kind in India, is set up to prepare Hubli Dharwad for the future by creating a vision and path for the future even before new programs at the State and Central level are introduced. All potential opportunities for funding and financing can be streamlined to achieve the vision set forth in the Framework. Along with providing a larger Vision, the CDF also proposes immediate actions that the city agencies can adopt using existing sources of funds. A break-up of the CDF components and relevant implementation roles is illustrated in the figure below.

The Dharwad District Administration is envisioned as the Authority that will own the first three components of the Framework and be responsible for integration across sectors and jurisdictions. The implementation and monitoring of the Framework shall be within the scope and mandate of sector-specific and jurisdiction-specific agencies. The Primary Vision and Goals and Targets shall be monitored by a City Transformation Cell which in turn shall establish a continuous medium of interaction with the city and rural residents to enable resident inputs to inform the Framework.

While the DA shall be the Nodal Agency for the Spatial Growth Concept and Density Framework, as this will allow an integrated city-rural approach to guide economic growth in the study area, the HDUDA, HDMC, KIADB, and Gram Panchayats will be responsible to implement the proposals for setting up of growth nodes and growth corridors within their jurisdictions.

Figure 7: Proposed Transportation Framework as per Master Plan 2031 | Source: Hubli Dharwad 2030 City Development Framework by IBI Consultancy India Pvt Ltd.
STRAIGHTEN TO ENCOURAGE TRANSIT USE

The HDBRTS, under the aegis of DULT shall be the Primary Nodal Agency for the TOD Zone DCR and Urban Design Guidelines. The HDUDA shall incorporate the TOD Zone DCRs into the Master Plan, while the implementation of the DCRs and Urban Design Guidelines shall be done by a TOD Implementation Committee set up within the HDMC.

OPPORTUNITIES

- Compact city cores connected by a high-capacity BRTS system offers the opportunity to create more well-connected compact cores.
- A large potential for intensification exists in many underutilized areas, without sprawling to natural areas.

FINANCING

TOD Incentives provide an opportunity to earn increased revenues through:

- Sale of Premium FAR
- Increased revenue through property taxes levied on higher built up areas

The revenues earned through the tools listed above shall be shared between the HDBRTS and HDMC as per mutual agreement. This source of revenue shall be used by HDBRTS for operations and maintenance of the BRTS system and shall be used by the HDMC to implement crucial public realm improvements.

IMPLEMENTATION STRATEGIES

The special regulations for Transit-oriented Development are intended to be provided to areas within walking distance of the corridor to incentivize high-density growth that can take advantage of transit and reduce reliance on private vehicles. The HDUDA Provisional Master Plan 2031 identifies a special BRT impact area which is 500m on either side of the BRT corridor and is earmarked as the TOD zone.
The lack of existing market demand in the TOD Zone will make it difficult to attract developments that are high density and mixed use. Hence the Hubli Dharwad city plan proposes the following key strategies:

1. Create Statutory Regulations that encourage compact development – Decreased setback requirements and parking requirements will enable compact development in the TOD Zone. In addition FAR and other incentives should be offered for high density mixed-use developments in the TOD, the follow the urban design guidelines.

2. Institute a Land Taxation Scheme that incentivizes compact development
- **Vacant Land Tax in High Growth Areas** - Vacant land tax is proposed for all land parcels that are left undeveloped for a period of 5 years after implementation of the HDUDA Master Plan 2031 and the special TOD Zone regulations. Vacant Land Tax places a higher emphasis on taxing the land itself rather than on its improvements. This system will intend to incentivize compact development in areas identified for high-intensity growth and discourage land purchase and development in low growth areas.
- **Higher Registration Fees in Moderate Growth Areas** – high registration fees are proposed to discourage the sale of land in moderate growth areas to discourage speculative buying. Instead, Government authorities should be encouraged to purchase and bank lands near future growth nodes in moderate growth areas.

ENDNOTES

In an era of rapid social, economic and technological change, Hong Kong as an international city in a globalised world is facing huge challenges, both externally and internally. Externally, we are facing fierce global and regional competition. Many of our neighbouring major cities, especially those in the Mainland and Southeast Asia, are advancing quickly to take advantage of the unprecedented economic growth in the eastern hemisphere. Besides, with the completion of several major regional transport infrastructure developments in the coming few years, Hong Kong’s geographical connection and economic integration with the fast growing Pearl River Delta region and beyond will be greatly enhanced, giving rise to both opportunities and challenges. Internally, we have a rapidly ageing society and an even more rapidly ageing building stock. There is a pressing need for developable land for housing, economic activities and community facilities. At the same time, there is an ever growing community demand for a better quality of life. Hong Kong needs to respond strategically and swiftly to meet these challenges and to tap into new opportunities.

"Hong Kong 2030+: Towards a Planning Vision and Strategy Transcending 2030" , a vision-driven, pragmatic and action-oriented strategic plan, is our response. Our vision for Hong Kong is that it continues to be a liveable, competitive and sustainable “Asia’s World City”. To this end, the updated territorial development strategy reflects three underlying aims: enhancing liveability in our high-density compact city; embracing economic challenges and opportunities; and creating capacity for sustainable growth.

This strategic plan will guide Hong Kong’s planning, land and infrastructure development, as well as the shaping of our built and natural environment, beyond 2030. Our ability to create and use land resources wisely will have a direct bearing on whether the people of Hong Kong can enjoy a more satisfying living environment, with better essential services and facilities, and have a more fulfilling and diverse quality of life, with opportunities for recreation, leisure and culture befitting their individual tastes. Yet, in taking forward development projects, we need to be guided by the concept of sustainability and maintain respect for our environment. This strategic plan is a blueprint for the long-term sustainable development of Hong Kong, which is important for our future, and that of future generations.

I would like to take this opportunity to thank my colleagues of the Planning Department who have been driving the formulation of Hong Kong 2030+, and the various government bureaux and departments, professionals and experts who have provided their valuable input to this strategic plan. This latest update to our territorial development strategy builds upon previous strategic plans. It is a plan that transcends generations and the term of a single government. We are putting this strategic plan to our community for consideration, and I sincerely hope to hear your views on the direction we should take for the future of Hong Kong. Let’s work together to plan for a liveable, competitive and sustainable Hong Kong.

Source: Hong Kong Development Bureau and Planning Department 2016 ©Hong Kong 2030+.
HONG KONG SAR, CHINA

QUICK FACTS

Geographic Context
East Asia (China)

Scale
City, Corridor, Neighbourhood, Station

Context
Urban, Suburban, Greenfield

Mode of Higher Order Transit
Hong Kong MTR (Mass Transit Railway)

Size of City (Population)
7.4 million (Source: Census and Statistics Department, Hong Kong SAR, China (web))

Case Study Covered in WB Publication
Yes

CITY SUMMARY

Hong Kong SAR, China is one of the world’s leading international financial centres with a long history of designing and implementing a robust and sophisticated multimodal public transportation network. The network is estimated to move over 12 million passengers a day which includes automated people mover systems (escalators and moving pavements), two high-capacity railways, trams, buses, mini and double-decker buses, taxis, and ferries. It is estimated that public transport trips make up 90% of the daily journeys in Hong Kong SAR, China, the highest rate in the world. The Hong Kong rapid transit railway system, known as the MTR, which alone caters to nearly 4.7 million daily trips.

URBAN CONTEXT

From the lens of urbanization and city form, Hong Kong SAR, China’s compactness can be attributed largely to its constrained geography and topography consisting of several islands, hills, and the sea. While the city has some of the highest urban area densities in the world, only 30% of its total area is built-up resulting in relatively low gross densities compared to other Asian cities. Hong Kong SAR, China is estimated to have an urban area density of 26,100 people per square kilometer as compared to 31,700 persons per square kilometer in Mumbai, and 29,800 people per square kilometer in Surat (Gujarat). The city’s resilience and its high quality of life index have helped in placing it as one of the top five liveable cities in Asia. On the other hand, the high cost of living expenses, housing affordability and deteriorating air quality are some of the challenges that the city continues to address through its integrated long-range planning process.

Governed under the structure of “one country, two systems”, Hong Kong SAR, China has capitalized on its autonomous status and strategic location to emerge as one of Asia’s leading metropolises with a strong sustainable development agenda. The integration of land use, transportation demand management and rail transit has been one of the hallmarks of Hong Kong SAR, China’s evolution as a compact city with one of the most profitable mass transit systems in the world. In Hong Kong SAR, China, all lands are public-owned (except the land on which St John’s Cathedral stands) and the government can lease or grant the land to public entities.

Hong Kong SAR, China’s “Rail + Property” development model has enabled the city to maximize the limited area available for development in an innovative and aesthetic manner while at the same time enable its transit agency to generate revenues to finance investments in transit infrastructure and high-quality public realm design. In addition to this successful development
model, Hong Kong SAR, China’s transportation demand management strategies such as car registration fees and transit-first policies have also played a substantial role in making Hong Kong one of the success stories of Transit-oriented Development in the world.

The MTR is financed, constructed and operated by the Mass Transit Railway Corporation (MTR)- currently serving as a private entity with Hong Kong SAR, China’s administration serving as a large shareholder. The following discussion highlights some of the key elements of Hong Kong’s successful experience with creating transit-oriented development communities with a special emphasis on MTR’s integrated property and rail development model within the organizing framework: enabling governmental policies, planning and design processes, use of innovative financial investment tools, and supporting implementation mechanisms.

OVERALL TOD STRATEGY

The R+P development model is a cooperation between public and private interests using the TOD concept to concentrate development around a new MTR stop. The government hands out development rights around the station to the railway company, who in turn develops the land and can gain profit from the rising property values. By using this strategy the huge investments in new rail lines can be returned by profits from property development.

The initial investment in Hong Kong’s mass transit system was limited to a 20 kilometer stretch, constructed in 1972. In the early years, two agencies were charged with operating the rail service- Mass Transit Railway Corporation (MTR) and Kowloon- Canton Railway Corporation (KCRC). In 2000, MTR was partially privatized with no subsidies received from the government in theory. Subsequently, in 2007, MTR merged with Kowloon-Canton Railway (KCR) Corporation. Through its development control legal framework, transit-first policies and a shareholding in the MTRC, the government of Hong Kong has successfully created an environment that provides financial flexibility and development control which ensures public interest related to transit-oriented developments in the city.
The following table outlines some of the key enabling policies and legal framework used in support of transit and property development:

<table>
<thead>
<tr>
<th>Policy: Land Development</th>
<th>Key Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Grant of exclusive property development rights of the station areas to MTRC in exchange for its commitment to provide and improve mass transit railway as an essential mode of public transportation.</td>
<td>Incentive-based approach to encourage the corporation to plan and develop sites in a financially viable manner by “internalizing” benefits from rail and property development; Eliminates the costs associated with land banking and acquisition</td>
</tr>
<tr>
<td>2. Established MTRC as an independent corporation with government as a major shareholder to strengthen the role of transit agency as the single entity to serve as the master planner, property developer and property manager as well as generate revenues to sustain the transit service.</td>
<td>Government’s commitment to remain as the majority shareholder of the MTRCL after the privatization for at least 20 years and own no less than 50% of shares and votes of the MTRCL; Lower transaction costs with single entity as opposed to multiple agencies</td>
</tr>
<tr>
<td>3. Permit joint ventures in real estate development with private sector investment in TODs</td>
<td></td>
</tr>
<tr>
<td>4. Use of Transfer of Development Rights combined with commitment to encourage redevelopment of existing areas rather than allowing for suburban development</td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Source: IBI Group

The supporting public transportation system policies that have enabled TOD projects to flourish in Hong Kong’s case include:

<table>
<thead>
<tr>
<th>Policy: Land Development</th>
<th>Key Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Limiting private car ownership and usage</td>
<td>Initial registration tax ranging from 35% to 100% of the vehicle cost.</td>
</tr>
<tr>
<td></td>
<td>High fuel tax</td>
</tr>
<tr>
<td>Transit service coordination and protection (1980s)</td>
<td>White Papers on transportation policy</td>
</tr>
<tr>
<td></td>
<td>Prohibited direct competition by other PT/feeder modes along the rail routes</td>
</tr>
<tr>
<td>Service proliferation and competition (1990s)</td>
<td>Railway Development Strategy, which set out development plans for four new rail lines or extensions.</td>
</tr>
<tr>
<td></td>
<td>White Papers on transportation policy</td>
</tr>
<tr>
<td>Service rationalization and consolidation</td>
<td>Public transport interchanges are a required component of new railway stations to facilitate inter-modal feeder services</td>
</tr>
<tr>
<td></td>
<td>Increase the proportion of rail-based public transport journeys from 33% in 1997 to 40–50</td>
</tr>
</tbody>
</table>

Table 2: Source: IBI Group
Hong Kong’s planning system comprises development strategies at the territorial level and various types of statutory and departmental plans at the district/local level. In 1996, a consolidated plan known as the Territorial Development Strategy (TDS), the highest hierarchy of town plans, came to fruition. It provides a board, long-term framework on land use, transport and environmental matters for the planning and development of the territory.

In addition to acting as the transit operator and real estate developer, MTR has a significant role in the master planning and controlling the development processes in collaboration with the private sector. MTRC works in close collaboration with the city planners to define various parameters of station area planning from the time any plans to extend or construct new rail transit lines are proposed. These parameters include:

- Transit Alignment;
- Station Locations;
- Land values;
- Density potential;
- Financial returns;
- Long-term planning objectives; and
- Land use mix based on market demands and zoning constraints.

KEY ROLES AND RESPONSIBILITIES OF STAKEHOLDERS

Tang et al. (2004) identified the following four key elements behind the R+P approach in their study of the Integrated Rail-Property Development in Hong Kong:

1. Policy. Favorable government support of transit and land-use integration, expressed by land grants and financial assistance to MTRC;
2. Process. Forward-looking planning, management, and control procedures that ensure an efficient approach from project inception to completion;
3. Project. High-quality real estate projects that appeal to tenants, shoppers, and transit users; and
4. Organization. An entrepreneurial entity that balances the financial interests of investors with larger societal goals.

The main agencies involved in shaping urban development policy and its integration with transit services in Hong Kong include:

- Land Development Corporation
• Urban Renewal Authority (URA)- statutory government agency;

The URA was established in May 2001 under the Urban Renewal Authority Ordinance, to replace the Land Development Corporation, as the statutory body to undertake, encourage, promote and facilitate urban renewal of Hong Kong, with a view to addressing the problem of urban decay and improving the living conditions of residents in old districts.

• Mass Transit Railway Corporation (MTRC)- statutory corporation with government as a majority stakeholder listed on the Hong Kong stock exchange;

Originally established in 1975, to “construct and operate, under prudent commercial principles, an urban metro system to help meet Hong Kong’s public transport requirements”; MTR was re-established in 2000 as MTR Corporation Ltd. MTR Corporation is involved in businesses outside of transportation, including residential and commercial development, property leasing and management, advertising, telecommunication services and international consultancy services.

• Hong Kong Housing Society- Founded in 1948, the Hong Kong Housing Society is the second largest public housing provider in Hong Kong. It is a major urban renewal agent, which began its Urban Improvement Scheme (UIS) in 1974. Under the scheme, dilapidated buildings in the urban areas were acquired/resumed and redeveloped into modern housing blocks.

DESIGN STRATEGIES TO ENCOURAGE TRANSIT USE

MTR’s transit-oriented development (TOD) model follows the ‘network of pearls’ urban development model, which designates widely spaced transport hubs connected through a fast transit network. Majority of the new R+P projects are defined by well-design station area plans that ensure “seamless integration” with its surrounding neighborhoods. Each station area is unique and varies by virtue of its contextual relationship with surrounding properties. Cervero and Murikami (2008) classify the R+P projects into five broad typologies. These include:

• High-Rise Office (HO): high-rise, predominantly office uses on small sites;
• High-Rise Residential (HR): high-rise, predominantly residential uses on small sites;
• Mid-Rise Residential (MR): medium-density, predominantly housing projects on medium-size plots;
• Large-Scale Residential (LR): predominantly residential uses on large sites with comparatively low plot ratios; and
• Large-Mixed Use (LM): mixture of housing, offices, retail, hotels, and others on large sites with medium plot rate.

Station Area Planning and “Podium” Development

As discussed above, the 2nd and 3rd generations of MTR property developments have exerted a strong focus on pedestrian integration and connecting with the surrounding communities. The figures shown below illustrate the conceptual model followed by MTR in some of its recent property developments as some of its large-scale developments were raised public concerns related to alienating the surrounding neighborhoods, creating wall effects with towers that reduce air ventilation and increasing housing costs within these developments.

One of the typical station architecture styles representative of Hong Kong’s development in the last two decades or so, is the “podium development” model. The podium model involves building above the railway station, a “podium” retail level that can be accessed through the street level. Residential and commercial towers often sit on top of the podium level that are accessible from the station and the street level. The podium’s roof is also seen in many instances serving the dual function of a landscaped park with community facilities for the residents.
Figure 14: Overview of MTR’s concept of R+P Development | Source: MTR Corporation Limited 2011 ©MTR. Reproduced with permission from MTR; further permission required for reuse.

Figure 15: Podium Development Typologies in Hong Kong | Source: Dr. Sujata S. Govada ©UDP International. Reproduced with permission from Transport and Housing Bureau; further permission required for reuse.
CASE STUDIES

Invest: Rail + Property (R+P)-Hong Kong’s Joint Development Financing Model

Since all lands are owned by the government in Hong Kong and leased to the private sector on a 50-year lease (renewable once for the same time period), MTR receives assistance from the government in the form of land grants and development rights. This implies that MTR has to function as a self-sufficient entity able to generate its own revenue for operation maintenance and infrastructure improvements.

Since its inception in the late 1970s, MTR has focussed on leveraging its property assets as a source of revenue by undertaking diverse real estate development projects in the lands surrounding above the transit stations. MTR’s strategy to pursue integrated property development has been the driving force for attracting the right mix of residential and employment densities that continues to improve the viability of its public transit system serving its dense urban cores. What helped Hong Kong apply the principles of value capture so effectively was the “combination of high population density, public land ownership,
and low automobile dependency”. The R+P programme could be divided into three stages:

1st Generation: This initial stage of the R+P programme used solely a financing mechanism to recover the transit infrastructure investment costs and yield a net profit from nearby property developments as single-use properties above new stations along its Urban Line.

2nd Generation: The 2nd generation of the programme was influenced by Hong Kong’s growth as a financial hub in the global market resulting in large-scale foreign-direct investments and international property developers. During this phase, the development models transitioned from single-use properties to “mixed-use, pedestrian-oriented town developments examples of place-making” along the new Airport Express and Tseung Kwan O line extensions, also aimed to better connect jobs near the airport with residential areas concentrated in the traditional urban core.

3rd Generation: The 3rd and the present generation of the R+P programme coincides with the opening of the fifth MTR subway line are more typical of “greenfield TODs” built on undeveloped or reclaimed lands from the sea, encompasses a diverse set of urban and suburban areas (in the New Territories). These sites encompass nearly 62 hectares and are planned based on unique station typologies that are context-sensitive and integrate innovative architectural and urban design concepts to create new destinations for the growing city. The most recent of such developments was the large Pop Corn shopping centre development which was built in conjunction with Tseung Kwan O station.

As mentioned earlier, the R+P model is one of the most successful joint development models in contemporary urban planning practice in terms of achieving the economic, social and growth management goals envisioned through implementation of TODs. In Hong Kong’s case, this principle has also enabled the MTR to be classified as one of the most profitable transit systems in the world. The financial mechanism for the R+P development is relatively simple- MTR receives from the government the right to purchase 50-year leases on lands and in return pays a land premium to the government on a “Greenfield no railways basis”. Next, the MTR invests in the transit infrastructure and develops the property either on its own as a developer or in partnership with the property developer. With time, the property values increase because of its proximity to the rail transit network and its integration with the station. The increment in values is captured by MTR to invest in new infrastructure as well as offset the maintenance and operation costs.

In some cases, for example on lands with technical complexities such as development above stations, MTR generally sells the land only after having built the foundations and thus undertakes a part of the construction activities as an alternative profit source. In addition to selling development rights, MTR generally negotiates a share in the future property with the selected developer and profits and/or receives a co-ownership. MTR has also been successful in developing a strong portfolio of residential and commercial real estate projects that the agency has constructed, leased and rented. Finally, MTR often remains involved in the development as a property manager, generating additional incomes that way. At the end of 2011, MTR owned and rented over 85,000 residential units and 750,000 m² of commercial and office spaces in Honk Kong.

Figure 17: Property Rental Income, MTR (Left) and MTRC Revenue 2001-2005 Average (Right) | Source: MTR Corporation Limited 2014 ©MTR. Reproduced with permission from MTR; further permission required for reuse.
INFRASTRUCTURE PROVISION FOR DENSITY

To help create capacity for sustainable growth, which is one of the building blocks proposed under Hong Kong 2030+, a smart, green and resilient city is proposed. It focuses on the scope that are relevant to land use planning, mobility and infrastructure in the built environment and is particularly applicable to new development areas and new neighbourhoods where comprehensive planning is more feasible.

Three building blocks of the territorial development strategy are proposed for achieving the vision and overarching planning goal. These building blocks are translated into spatial terms in a conceptual spatial framework.
IMPLEMENTATION STRATEGIES

Tang et al. (2004) identified the following four key elements behind the R+P approach in their study of the Integrated Rail-Property Development in Hong Kong:

1. Policy. Favorable government support of transit and land-use integration, expressed by land grants and financial assistance to MTRC;
2. Process. Forward-looking planning, management, and control procedures that ensure an efficient approach from project inception to completion;
3. Project. High-quality real estate projects that appeal to tenants, shoppers, and transit users; and
4. Organization. An entrepreneurial entity that balances the financial interests of investors with larger societal goals.
5. From a perspective of defining the roles and relationships of these agencies pertaining to the “R+P Development Model”, the following illustrations provide a summary of the institutional arrangement and functions that have ensured successful implementation of TOD projects in Hong Kong.
KEY LESSONS LEARNED AND BEST PRACTICES

Lessons Learned from Hong Kong applicable to Global cities

An important lesson from the Hong Kong experience is that integrating transit with land-use can yield the finances needed to support TOD. The use of “Value Capture” as an infrastructure financing concept that seeks to capture land value created by new infrastructure, particularly transit. Value capture is effective in financing transit infrastructure, particularly in dense and congested settings. This is due to the high perceived importance for improved accessibility and an institutional capacity fit to support transit. Accessibility benefits present enormous opportunities for recapturing some of the value created by transit investment in land values and effectively supplement the traditional forms of revenue for transit systems, like fares.

The study by Tang et al. (2004) on Study of the Integrated Rail-Property Development Model in Hong Kong confirm the positive relationship between property development and MTR ridership as follows:

a. High population concentrations and densities are associated with high MTR station ridership.

b. Private housing units clustered around MTR stations tend to exert a greater impact on the ridership than public housing.

c. Mixed land uses, compact environment and exciting street-level activities in the existing urban districts promote MTR ridership.

d. New development districts with attractive design, commercial facilities and efficient pedestrian connections along rail corridors enhance MTR ridership. Pedestrian connections must be convenient, direct, safe and pleasant for these developments to be successful and to increase property values.

The R+P program applied by the MTR Corporation in Hong Kong has been central to the success of Hong Kong in developing its rail system. The R+P program enabled MTR Corporation to capture real estate income to finance part of the capital and running costs of new railway lines, and to increase transit patronage by facilitating the creation of high-quality, dense and walkable catchment areas around stations.

The following three key concepts applied in the R+P program are essential to the program success and can be adopted by global...
cities with railways as the trunk transit mode, by taking the transit-oriented development mechanisms to help finance new rail lines:

Financial Sustainability Approach: The value for a rail company to only under-take those rail investments that can achieve a targeted rate of return (after factoring government support, in the form of land rights provided at before-rail price, used in a R+P program, or cash subsidies) to be financially sustainable.

Market-driven Approach: The need to plan development along each rail line comprehensively, with multiple stakeholders and partners, and to define the scale and timing of such developments based on market demand, location characteristics and institutional capacity.

Risk management approach: The value for a railway company to bring in relevant expertise and transfer a large part of commercial risks to private developers through PPPs and transactions with external partnerships.

ENDNOTES

13. BS Tang, YH Chiang, AN Baldwin and CW Yeung, 2004, Study of the Integrated Rail-Property Development Model in Hong Kong, Research Centre for Construction & Real Estate Economics Department of Building & Real Estate Faculty of Construction & Land Use, The Hong Kong Polytechnic University

ASIA | CASE STUDY

SHENZHEN, CHINA

Source: LA Times 2018 ©bingfengwu / Getty Images / iStockphoto. Reproduced with permission from bingfengwu; further permission required for reuse.
SHENZHEN, CHINA

QUICK FACTS

Geographic Context
East Asia (China)

Scale
City, Corridor, Neighbourhood, Station

Context
Urban, Suburban, Greenfield

Mode of Higher Order Transit
Metro (Transport Commission of Shenzhen Municipality & Shenzhen Metro Group)

Size of City (Population)
11 million (Tier-1)

Case Study Covered in WB Publication
No

URBAN CONTEXT

China's population is rapidly urbanizing, with 70% of its citizens expected to be living in urban areas by 2030⁰. Shenzhen is no exception, with a rising population of 11 million and the fastest urbanization rate in Eastern Asia.¹ With such fast growth and a large urban realm, the provision of adequate and readily available public transportation is an essential part of combating and avoiding the congested road conditions that result in large populations. Metro integration within large cities is known as an effective, but expensive method of providing public transit.

Shenzhen is one of China’s most rapidly growing cities in terms of economy and urbanization. With over 11 million people residing within the city in the Guangdong province, its large urban extent allows for a fairly low population density of over 2,000 people per square kilometer.¹ This is substantially smaller when compared to its counterparts in Asia. Shenzhen has become one of the frontier cities that is leading the economic growth of China as the first of the nation’s five Special Economic Zones (SEZ).² Special economic zones receive allowance from the government for more flexible, free market-oriented economic policies. Shenzhen is unsurprisingly designated as an SEZ, as after less than twenty years of development, it has transformed from a small fishing village to one of the largest metropolises in China.

In the 1990s, the economy in Shenzhen continued to grow exponentially, with a significant increase in secondary industries. The market-oriented policies allowed for foreign investment, which has led to continuous growth in the manufacturing industry.

With such immense growth, Shenzhen has started to design and develop a new development strategy for the city called the “Shenzhen 2030 Urban Development Strategy.” Amongst this strategy is a focus on public transit, emphasized at the city’s most major form of infrastructure development moving forward. In meeting this goal for improved public transit, the city began its strategic planning of a metro in 1998. The resulting metro and its funding methodology remain a model for transit implementation in Asia.
OVERALL TOD STRATEGY & CITY STRUCTURE

IMPACT ON URBAN FORM

The improved convenience, accessibility and quality of life allowed for by transit attracts development, intensification and investors to the rail corridor. The R+P funding mechanism is largely dependent on using the consequent increase in land value to incentivize the involvement of private stakeholders. The scarce availability of land in Shenzhen, due to its hilly topographic nature, allows for continued high housing prices. It is this scarcity which motivates the joint development undertaken by Shenzhen, SZMC and MTR.

The first phase of subway development was guided by government investment. Lacking experience with substantial transportation infrastructure projects like the metro, Shenzhen failed to capitalize on integrating property development with public transit development. In the Chinese context, the notion of transit-oriented development has yet to become supported by planning policy. The inflexible nature of Chinese planning policy does not allow the integration of transit and property development, and measures such as up-zoning for high-density development surrounding the rail corridor are not triggered by transit creation. The lack of integration of the interrelated systems led to the first phase of development largely ignoring land value, as the time-consuming nature of changing policy to support TOD would have led to too many delays.

The second phase of the metro development was much more cognizant of subsequent increases in land values and used this to incentivize the SZMC to assist in funding the rail development. Special auctions of land were used to ensure that the metro company would receive land at a discounted price. Moreover, land concessions were refunded to the company as capital investments, which gave SZMC use of the land for no charge, while also allowing the value captured after the construction of the metro to be kept by the company.

Finally, in the third phase of metro development, land-equity investments were engaged in place of capital investments. This agreement granted undeveloped land along the corridor to a third-party, thereby incentivizing involvement through the promise of land-value appreciation. In the case of the MTR, land premiums were shared 50/50 between the private entity and the government, in exchange for a build-operate-transfer agreement (BOT).

Overall, the strategy for utilizing land values in funding the metro construction after establishing an R+P mechanism involved creating value, realizing that value and recycling it. Creating value involves the strategic siting of routes, stations and updating zoning parameters to allow for more profitable transit-oriented development along the rail corridor. This value must then be realized by transferring land use rights to the involved stakeholders in exchange for joint development of the subway that captures land value premiums for the land developed after the metro construction. Finally, these land values can be recycled by using the land value appreciated to fund future transit and urban design projects that will further increase land values.
FINANCIAL MODEL

In the context of Shenzhen, the rapid growth and economic affluence the city is experiencing lends to the application and viability of Metro-led transit-oriented development (TOD). As a central manufacturing city, connectivity to surrounding metropolitans in the Pearl Delta River Region could be improved with the introduction of a metro system. Specifically, the strategy looked to improve connection with Hong Kong SAR, China. To justify such a large undertaking, the innovative funding approach of Rail + Property (R+P) funding was experimented with, a trailblazer of its kind.

R+P funding not only encourages both state-owned and private metro companies to participate in R+P projects, but also uses innovative land-use rights transaction methods to overcome current barriers within the land-leasing system. During the early stages of R+P implementation, it was realized the R+P was a new concept for local developers and led to increased costs and risks for private companies. Particularly impacted was local metro company—Shenzhen Metro Group. To incentivize SMG, the local government reduced its cost and risk burdens through a complex financial arrangement. The R+P financial scheme in the context of Shenzhen can be separated into three phases: government-led capital investment, auctions with special conditions and land-concession fee reimbursement, and land equity investment.

The first, government direct investment, was scaled back to reduce public costs and to place a larger onus on private companies to invest. The Shenzhen city government, Reform and Development Commission, and Planning Commission proposed to decrease of government investment in capital costs from 70 to 50 percent, forcing the metro company to use bank loans and property development to make up the difference.

Consequently, the government used special auctions to transfer land to Shenzhen Metro. Traditionally this land would have to be auctioned in an open, public auction. However, the city ventured to pilot special auctions for R+P development projects. Special terms restricted the number of bidders, ensuring that Shenzhen Metro would obtain the land at a low price. Finally, land concession fees paid by the metro company were diverted to fund capital investments for the subway. This complex method allowed the city to grant land-use rights to the subway company free of charge, while also allowing Shenzhen Metro inherit the land premiums captured in the future.

This three-phased financial scheme was not only an incentive for private entities to become involved, but also reduced the costs and risks undertaken by the government. Through a build-and-transfer (BT) arrangement for property development, construction risks were minimized and the private stakeholders were held accountable for their involvement in the project team. The implementation of R+P is vital to the success of the Shenzhen metro project and is a financial strategy that could improve the viability of metro projects going forward.
KEY STAKEHOLDERS & GOVERNMENT RELATIONSHIPS

Traditionally, the onus for large infrastructure projects, such as this, falls on the government and public to fund and implement. However, this case study exemplifies the beneficial shift from government-led to mixed-model funding of public transit projects. Shenzhen’s exploration with R+P includes a partnership between the government and key stakeholders, the Shenzhen Metro Group and the MTR Shenzhen Corporation. Both private entities shared in the responsibility of financing the metro through an incentivized approach that captures the future land value and resources following the completion of the project.

The Shenzhen Metro Group Co. (SZMC) was enacted in 1998 as a large-scale proprietor under the control of the state-owned Assets Supervision and Administration Commission of the Shenzhen government. Creating the state-owned private entity allowed responsibility for metro expansion, construction and operation to be held in the private sector. Today, the private entity is responsible for the continued operation of the metro system it constructed and looks to continue to improve the safety and comfort of existing services.

The MTR Shenzhen Corporation was the second stakeholder in the construction of the Shenzhen Metro. The corporation is Hong Kong SAR, China’s major rail developer, as well as a significant land developer. Their role in the metro construction was incentivized by offering them pre-rail value for land abutting the rail corridor, lending to profitable and discounted development for the corporation.

The evolution of the Shenzhen Subway’s financing mechanism has benefited from more than 10 years of efforts by the Shenzhen city government, dramatically altering the process of obtaining capital investment for large infrastructure projects. Instead, a flexible mechanism of cost recovery was created that made infrastructure costs a shared public-private investment and revenue generator. This approach was effective in incentivizing the subway company to participate in R+P programs and ensuring the financial sustainability of subway projects. R+P development leverages the partnership between the public sector, transit companies, and developers for a collaborative financing and development scheme. By capturing the land value appreciation that follows transit projects, R+P can successfully finance large infrastructure investments without long-term debt for stakeholders.

DESIGN STRATEGIES TO ENCOURAGE TRANSIT USE

The success of Shenzhen’s R+P planning can also be attributed to a streamlined and coordinated planning process that integrates multiple disciplines. Shenzhen borrowed from Hong Kong SAR, China’s experience to streamline the details of the different phases of rail transit plans and to adjust its planning process. This adjustment allowed for the creation of synergies between rail transit plans and the overall urban planning process, paving the way for successful TOD.

The coordination between land-use and transit plans in Shenzhen occurs at the route level by bundling zoning revision with transit planning. Specifically, once the route plan of new metro lines is determined, an independent market analyses can be conducted and land-use surveys can pinpoint vacant lots with high development potential. The planning institute can then collaborate with the metro company and other governmental departments, to shortlist land lots for joint development. The zoning of these properties will be discussed by stakeholders to reach a consensus. Normally, the FAR of developable sites near metro stations is increased significantly, and more diverse land uses are permitted. This draft route plan with zoning proposals will be then submitted to the municipal planning committee (led by the mayor of the city) for further deliberation.

Despite this innovative process, Shenzhen’s integrated planning experience remains limited, when compared with Hong Kong SAR. As the “master planner and designer,” the MTR Corporation is actively engaged in the entire urban planning process, whereas in Shenzhen they play a weaker role in the planning process and only route-level plans are determined. This late-stage engagement may lead to missed opportunity for joint development, thereby restricting the extent to which transit plans could be optimized. Thus, to fully achieve designs that reflect transit-oriented development, the policy framework that allows for integrated land use and transit planning must be advanced.

INCLUSIVITY & AFFORDABLE TOD SYSTEMS

The Songgang rolling stock depot is a typical example of the R+P development occurring in the suburbs of Shenzhen (Type 1). It is located near Bitou Station along Line 11 and borders Shenzhen and Dongguan. The depot covers an area of 42.09 hectares and is zoned as a “special control zone,” based on future anticipation for subway construction. In line with the aspirations of local communities, this land will not only be served by public transit services, but will be equipped with mixed uses and community facilities.
These include:

- Affordable housing on land above the rolling stock depot—FAR 2.0.
- Schools and residential housing east of the depot—FAR 3.0.
- Commercial and office developments near Bitou Station—FAR 6.0.

Along with the renewed affordability of R+P housing along the rail corridor, using the metro costs only 2 yuan for the first 4 kilometers of travel. While this is accessible, riders from more affordable and periphery locations in Shenzhen may experience higher metro costs, as prices vary based on distance. This potential lack of affordability further justifies the integration of TOD design strategies like active transportation with the metro system. Adaptations and inclusions such as improved walkability could assist in keeping the metro system as affordable as possible.4

IMPLEMENTATION OF SOLUTION

APPROXIMATE TIMELINE

- **1998**: City began strategic planning of a metro. Shenzhen Metro Group was enacted.
- **December 2004**: Metro service began.
- **June 2011**: 5 more lines were opened.
- **2016**: Line 7, 9, 11 opened.
- **2030**: Planned completion target.

ACTIONABLE STEPS

- Identify needs/ Take Inventory
- Create Strategy Plan (Phases)
- Identify Key Stakeholders
- Find Funding
- Mitigate Competition
- Optimize/ Utilize Land Value
- Create Design Strategies to Encourage Transit Use

KEY LESSONS LEARNED AND BEST PRACTICES

SUMMARY

Shenzhen’s metro system is a precedent for effective metro implementation, as its funding methodology improved the affordability of the mode for local governments and allowed for a public-private partnership in funding transit.

Although the Shenzhen metro construction may not be a perfect example of TOD, it shows definite strives towards becoming transit-oriented and its R+P funding strategy stands as an exemplary model for increasing the viability of metro systems within low-mid income cities.

ROADBLOCKS AND WAYS TO IMPROVE

In the Chinese context, the notion of transit-oriented development has yet to become supported by planning policy. The inflexible nature of Chinese planning policy does not allow the integration of transit and property development, and measures such as up-zoning for high-density development surrounding the rail corridor are not triggered by transit creation.

To improve from a situation like this they largely ignoring land value at the beginning phases, as the time-consuming nature of changing policy to support TOD would have led to too many delays. Then they established an R+P mechanism involved creating value, realizing that value and recycling it.

KEY LESSONS

The following key takeaways should be derived from the Shenzhen example:

- R+P funding uses innovative land-use rights transaction methods to overcome current barriers within the land-leasing system.
- The successful transition from a State-owned subway company to Private-owned subway companies.
- Streamlining and coordinating the planning process by integrating transit planning, land use planning and financial planning allowed for the creation of synergies between the series of rail transit plans and the overall urban planning process.
ENDNOTES

ASIA | CASE STUDY

GUANGZHOU, CHINA

Source: Arch Daily 2018 ©Terrence Zhang; Reproduced with permission from Terrence Zhang; further permission required for reuse.
URBAN CONTEXT

Guangzhou is the capital of Guangdong province and the third-largest city in China with over 14.5 million residing within in. Located North of Hong Kong SAR, China along the Pearl River, the city is rapidly growing in density, with nearly 1,800 people per square kilometer. The city is well-known as both a commercial center and a bustling port city with a sprawling population.²

As one of China’s largest metropolitans, meeting the demands of a rapidly growing population places a burden on Guangzhou’s public resources and services. The drive towards being a developed and world-class city required the strategic thinking that led to the initiation of the Bus Rapid Transit system. Particularly, Zhongshan Avenue is the corridor that links the most rapidly growing districts within Guangzhou. At its most western point, the Tianhe District on Zhongshan Avenue is home to intensive growth and densification, with large-scale high-rise development and a new rail station residing within it. At the end of the 22.5 km corridor, the Huangpu District is also dense and nature and urbanizing to include large high-rise communities and developments. With the urbanization and intensification occurring along Zhongshan Avenue, updating the transit networks to support this growth will be vital to the city’s prosperity and overall efficiency.²

Prior to the introduction of the Guangzhou Bus Rapid Transit (BRT) system, congestion, gridlock and overcrowding, were words that characterized the former public bus system of China’s Guangzhou. The city of over 14.5 million residents was tasked with the difficult challenge of reforming the flawed transit system to more effectively serve the users along Zhongshan Avenue, a central truck road, particularly.⁴ Adopting a method of relieving the high demand placed on the bus and road systems along the corridor was a necessary adaptation to improve the efficiency and success of their transit systems. These challenges led way to the creation of Guangzhou’s Bus Rapid Transit (BRT) system, which would soon become one of the most successful of its kind in Eastern Asia. The 2011 Sustainable Transport Award winner for innovative transport solutions, Guangzhou’s BRT is a leader of its kind. Executive Director of the Institute for Transportation and Development Policy has stated “Guangzhou’s transformations are nothing short of amazing... The new BRT system is changing perceptions about bus-based and high-quality mass transit. We hope all cities, not least those in the US, will be inspired by these examples”.⁵ A good example of successful transit-oriented development (TOD) and BRT implementation, the system is a prime illustration of the success transit can bring a city.
Although Guangzhou is void of specific policy promoting development along the BRT corridor, in practice, the city’s planning authorities are more inclined to allow higher-density developments in recognition of the need for improved traffic conditions. The authorities are also open to relaxing minimum parking standards in light of the BRT’s presence.

OVERALL TOD STRATEGY & CITY STRUCTURE

A BRT system was determined to be the most economical and timely method to overcome the shortcomings of the city’s transportation networks. The alternative, building a metro system, posed the challenge of huge capital costs and delays in resolving congestion. Enacting this strategy was not without its challenges, as authorities had to overcome decades’ worth of disjointed and piecemeal transportation planning within the city’s street network. Years of slow service and delays on the bus system also left negative perceptions of bus transit with city residents.

Despite the circumstances, Guangzhou successfully opened its 22.5-kilometre BRT corridor in February of 2010. It was structured with the goal of reducing congestion on one of the city’s busiest roads, Zhongshan Avenue. With aims of improving the overall efficiency of the existing bus system, combating congestion and its environmental impacts and changing public perception, the BRT represented a step towards transit-oriented development. Today, the Guangzhou BRT boasts of 850,000 average weekday riders, making it the busiest bus corridor in Asia (and the second-busiest bus corridor in the world, after Bogota). The Guangzhou BRT’s passenger flows are more than three times than those in other BRT systems within Asia.

To achieve such success in their BRT system, Guangzhou used careful planning and analysis to justify such a large-scale system. With twenty-six stations along a 22.5 kilometer stretch of the city’s most congested roadway, the strategic approach includes express routes, designated bus lanes, direct metro connections and higher-capacity buses. Moreover, the system would support some of the world’s highest flows and capacity, with buses arriving at stations every ten seconds during peak hours. Demand analyses played a large role in designing the system, with each BRT station designed to have separate east and westbound waiting platforms located on corresponding sides of the bus lanes. Their sizes have been calibrated to meet modeled demand and the needs of bus operations. Some stations are as short as 55 meters while Gangding, the busiest station in the world at 55,000 daily riders, is 250 meters long (the world’s largest) and has multiple pedestrian bridges for access.

The construction of the system was phased, with the first phase completed in February of 2010. Paired with the improvement of active transportation networks and supplementary transit systems along the BRT corridor, the approach proved to be the relief required for the congestion experienced along Zhongshan Avenue.
KEY STAKEHOLDERS & GOVERNMENT RELATIONSHIPS

In achieving such a successful implementation of the BRT system, stakeholder collaboration of both public and private entities was vital. Preliminary planning for a BRT system in Guangzhou began in 2003 by the Guangzhou city government. With no exemplary high-capacity BRT systems in China, the city was considering other corridors with significantly high congestion. To help with this the government enlisted the aid of The Institute of Transportation and Development Policy (ITDP) and Guangzhou Municipal Engineering Design and Research Institute (GMEDRI) for the planning and design. The two groups drafted the concept plan and carried out demand analyses and corridor comparison. They also drew up the operational and traffic plan, which included opening the BRT to more than one bus operator and allowing the buses to run both inside and outside the BRT corridors. The overall infrastructure funding for the project was provided by the Government of the People’s Republic of China. Once the plans were constructed they were run by the operating agency GZ BRT Management Company and seven private bus companies.7

FINANCIAL MODEL

Capital costs for the Guangzhou BRT project reached 950 million Yuan (USD 103 million), which although high, is about one-twentieth of the per-kilometer costs of the alternative, a metro expansion.2 The cost-effective investment was a more efficient way of increasing capacity and did not lead to increased consumer costs, due to significant government subsidy to reduce fare prices. The consequent benefits and cost-saving measures initiated through the BRT, including reduced operating costs, time savings, and reduced emissions and thereby emission credit and reduced consumer trip and health costs would pay for the project in just one year. The financial return on this initial government investment justifies the use of the BRT as a resolution for the congestion issues faced in Guangzhou.

<table>
<thead>
<tr>
<th>Source: ITDP 2011 ©ITDP. Reproduced with permission from ITDP; further permission required for reuse.</th>
<th>Table 3: Annual value created by the BRT System</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aggregate yearly operating cost savings</td>
<td>93 million yuan (USD 14 million)</td>
</tr>
<tr>
<td>Value of aggregate time savings (2010)</td>
<td>158 million yuan (USD 24 million)</td>
</tr>
<tr>
<td>Average yearly value of certified emission credits</td>
<td>25 million yuan (USD 4 million)</td>
</tr>
<tr>
<td>Aggregate consumer savings on trip cost in 2010</td>
<td>672 million yuan (USD 103 million)</td>
</tr>
<tr>
<td>Yearly reduction in health costs from respiratory illness</td>
<td>Unknown</td>
</tr>
</tbody>
</table>

DESIGN STRATEGIES TO ENCOURAGE TRANSIT USE

Public and green space improvements along the BRT corridor became a priority after its initiation. Guangzhou began implementing a greenway improvement project in 2010, creating hundreds of kilometers of green corridors across the city. This scheme saw the restoration of the Donghaochong Canal, an ancient canal that dates back to the Song Dynasty, which several BRT routes serve. The effort is part of a major project to clean up waterways around the city, including several canals connecting with the BRT corridor.

Additionally, cycling has received higher priority, with fully-separated and updated bicycle lanes built along both sides of the entire BRT corridor. Bicycle sharing programs have been enacted along the corridor, offering over 5,000 bicycles to citizens and thereby reducing motorized trips by over 7,500 daily, according to the ITDP.1 The corridor also offers safe, free bike parking along the bus route. Pedestrian safety and comfort was also prioritized through the enactment of the BRT in Guangzhou, with the addition of new street crossings, pedestrian bridges connecting BRT stations to adjacent buildings and, whenever possible, seamless urban design and architecture that lend to a more comfortable walking experience. These investments have significantly improved perceptions of pedestrian safety and the quality of the walking environment.2
INFRASTRUCTURE PROVISION FOR DENSITY

Although the Donghaochong Canal restoration project was not directly coordinated with the BRT project, improvements in this area and in public spaces and pedestrian facilities along the BRT corridor will help retain high levels of transit passengers, by ensuring that corridors for accessing BRT by walking and cycling are attractive and vibrant. A similar transformation of a drab streetscape into a spectacular public space was achieved through the restoration of the Lizhiwan Canal, which also opened in 2010. These serve as examples of the shift towards transit-oriented development and corridor improvements in Guangzhou, as a shift towards improving the image and functionality of the BRT corridor has come to exist.

Until recently, the Donghaochong Canal was a polluted ditch running mostly under an elevated expressway. Uncontrolled urban development had encroached on the banks of the canal, and buildings were periodically flooded when waters overflowed the banks, sometimes spilling sewage into adjacent residential and commercial properties. Starting in 2009, a 3-kilometer stretch of land along the Donghaochong Canal was cleared and turned into a greenway, featuring world-class walking and cycling facilities and popular new green public spaces. In the surrounding area, more than 329,000 square meters of new commercial real estate is being developed. The Donghaochong Canal Museum, housed in two historic villas, recently opened providing information on the canal and its history. The greenway project attracts people to live, work, and play and has become a popular free swimming area in the summer.

INCLUSIVITY & AFFORDABLE TOD SYSTEMS

Along with improved modal options for BRT users, affordability has also significantly improved with the creation of the BRT system. Bus fares have undergone substantial simplification and restructuring as a part of a citywide low-fare program. Previously most bus fares were 2 Yuan (USD 0.30), though some longer routes had fares as high as 5 Yuan. As of 2010, all route fares cost 2 Yuan, a deliberate attempt by city government to subsidize and make the BRT system more accessible to all citizens. Also, within the BRT system, riders are allowed free bus transfers, whereas outside the BRT system they must pay a second fare to transfer. Smart Cards provide frequent BRT users a discount as well: after the first fifteen rides in a month subsequent fares are 1.2 Yuan. All of these changes have the effect of decreasing the average fare price for BRT riders.

However, not only low-income households are enjoying the benefits of the project. Higher-income households along the BRT corridor, often car owners, initially opposed the BRT, fearing traffic conditions would worsen because of the reduced road space for cars. Contradictorily, the BRT has improved not only bus speed and travel time, but also private car speeds and travel time. With an encouraged and incentivized use of public transit, less private vehicles on the road has been beneficial for both the BRT system and those who decide to travel by private vehicle.

For those without cars, the BRT system has significantly enhanced regional accessibility by reducing the amount of time needed to travel around the city. It has also reduced travel costs, as users can transfer for free from BRT buses to other buses serving different routes. The system bodes well for lower-income households by allowing them simple access to the city center, while retaining their lower-value property on the periphery of the city. This increased affordability can be attributed to the success of the overall system.
IMPLEMENTATION OF TRANSIT ORIENTED DEVELOPMENTS

APPROXIMATE TIMELINE

- 2003: Preliminary planning for a BRT system began
- 2005: Conceptual plan, demand analysis & corridor comparison
- 2006: Phase 2 planning; traffic, operational and design planning; & demand analysis for Phase 1
- 2007-2008: Implementation planning & design
- 2009: 3km stretch along Donghaochong Canal was cleared and turned into a greenway
- 2010: First phase of construction completed February

ACTIONABLE STEPS

1. Identify needs/ Take Inventory
2. Conduct Analysis of Area
3. Create Strategy Plan (Phases)
4. Identify Key Stakeholders
5. Find Funding
6. Optimize/ Utilize Land Value
7. Create Design Strategies to Encourage Transit Use
8. Market to Encourage Active Transport

KEY LESSONS LEARNED AND BEST PRACTICES

SUMMARY

A good example of successful TOD and BRT implementation, the system is a prime illustration of the success transit can bring to a city. The success of the project will undoubtedly bring transit-oriented development that intensifies and urbanizes the city along the Zhongshan corridor, lending to a more environmental and social-inducing urban form. Evidence from around the world shows that when high-quality transit service is in place, it encourages denser, more mixed-use land uses, setting a land use pattern more conducive to walking, biking, and transit in place of automobile trips. If this investment in multi-modal transportation encourages even a very small fraction of the several million people who live along the Zhongshan corridor to forgo a car purchase the impacts on GHGs is very large. Further, if local developers capitalize on these alternative transport assets and build dense, walkable, mixed-use housing developments with low parking ratios, the impact will grow larger than estimated here and be better sustained over time.

ROADBLOCKS AND WAYS TO IMPROVE

Enacting this strategy was not without challenges, as authorities had to overcome decades’ worth of disjointed and piecemeal transportation planning within the city’s street network. Years of slow service and delays on the bus system also left negative perceptions of bus transit with city residents. The methods used to improve were careful planning and analysis to justify such a large-scale system. Demand analysis played a large role in designing the system. The project also supports a comprehensive approach to transportation planning in rapid-growth scenarios, as congestion cannot be resolved without a balanced modal share and shift in user attitude.

KEY LESSONS

The following key takeaways should be derived from the Guangzhou example:

- Adopting a method of relieving the high demand placed on the bus and road systems existing along the corridor were a necessary adaption to improve the efficiency and success of their transit system
- The Guangzhou BRT boasts 850,000 average weekday riders.
- Public/ Private Partnership.
- Exemplifies modal connectivity and encourages active transportation as a supplementary mode, with updated cycling and pedestrian infrastructure that is both safe and of world-class design.
ENDNOTES

ASIA | CASE STUDY

SEOUL, REPUBLIC OF KOREA

Source: Adrianna Guzman 2018 ©Adrianna Guzman. Reproduced with permission from Adrianna Guzman; further permission required for reuse.
With over 22 million residents and a population density of 10.4 million inhabitants over a land area of 605 square kilometers, Seoul is one of the largest and fastest growing mega-cities in the world. Amongst this population, only a small percentage of Koreans have access to a car (2 per 1,000 persons) as of 1970. Although ownership has increased vastly over the last 30 years, with 215 of every 1,000 currently owning a vehicle, this increase can be attributed to the inadequate transit provision within Seoul. The result of such demand is a burdened bus system, characterized by both high passenger volumes, lengthy ride durations and distances and reduced bus speeds. Demand greatly outweighing the public provision of transit, a drive towards transit-oriented development (TOD) became a necessity to solve the overwhelming congestion and declining bus quality experienced in the city.

Until 1974, Seoul was almost entirely dependent on bus services with intensive congestion, passenger volumes and trip distances. This encouraged the creation of an urban rail system. Seoul’s first metro line was enacted in 1974 and has since grown to a total of 487 km in 2004 with close to 400 stations. The rail network in Seoul is now one of the largest in the world and carries 8.4 million passengers per day—more than twice the daily passenger volumes on the New York subways and the London underground.

The main problem, however, was poor bus service, which, in turn, encouraged increasing car use. Although it did not deal with the core problem of unregulated private bus firms, the Seoul Metropolitan Government made several attempts to improve bus service and ridership. The first curbside bus lanes were installed in 1984 and expanded to 89 km by 1993, 174 km by 1994, and 219 km by 2003. The network of reserved bus lanes helped speed up bus travel somewhat, but it did not succeed in raising bus use. Clearly, more drastic changes were necessary. Hence, Myung-Bak Lee, the former mayor of Seoul, implemented more pressing reforms that involved generating car-dominated areas, reclaiming space for pedestrians, and fully integrating a BRT system supported by policy interventions and technical advocates. Due to such high densities, the Seoul metropolitan government over the years has also aggressively sought to decentralize growth, mainly in the form of building master-planned new towns sited on the region’s periphery.

QUICK FACTS

Geographic Context
East Asia (Republic of Korea)

Scale
City, Neighbourhood, Station and Corridor

Context
Urban and Suburban

Mode of Higher Order Transit
BRT and Metro

Size of City (Population)
25 million (Tier-1)

Case Study Covered in WB Publication
Yes
OVERALL TOD STRATEGY & CITY STRUCTURE

Over the past several decades Seoul has followed a pattern of American-style sprawl with a rise in private automobile ownership. However, population densities in Seoul have historically been and remain high by global standards. The city of Seoul itself, along with the port city of Incheon and surrounding Kyunggi Province, constitute the Seoul Metropolitan Area (also called the Seoul National Capital Area), with more than 23 million inhabitants—the world’s second-largest urban agglomeration. In 2006, Seoul and Incheon combined had the sixth-highest population density in the world (16,700 people per square kilometers).

The deep reform of public transport in Seoul has been a major step towards retaining its competitive edge. The former Mayor of Seoul, Myung-Bak Lee, led the charge of reinvesting in Seoul. In 2001, Lee ran for mayor of Seoul, largely on a platform of reinvigorating the central city as means of creating a more sustainable yet productive city. His platform called not only for expanding public transit services, but also for reducing the ecological footprint of private cars by reclaiming urban space consumed by roads and highways. “Why scar the interior of the city,” he reasoned, “to funnel suburbanites to office jobs in the core?”

INFRASTRUCTURE PROVISION FOR DENSITY

A major culprit was the network of elevated freeways into central Seoul—facilities that severed longstanding neighborhoods, formed barriers and created visual blight. Although freeways provided important mobility benefits, Lee recognized that those benefits had to be weighed against their nuisance effect. Public transit had to be substantially expanded and upgraded to absorb traffic. The city did so by extending subway lines and creating seven new lines of exclusive median-lane buses (stretching 84 kilometers, later expanded to 162 kilometers) and 294 kilometers of dedicated curbside bus lanes.

LAND TENURE & LAND VALUE CAPTURE

The freeways to greenways conversion created higher market demands. The greenways along the TOD corridors further boosted land value and development activity along these busy corridors. When the elevated freeway existed housing prices within three kilometers fell. This shows the previous blight that Mayor Lee spoke about. When the freeway was convert to a greenway the housing prices within 2km of it rose as much as 8%. More high-value industries and commercial parcels also came to the corridors near the greenway. This spoke volumes for the community’s values. Quality of place won over a car dominance.

KEY STAKEHOLDERS & GOVERNMENT RELATIONSHIPS

The former Mayor Lee, and the Seoul Development Institute (SDI) were crucial in enacting far-reaching reforms for Seoul’s public transit system. When elected in June 2002, Lee promised to improve the public transport system in Seoul and commissioned a series of comprehensive studies performed by the research division of SDI. The studies resulted in recommendations for the modernization of the metro and bus fare structures and payment systems, better integration of bus and metro services, an expanded network of reserved bus lanes, and a complete overhaul of the organization and operation of bus services. The transport specialists at SDI, led by Dr. Gyengchul Kim and Dr. Keeyeon Hwang, were the main technical advocates for these changes, while Mayor Lee and his staff provided the necessary political support.
DESIGN STRATEGIES TO ENCOURAGE TRANSIT USE

One of the first major changes was an entire redesign of the bus network to integrate more than 400 different bus routes. All bus services are now grouped into four types, color-coded for passenger ease.

To coordinate bus services, the Seoul Metropolitan Government set up a new Bus Management System (BMS) using advanced intelligent transport system (ITS) technology. Global positioning system (GPS) terminals located in every bus now permit a central bus control center to monitor all bus locations and speeds, adjust the number of buses per route, communicate with bus drivers, and provide real-time information to passengers. The new BMS facilitates more dependable bus service and optimizes service distribution by adjusting bus assignments and schedules to conform to travel demands.

In addition to the complete redesign of the route network, the system of dedicated bus lanes was expanded from 219 km to 294 km, with more expansions planned. Most significant, however, is the development of a true BRT network with dedicated center bus lanes, high-quality median bus stops, real-time information integration and state-of-the-art buses.

The Seoul Metropolitan Government now views BRT as a much more economical and efficient way to provide public transport services than metro expansion, which can take many years to construct and requires large capital investments.

Nevertheless, the extensive rail system in Seoul remains the backbone of public transportation. Better integrating bus services with the metro is, therefore, essential. Bus routes and stops have already been relocated to facilitate simple transfers between modes. The city is currently in the process of building 22 additional transfer centers as well.
IMPLEMENTATION OF TRANSIT ORIENTED DEVELOPMENTS

APPROXIMATE TIMELINE
- **1953**: First public bus began services
- **1970**: Only 2 in every 1000 people had access to a car
- **1974**: Seoul Conducted its first metro line, 8km long
- **1984**: First curbside bus lanes were installed
- **1993**: Bus lanes expanded to 89km
- **1994**: Bus lanes expanded to 174km
- **2001**: Myung-Bak Lee ran for mayor on the platform of reinvigorating the central city as means of creating a more sustainable yet productive city
- **June 2002**: Lee was elected and promised to improve the public transport system
- **2003**: Bus lanes expanded to 219km
- **December 2003**: Results from studies performed by SDI were published recommending coordination and modernization of the metro and bus systems.
- **January 2004**: Mayor Lee conducted public relations campaign to explain the benefits of reform
- **July 2004**: Start date for implementation of reform
- **2004**: Metro line expanded to 487km and bus lanes expanded to 294km
- **July 2009**: Metro line 9 opened for operation

ACTIONABLE STEPS
1. Identify needs/ Take Inventory
2. Create Strategy Plan (Phases)
3. Establish Policies
4. Identify Key Stakeholders
5. Optimize/ Utilize Land Value
6. Create Design Strategies to Encourage Transit Use
7. Market Plan

KEY LESSONS LEARNED AND BEST PRACTICES

The dramatically altering reforms of July 2004 completely restructured bus services in Seoul and increased demand-based control over routes, schedules, and other aspects of service. An integrated metro and bus system allow for seamless transition between modes and a far superior overall public transport system. Central to the reforms was the introduction of an entirely new system of fully-separated BRT routes.

Studies have proven that BRT systems around the world can provide excellent express service at a fraction of the cost of new rail systems. The experience with BRT in Seoul has been a resounding success.

ROADBLOCKS AND WAYS TO IMPROVE

One roadblock appeared right after the major reform in which there was tremendous service disruption, public discontent, and political uproar. A smooth transition to the completely new bus routes, fare structure, and fare payment system required more time. In particular, there should have been a trial period to test the reforms on a selective basis instead of immediately adopting them system-wide. Mayor Lee created campaigns to inform the citizens about this major reform however he only ran the campaign for six months prior to the start date. To improve this in the future, more time and effort to distribute the appropriate information to the public before implementing the reforms should be planned.

KEY LESSONS

The following key takeaways should be derived from the Seoul example:

- Mayoral-led efforts
- Minimized network of elevated freeways
- Both BRT and metro lines were exponentially increased in length
- Integrated Intelligent Transportation Systems (ITS)
- Created 400 bus routes and constructed 22 major transfer centers.
ENDNOTES

AMERICAS | CASE STUDY

MEXICO CITY, MEXICO

Source: Mexperience 2016 ©Foreign Native. Reproduced with permission from Foreign Native; further permission required for reuse.
MEXICO CITY, MEXICO

QUICK FACTS

Geographic Context
South America (Mexico)

Scale
City, Corridor, and Station

Context
Urban

Mode of Higher Order Transit
BRT Metrobus and Metro

Size of City (Population)
21.4 million (Tier-1)

Case Study Covered in WB Publication
Yes

URBAN CONTEXT

Mexico City, the capital of Mexico, is home to over 17 million people and a population greater than any other city in North America. The city has a population density of approximately 8,400 people per sq. kilometer and is growing by 2.5% annually. With such an immense population and an urban area that is gradually becoming denser, various issues have come to arise as a result. Congested travel modes, significant pollution and smog, and unsafe transit systems are each a result of the growth Mexico City has been experiencing. In order to combat these adverse effects, in 2005, Mexico City created a Bus Rapid Transit (BRT) system called Metrobus.

Metrobus is the world’s sixth busiest BRT system and is a continually-expanding system which now carries more than 300 million passengers a year across 125 kilometers and six lines of exclusive bus lanes. Compared to the jitney bus services that BRT replaced, travel times in BRT corridors have fallen by 40 percent and there are 30 percent fewer accidents. In addition, 15 percent of drivers in corridors served by BRT reportedly have switched to public transit.

The improvements have also produced modest reductions in emissions of greenhouse gases and smog.

The Metrobus greatly enhanced the public sector’s direct involvement in the planning of key transportation services and administrative faculties, which had suffered throughout previous decades. This outcome is arguably just as—if not more—important than BRT’s impacts on mobility, safety, and pollution. Mexico City’s surface transit industry has transitioned from a system dominated by an unruly and unmanageable set of independent, small-scale operators concerned only for personal gain. Instead, a professional, modernized, faster, safer, environmentally-conscious system replaced jitney service improving the experiences of millions that rely on public transportation in their day-to-day lives.
OVERALL TOD STRATEGY & CITY STRUCTURE

Mexico City generated a quick-to-implement, modest, and yet highly visible programmatic success on key corridors in the city. In 2005, Metrobus opened and replaced 350 standard buses with 97 BRT vehicles, owned by both private and public companies. The project consists of two components, the first being the construction of a mass transit corridor along Insurgentes Avenue, integrated with traffic management for private vehicle travel. The system would include various elements for more efficient and comfortable travel including: exclusive bus lanes, upgraded pedestrian facilities leading to stations and low-polluting buses to replace the former polluting and low-capacity vehicles. The second component of the project would be the monitoring of the system and the creation of cycling linkages and new corridors to create a more integrated system.

The approach towards implementing the BRT system was particularly complicated for Mexican officials, as existing, independent bus and jitney providers were highly resistant to the movement, as it would essentially put them out of business. The independent operations being undertaken prior to the BRT can be characterized as unruly and unmanageable, with operation sacrificing service standards for revenue. The shift towards greater public control over transit allows for a focus on achieving transportation best practices that are beneficial socially, economically and environmentally. Reaching this point of public-sector control required strategic compensation, negotiation and persuasion at times. Initially, the government granted private operators compensation, which financially onerous, was replaced with guaranteed income in the new BRT system. Moreover, when financial methods were unsuccessful in inducing collaboration with jitney operators, city officials used rivalry groups to outflank operators that were not cooperating and threaten to move forward with new partner’s instead.

The siting of Mexico City’s first BRT system was also strategic in its creation. Although ridership was projected to be lower, BRT implementation began Insurgentes Avenue, on the basis that it was located in a very prominent area and that political negotiations with the independent bus operators were likely be simpler. This allowed for a less-costly and quick example of visible BRT success in the city, paving the way for subsequent corridors to be expanded to match the successes of Insurgents.

INFRASTRUCTURE FUNDING

In addition to the submission of opposition, the strategy towards BRT financing would prove both beneficial and forward-thinking for Mexico City. Projected to cost over USD49.4 million, a combination of public, private and carbon financing methods were used. Specifically, with regard to carbon financing, Mexico City government intended to use the purchase of greenhouse gas emission reduction to finance the project, as well as Clean Development Mechanism (CDM) revenues. With the objective of reducing carbon emissions through the introduction of the BRT, this financing method proved to be viable and resulted in more funding than anticipated for the Metrobus. Over 35,000 tons of carbon dioxide are reported to have been reduced annually due to the new BRT system.
KEY STAKEHOLDERS & GOVERNMENT RELATIONSHIPS

Essential to the success of Mexico City’s BRT system was the mayor-led drive for control over the existing transportation system in Mexico City. Gaining control over the formerly unmanaged private sector service providers, through compensation, negotiation and when unsuccessful, credible threats, allowed for public transit to be expanded to actually include the public sector. The project overall can be characterized as government-led, with the strategic integration of private entities to assist in financing and operating the system.

The planning, management and construction financing were largely provided by the Mexico City government. Internalizing infrastructure costs allowed for large-scale capital financing to be taken care of, while vehicle provision and fare administration were contracted to reputable private entities, RTP and CISA.

The newly elected Mayor, Lopez Obrador, strategically timed changes to Mexico City’s bus service to solidify public support, by pushing the agenda for both BRT and highway expansion, exemplifying an agenda of balanced transportation. This assisted in quieting the car-supportive voters that would normally have opposed the project. Policy objectives of safety, enhanced air quality, environmental sustainability and urban redevelopment of distressed areas of the city led the drive and appeal for the project.

This government intervention was paired with the creation of a new public entity, Metrobus, and partnering with private entities RTP and CISA, which would operate and maintain operations of the BRT. This allowed for safer and more professional operation of the public transit system that provided fair and objective fare systems to residents. As well, the city expanded the financial benefits of public-private partnership arrangements beyond original bus and jitney owners to generate more widespread industry support for the changes. Providing the public bus operator with the opportunity to act as a participant in the creation of the first BRT line, city officials gained the support of public sector workers, accessed their experiential wisdom, and reduced the number of new buses requiring financing.

Public and private entities involved also strived to be transparent with and cognizant of the citizens that would be utilizing the system. To understand whether a mandate for change existed within Mexico City’s residents, public consultation booths across the city were used to gain an impression of locals’ thoughts and opinions on a potential BRT system. By using a comprehensive approach, inclusive of the various stakeholders, Mexico City was able to introduce a system that was widely supported and successful as a result.
DESIGN STRATEGIES TO ENCOURAGE TRANSIT USE

Mexico City implemented tried and true policy templates from other cities, as well as, leveraging external resources to help catapult new ideas for transport onto the public agenda. Environment Minister Claudia Sheinbaum developed the BRT proposal with the support and advice of a global network of sustainable transport researchers, funders and development agencies. In designing their BRT system, Mexico City was driven by the mayoral political agenda of supporting a balanced transportation system.5 With this said, future developments intend to address cycling networks and the extension of the BRT corridor to better integrate these modes. With over 855,000 passengers daily, Metrobus has been successful in ensuring a shift from a car-dominated modal preference.4 Ridership has instead switched to transit, as well as cycling which has been seamlessly integrated into the BRT system with the 2010 creation of EcoBici. EcoBici is a bike sharing program created to increase the popularity of bike commuting in Mexico City, with over 6,000 bikes and 250 stations dispersed amongst the city as of 2015.3 The widespread system is efficient and simple to use and was strategically launched near transit stations to encourage multi-modal travel. With the intention to expand the system even further in 2018 and to improve bike infrastructure to support EcoBici, cycling is likely to be a large influence in discouraging car travel in Mexico City.

To encourage this increased transit use, which has resulted in a reduction of car use by 15%, focusing on the environmental aspect of transportation was an important driver.4 Formerly plagued by smog and pollution, the BRT system aimed to mitigate these adverse effects and reduced the amount of harmful air pollutants riders were exposed to be 2-3 times. Accident rates were also significantly reduced by up to 30%. Providing a safer and healthier system to its citizens was one important factor to improving their use of transit.4

Additionally, upgrades to the stations and fleet of buses being used allowed for greater capacity and comfort for riders. Overcrowding and congestion discourage ridership, thereby combating these issues is vital to encouraging transit use. The use of vehicles with a 160 passenger capacity versus the smaller standard buses in the past system was beneficial to tackling the issue of crowding.6 Moreover, the improved efficiency that arose from the BRT system was a vital determinant in encouraging a shift for private car use to public transit. Commute time have been reported to have seen reduction of up to half an hour and buses are strategically timed to arrive at high frequencies of up to 56 per hour during peak times of the day.6 In scenarios where public transit becomes the more efficient option, it is unsurprising that the modal shift moves in its favor.

Figure 27: MetroBus Station Design | Source: New York City Global Partners Innovation Exchange 2012 ©Metrobus.
INCLUSIVE & AFFORDABLE TOD SYSTEMS

Inclusivity and affordability are also essential parts of improving the appeal of public transit. In the case of Mexico City’s Metrobus, all paper tickets and cash payments have been removed from the system and payment occurs solely with the use of rechargeable fare cards. This method of payment, although efficient, has its shortcomings, in that only some of the stations have card recharge stations. It also costs citizens 10 pesos to initially purchase the card, which has impacts on the system’s affordability. Each ride costs 6 pesos, which includes as many transfers as needed and use of all five BRT lines. The ability to travel at such lengths and with unlimited transfers has the effect of improving the affordability of the transit line for riders that travel from periphery neighborhoods to the inner city. While the system may not be as largely subsidized comparably with examples in Asia, for instance, the price is by no means a complete barrier to public transit use.

In the spirit of transit-oriented development, including affordable housing in the developments that result along the BRT corridor is being emphasized to cater to the diverse population using the system. One example is the IntegrARA Iztacalco development which is less than a quarter mile from a BRT line and is reusing a greyfield industrial site to create 720 affordable housing units. The development includes courtyards, recreational spaces, cycling facilities and mixed-use, high density buildings to create a neighborhood closely resembling best practices of transit-oriented development. By catering to a broad range of income levels and providing a mix of private and public spaces with close access to both the BRT and metro corridors, the development makes living near transit an affordable option.

IMPLEMENTATION OF TRANSIT ORIENTED DEVELOPMENTS

APPROXIMATE TIMELINE

- **June 2005**: Metrobus Bus Rapid Transit (BRT) began operations - Line 1 Phase 1
- **March 2008**: Opening of Line 1 Phase 2
- **December 2008**: Opening of MetroBus Line 2
- **2010**: EcoBici, bike sharing program, was created
- **May 2010**: Start of construction of Line 3
- **February 2011**: Opening of Line 3
- **April 2012**: Opening of Line 4
- **November 2013**: Opening of Line 5
- **2015**: EcoBici had 6,000 bikes and 250 stations in Mexico City
- **January 2016**: Opening of Line 6
- **February 2018**: Opening of Line 7
- **2018**: Expand EcoBici system further and improve bike infrastructure.

ACTIONABLE STEPS

1. Identify needs/ Take Inventory
2. Create Strategy Plan (Phases)
3. Identify Key Stakeholders
4. Find Funding
5. Mitigate Competition
6. Optimize/ Utilize Land Value
7. Create Design Strategies to Encourage Transit Use
KEY LESSONS LEARNED AND BEST PRACTICES

SUMMARY
Mexico City’s implementation of a BRT system is well-known as best practice in the TOD development realm. With clear improvements to efficiency, environmental impact, rider satisfaction and capacity, the system has been a success. Mexico City was successful in their use of public-private partnerships and environmental reduction as methods of financing the large capital cost infrastructure project. Mexico City involved not only private corporations, but the bus operators and drivers as well, which allowed for a diverse investment group to buy-in to the project. Moreover, by focusing on the environmental aspects of transit provision, the city was able to capitalize on carbon emission reduction costs to finance the project, whilst also improving their ecological footprint.

ROADBLOCKS AND WAYS TO IMPROVE
A major roadblock while implementing the BRT system was the independent bus and jitney providers were highly resistant to the movement, as it would essentially put them out of business. The independent operations being undertaken prior to the BRT can be characterized as unruly and unmanageable, with operation sacrificing service standards for revenue. The way that they improved this situation was first by compensation, negotiation and persuasion. When financial measures were unsuccessful city officials used rivalry groups to outflank operators that were not cooperating and threatened to move forward with new partners instead.

KEY LESSONS
The following key takeaways should be derived from the Mexico City example:

- Project consisted of two components- Construction of a mass transit corridor and then monitoring the system and creating cycle linkages and new corridors.
- Metrobus greatly enhanced the public sector’s direct involvement in the planning and territorial management of key transportation services.
- Over 35,000 tons of carbon dioxide are reduced annually due to the new BRT system.
- Increased transit use resulted in a 15% reduction in car use.
- Accident rates have been reduced by to 30%.
- Less than a quarter mile from a BRT line 720 affordable housing units were created.

ENDNOTES
SANTIAGO, CHILE

QUICK FACTS

Geographic Context
South America (Chile)

Scale
City and Corridor

Context
Urban

Mode of Higher Order Transit
BRT and Metro

Size of City (Population)
6.3 million (Tier 2)

Case Study Covered in WB Publication
Yes

URBAN CONTEXT

Santiago, Chile, the capital city of Chile, is one of the most densely populated cities in the Americas. With a population of over 7 million people, it is the most populous city in Chile, with a density of almost 9,000 people per square kilometer. The population is dispersed across a large urban area, which continues to increase in its extents and population annually. Transportation in Chile has been known to be lengthy and inefficient, with safety and passenger treatment receiving very low priority. Between the absence of fare integration with other transport services or with the subway, higher demand than provision, the poor treatment of passengers and a high accident rate, the transit system does not provide an environment that encourages its use. Commuter resentment against the system was rising and according to a survey conducted in 2003, the bus system was voted the city’s worst public service.

Persistent and severe complaints prompted intervention from the government of Chile to overhaul the city’s public transport system with a metro and bus-based integrated system, focused on including a high-tech centralized control system. An entirely new transport industry structure was conceptualized and financed through an international bid for tenders.

The resulting system of a seamlessly integrated BRT and metro lends to the ideals of transit-oriented development (TOD) that are being emphasized in planning and development practices currently. A system of efficiency, passenger comfort and safety for both riders and the environment has resulted from necessary interventions.
OVERALL TOD STRATEGY & CITY STRUCTURE

Transantiago, the public transport system in Santiago, Chile is comprised of a bus rapid transit (BRT), feeder bus lines and a metro system. It completed its fourth year of operation in February 2011. Prior to Transantiago’s implementation, the city’s public transport system proved to be problematic. The system was fully privatized and run by 3,000 independent operators, using a fleet of converted trucks, unfit for public transport. Since 2001, the buses enabled 43 percent of the motorized trips in the city.3

Santiago’s overall strategy to improving the shortcomings of these systems was an integrated multi-modal system inclusive of a BRT and an expanded Metro network. BRT development involved the creation of 18.8 km of segregated corridors, 4.6 km of new road connections, 62.7 km of road and pavement improvements, and construction of about 70 bus stops.3 The bus fleet was made up of 1,200 new low-floor articulated trunk buses, 1,500 conventional trunk buses and 2,300 feeder buses.3 The expansion of the metro network expansion included construction of 66 km of tracks and 68 stations at a total cost of USD $2.4 billion. About 45 km of tracks were built between 2000 and 2006, enhancing the ability of the system to deliver 830,000 trips per day. Another 21 km were built after 2006 which enabled 254,000 additional daily trips.3 The integration of cycling facilities and bike sharing within public transit is also planned for enhancement, to allow for active transportation options with the modal split.

Integration of transit services involved the installation of a unified financial system, contactless fare cards, and the construction of two inter-modal stations. The system allowed for the integration of information systems for operational control and data collection, investment estimated at USD $30 million.3

Overall, the implementation of Transantiago was based on two objectives: complementation and integration. Complementation related to the enhancement of both the BRT and Metro systems to better complement each other and create a multi-modal system. Integration references the development of a single-fare system of both bus and Metro. Through these underlying objectives, a system that serves over.

DESIGN STRATEGIES TO ENCOURAGE TRANSIT USE

Santiago has utilized a variety of design strategies to ensure the increased and continued use of their transit services upon their expansion. A main driver in ridership is the seamless integration of the BRT and Metro systems. With a unified fare system which uses contactless fare cards, transferring between modes is efficient and affordable.3 In the case of Santiago’s two inter-modal transit stations, riders do not even have to leave the confines of the station to transfer between modes. This increased accessibility and convenience for riders is a vital influence in their use of the full transit system, all modes included.

Essential to furthering Metro and BRT integration was the introduction of connected cycling infrastructure within transit systems. Formerly, Santiago had very few cycling networks separated or on their roadways, which was mitigated in 2007 with a plan to introduce 690 kilometers of bike lanes throughout both rural and urban areas.2 Still in its implementation phases city-wide, examples of inclusion in districts of the city have come to exist. For example, the district of Providencia engaged in a public bike system as of 2009, which has grown from an initial 1,000 bikes to over 4,000. Costing only USD2.00 monthly for unlimited trips of up to an hour, the system caters to a broad range of citizens from 14 to 80 years of age.2 Compared to other South American cities, Santiago is reported to have the best cycling integration as shown in the table below. With heightened and simplified access to and from transit stations via bicycle, citizens’ willingness to use transit rather than private vehicles has improved.

<table>
<thead>
<tr>
<th>Bicycles allowed on board only</th>
<th>Santiago</th>
<th>Montevideo</th>
<th>Quito</th>
<th>Florianopolis</th>
<th>Score per item</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Bicycle fare access to public</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Stations/Bus</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Public Bicycles and/or bicycles access to stops and stations</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>Cycling facilities at stations/stop, sidings, ramps, etc.</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2.6</td>
</tr>
<tr>
<td>Educational facilities that encourage use of bicycles</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3.3</td>
</tr>
<tr>
<td>Other policies that promote cycle friendly culture,</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3.3</td>
</tr>
</tbody>
</table>

| General quality | 10 | 5 | 4 | 3 |

Score explanation: 0: nothing; 1: minimum facilities; 3: reasonable quality facilities; 5: broad existence of high quality facilities and high level of integration.

Table 4: Santiago’s cycling integration statistics when compared to similar Latin American cities. | Source: Paolo Jiron ©UN Habitat. Reproduced with permission from UN Habitat; further permission required for reuse.
Moreover, a continued focus on ensuring Transantiago is expanding to meet demand ensures efficiency and capacity, which are both drivers for heightened ridership. Santiago, Chile is reported to have the highest rail extension growth of all Latin American countries, with over 60km of rail expansion anticipated as shown in Figure. In addition, simple design measures such as; colored bus lanes to avoid private vehicle incursion and delays in travel, lighting inclusion within bus stops for safety purposes and environmental policies that reduced emissions up to 20%. These strategies, although seemingly minuscule, have large impacts on the efficiency and comfort of public transport systems in Santiago and can be attributed to greater rider satisfaction.

Figure 28: The rail expansion (in km) expected for various Latin American countries, Santiago leading the expansion trends. | Source: Paolo Jiron ©UN Habitat. Reproduced with permission from UN Habitat; further permission required for reuse.

KEY STAKEHOLDERS & GOVERNMENT RELATIONSHIPS

Essential to the implementation of Transantiago were the various stakeholders that played a role in its road to fruition. Developed under the mandate of the Urban Transportation Plan for Santiago (PTUS), a Presidential Advisory Commission was enacted to create an institutional framework for implementing the project. The commission consisted of the Ministers of Public Works and Housing, the Santiago Metropolitan Region, Transport Under-secretary, Environmental Commission Director and the Metro leaders. Each with different priorities and focuses with regards to transportation, different perspectives were brought to the planning process and an integrated framework of a variety of urban priorities was developed.

The overall infrastructure funding was raised multiple ways. Forty-five percent of it was raised through public-private partnerships. Whereas, the remaining infrastructure was founded by the Ministry of Housing and Urbanism.

The PTUS was eventually restructured and replaced with Transantiago, still led by the presidential advisors. The lack of lower-level stakeholder integration, in this case, can be described as one of the biggest downfalls to the project. With only high-level organization leaders engaged, local authorities, citizens and operating staff were not advised. Instead, the Presidential Advisory Commission had sole control, which led to a lack of accountability, coordination and efficiency. Decentralizing the responsibilities with regards to public transit and including lower-level actors represents a much more effective institutional framework. Best practices from other contexts should be considered in this case for future success with public transit.
INCLUSIVITY & AFFORDABILITY IN TOD SYSTEMS

Offering more adequate public transportation is a step in the right direction in terms of offering equitable and accessible transport for all. Based on factors such as cost and safety of transit options, Santiago is working towards improved inclusivity in Transantiago. With regards to fare affordability, Transantiago costs USD$0.74 per ride paid via contactless fare cards. Statistically, lower income groups are more likely to walk, but compared with higher-income groups, use the bus more often and are not likely to drive private vehicles as shown in figure.²

To be derived from the above figure is the lower use of metro when compared to the BRT, as well as the tendency for lower-income households to walk instead. These statistics can lend to a question of affordability in the system. Although the fare seems insignificant when compared to North American comparable cities, in the context of Santiago, the underlying avoidance of public transit should be studied to consider possibilities for public subsidy.

Additionally, with regards to TOD, affordable housing has become a larger priority for the city since the 1990s, as shantytowns and slum housing were a prevalent option for lower-income households. To mitigate the effects of this unhealthy and inadequate housing type, conditioned planning has emerged in Santiago. This form of land use planning allows urban development to expand beyond city limits on a case-to-case basis, allowing residential development to spill out into the peripheries of the city.²

The issue with this form of housing development is its lack of connectivity and self-sufficiency, often creating instances of urban islands on the city periphery. Although this allows for larger areas for social housing and more affordable land, transportation in the future must better link these areas to allow for true TOD. As well, the creation of separated low-income districts is a concept that has been largely refuted in present times, as these locations amplify crime and safety concerns and are likely to be disproportionality exposed to health hazards when compared to middle and high-income groups. Strategic mixing of different income groups and better transportation integration with these periphery locations should be considered for development in the future.

IMPLEMENTATION OF TRANSIT ORIENTED DEVELOPMENTS

APPROXIMATE TIMELINE

- 2000- Metro network expansion started
- 2001- Buses enabled 43% of the motorized trips in the city
- 2003- Bus System was voted worst public survey
- 2006- Added 21km to existing 45km of metro network
- 2007- Plan was mitigated to add 690lm of bike lanes through rural and urban areas.
- 2009- Providencia engaged in a public bike system
- 2011- Transantiago completed fourth year of operation

ACTIONABLE STEPS

1. Identify needs/ Take Inventory
2. Create Strategy Plan (Phases)
3. Identify Key Stakeholders
4. Conduct Inter-Agency Collaboration
5. Find Funding
6. Optimize/ Utilize Land Value
7. Create Design Strategies to Encourage Transit Use
KEY LESSONS LEARNED AND BEST PRACTICES

SUMMARY
Santiago is the resulting system of a seamlessly integrated BRT and metro lends to the ideals of transit-oriented development (TOD) that are being emphasized in planning and development practices currently. A system of efficiency, passenger comfort and safety for both riders and the environment has resulted from necessary interventions.

A positive lesson to be taken from the case study is the concept of modal integration. Route re-organization was a complex technical problem (requiring a supply-demand balance for a social optimum), but allowed for Metro and BRT interaction. Strives towards also including cycling networks within this system will further the integrated nature of Transantiago.

Ensuring a range of modal options not only allows for variety, but affordability and convenience in transit systems, and thus moving this agenda forward in other contexts will be essential.

ROADBLOCKS AND WAYS TO IMPROVE
Although Santiago created a widely used and integrated BRT and Metro system with Transantiago, the project had various roadblocks that should be learned for in applying BRT and Metro systems to other contexts. The first of these roadblocks was the lack of inter-agency collaboration in the planning of the system. In theory, this advisory commission provided an organized method of involving various government agencies, however, the tactic failed to include lower-level agencies and public input. A way to improve from this aspect of the project is the need for institutional coordination, which the project was successful in achieving, but also the inclusion of those that will use, operate and interact with the transit system on a daily basis. Another roadblock of the project is its potential concerns with regards to affordability, both with regards to fare and housing around the corridor. A way to improve this would be to develop transit with social issues and inclusivity in mind. This should be a priority in all context.

KEY LESSONS
1. The following key takeaways should be derived from the Santiago example:
2. Santiago’s overall strategy for improving the shortcomings of these systems was an integrated multi-modal system inclusive of a BRT and an expanded Metro network.
3. Transantiago was based on two objectives: complementation and integration
4. Affordable housing includes strategic mixing of different income groups and better transportation integration.

ENDNOTES
AFRICA | CASE STUDY

CAPE TOWN, SOUTH AFRICA

Source: The Telegraph 2018 ©Hugh Morris. Reproduced with permission from Hugh Morris; further permission required for reuse.
CAPE TOWN, SOUTH AFRICA

QUICK FACTS

Geographic Context
Africa (South Africa)

Scale
City, Neighbourhood, and Corridor

Context
Urban and Suburban

Mode of Higher Order Transit
BRT

Size of City (Population)
3.7 million (Tier 2)

Case Study Covered in WB Publication
Yes

URBAN CONTEXT

Cape Town, South Africa is the second largest city in South Africa, after Johannesburg, with a population of over 3.7 million people.¹ The population is dispersed across close to 2500 square km of land, providing for a population density of 1,480 per square km, which is also lower than that of Johannesburg.² By 2030 the population is projected to only increase slightly to about 4.3 Million.³ Unique to the South African context, when comparing it to other low-mid income cities, is its quite high proportion of citizens living under the poverty line. Over 36% of Cape Town’s citizens are below the poverty line, with 4% having no access to electricity and almost 10% without access to sanitation.² With such a high proportion of its citizens in need of social assistance, the 2010 World Cup in South Africa provided a valuable opportunity to the city to improve its social services, specifically adequate public transportation for low-income households.

At the national level, 12 cities were chosen to receive extra support to upgrade and integrate all modes of public transport to better host the event. Nine of the 12 cities were host cities to World Cup events, including Cape Town and Johannesburg among other cities. The BRT in Cape Town is still functioning and can be considered to be Africa’s second system after Johannesburg’s Rea Vaya.
OVERALL TOD STRATEGY & CITY STRUCTURE

The MyCiTi service forms part of an economic development strategy reliant on integrated transportation in the City of Cape Town (CoCT) in South Africa. In 2010, MyCiTi opened two pilot routes for the 2010 World Cup. The following year, the City of Cape Town began full services on MyCiTi’s 16km corridor, rated bronze-standard. The system continues to expand and services the city center and airport.

MyCiTi began operations in May 2010, shortly before the FIFA World Cup, providing a shuttle service from the Civic Centre to Cape Town International Airport. It also included a temporary route around the City Bowl for the World Cup specifically. The first proper Bus Rapid Transit (BRT) phase (Phase 1A) opened in May 2011. Characterized by features beyond those of traditional bus services, such as exclusive bus lanes, frequent timetables and an automated fare system, MyCiti is Cape Town’s version of Bus Rapid Transport (BRT). It is an unprecedented public transport venture for the city, implemented in the hope of providing greater mobility to the majority of the population.

By 2015, MyCiTi provided a BRT service and feeder services in most areas of the city, including low-income areas disadvantaged by their distances from the amenities and employment opportunities concentrated in the center.

In addition to the BRT, concurrent ITDP work has included bringing the Access Africa program to Cape Town. This program intends to allow health care workers to visit more patients daily by providing bicycles to low-income health care workers who traditionally would work long hours and only access patients by foot.

KEY STAKEHOLDERS & GOVERNMENT RELATIONSHIPS

The Institute of Transportation and Development (ITDP) began working in the City of Cape Town in 2002, initially focused on building support for the concept of BRT. They would become one of the largest and most vital stakeholders in driving the improvement of public transportation in Cape Town. Through workshops and the exchange of international best practices – particularly bringing in experts involved in the implementation of Bogota’s gold-standard TransMilenio – support for the BRT grew. In 2007, ITDP joined the team creating the business plan and financial model for the MyCiTi BRT, and helped guide the project to success.

As part of the process, ITDP assisted with the formalization of Cape Town’s existing informal public transport industry, empowering small business owners to enter the formal market and transform into competitive companies. Like in Johannesburg, the BRT system is now operated by companies comprised of former taxi operators.

That said, MyCiTi service was largely a public funded initiative. One can argue that the success of the BRT necessitates greater integration of private sector participation at the outset, rather than the private sector waiting to see the success of the system. The time horizon for such a scheme – which aims to have connected the entire city by 2030 – must take into account the long and difficult processes of navigating land changes, poor spatial legacies, uncertainty surrounding the minibus taxi industry, and major shifts in societal attitudes towards public transport.
DESIGN STRATEGIES TO ENCOURAGE TRANSIT USE

The MyCiTi Integrated Rapid Transport system was very unique compared to other BRT systems in the sense that it incorporated all the other motorized and non-motorized transport methods that had already existed in the area into one cohesive new system instead of replacing them. By doing so MyCiTi was able to design a system that encompassed a passenger’s entire journey, including arriving to the bus system from over 50m away, to easily being able to board the vehicles, and to be able to report any problems that may have occurred along the way. The system paid specific attention to accessibility to all. The stations provide level, seamless boarding onto vehicles through the use of dedicated boarding points, wheelchair accessible toilets, and wide entrance gates. The new fleets include low floor kneeling vehicles with level entry and wheelchair seating. They also have created “Kassel Kerbs” which allows drivers to position their vehicle close to the bus stops without tire damage.5

Along with accessibility, MyCiTi has also planned the wayfinding of the area to help encourage usage. In each station is equipped with audio LED screens and service information in a wide variety of formats. Outside the station is door to station infrastructure to lead the way from anywhere in town. They did this by providing tactile signage, tactile paving, and dedicated customer support staff to help lead the way.5

Due to the incredible design of the stations, the influence is spreading the rest of the city. The growth in commuter numbers, private developers and local businesses is bringing value to the area and encouraging public growth, public investment, and new development to occur.

INCLUSIVE & AFFORDABLE TOD SYSTEMS

Many sources point to the BRT system’s potential as representative of a healthy democracy. Such a characteristic, similar to environmental benefits, the mixing of different backgrounds, or more equitable access to amenities, all of which are important barriers to Cape Town’s prosperity, hasn’t been evaluated through a cost-benefit analysis or other quantifiable measures. To paraphrase a comparison by Enrique Peñalosa, who championed the BRT system when he was the mayor of Bogotá in Colombia, a city now renowned for its thriving public transport system: “that thirty people on a bus can zoom past a Maserati with one person in, because thirty people should get thirty times the space as one person, no matter how much money they make. That’s true democracy.” 3

With such vast poverty experienced in Cape Town, achieving a truly democratic system of transport is an essential priority going forward. With simple necessities such as sanitation and electricity unachievable for many South African households, public subsidy and increased affordability of transit should be explored to encourage heightened use. Without this affordability, modal preferences will remain dominated by cars (for higher-income households) and walking or cycling (for lower income households).

IMPLEMENTATION OF TRANSIT ORIENTED DEVELOPMENTS

APPROXIMATE TIMELINE

- 2002- The Institute of Transportation and Development (ITDP) began work in Cape Town
- 2007- IDTP created business plan and financial model for MyCiTi BRT
- 2010- Opened two pilot routes to operate during 2010 World Cup
- May 2010- MyCiTi began operations
- May 2011- Bus Rapid Transit (BRT) Phase 1A opened
- 2015- MyCiTi provided a BRT service between 8 cities with additional feeder services
- 2030- Goal year for entire city to be connect with MyCiTi

ACTIONABLE STEPS

1. Identify needs/ Take Inventory
2. Establish Transportation Department
3. Create Strategy Plan (Phases)
4. Identify Key Stakeholders
5. Find Funding
6. Integrate Existing Operators with New Operators
7. Optimize/ Utilize Land Value
8. Create Design Strategies to Encourage Transit Use
KEY LESSONS LEARNED AND BEST PRACTICES

SUMMARY
The 2010 World Cup in South Africa provided a valuable opportunity to the city to improve its social services, specifically adequate public transportation for low-income households. Building a BRT system through MyCiTi was not enough on its own. It was essential that it was affordable for all. Without this affordability, modal preferences would remain dominated by cars for the higher income households and walking and cycling for the lower income households.

ROADBLOCKS AND WAYS TO IMPROVE
Underlying the issue of low ridership levels was the greater challenge of how effectively BRT can operate within Cape Town’s urban form. The roadblock of implementing BRT in a city characterized by long travelling distances for residents, meaning less revenue than in other denser cities, as well as peak periods when buses are virtually empty on their return trips.

Ways to improve to a successful BRT system is the concerted effort to develop urban areas around transit-oriented principles. Measures such as zoning land for dense, high-rise development around BRT corridors and constraining development further away from them would increase the ridership needed for BRT in Cape Town to be as impactful as possible.

KEY LESSONS
The following key takeaways should be derived from the Cape Town example:

• Over 36% of Cape Town’s citizens are below the poverty line
• The BRT system is now operated companies comprised of former minibus taxi operators.
• MyCiTi service was largely a public funded initiative
• Access Africa program was also incorporated, providing bikes to low-income health care workers

ENDNOTES
AFRICA | CASE STUDY

JOHANNESBURG, SOUTH AFRICA

Source: Unequal Scenes ©Unequal Scenes. Reproduced with permission from Unequal Scenes; further permission required for reuse.
The political capital of the Republic of South Africa, Johannesburg is situated in Gauteng province, the most densely urbanized area of the Republic. It is home to an estimated 10 million people and has a population density of 2,900 people per square kilometer.\(^5\) By 2030 Johannesburg is projected to grow to about 11.5 Million.\(^5\) Despite a growing population and economy, there is extreme income disparity and around 63 percent of households do not own a car.\(^2\)

In 2006, following municipal elections, the new Mayor created a transportation department with the aim of better organizing urban mobility. This entity became responsible for transport planning and regulation within the city boundary.\(^3\)

Upon awarding of the 2010 (19th) FIFA World Cup event, Johannesburg took a keen interest in improving the transport system in order to live up to the projected image of being a ‘World Class City’. In particular, Johannesburg would need to accommodate the fans and tourists that would visit during the events and Rea Vaya was planned and implemented as a result.\(^1\)

Rea Vaya was the first full bus rapid transit (BRT) system to be implemented on the African continent and provides many learning experiences that can be replicated in other cities. Its key objectives are:

- Economic growth
- Poverty alleviation
- Restructuring the apartheid city
- Sustainable development
- Good governance

\(^1\) Rea Vaya
\(^2\) Census
\(^3\) Rea Vaya
\(^4\) SAstat
\(^5\) City of Johannesburg

JOHANNESBURG, SOUTH AFRICA

QUICK FACTS

Geographic Context
Africa (South Africa)

Scale
City, Neighbourhood, and Corridor

Context
Urban and Suburban

Mode of Higher Order Transit
BRT and Metro

Size of City (Population)
10 million (Tier 1)

Case Study Covered in WB Publication
Yes
OVERALL TOD STRATEGY & CITY STRUCTURE

The lack of investment in public transport, as well as the long distances (beyond a reasonable walk or bike trip) which separated home and the workplace in Johannesburg led directly to the growth of the informal ‘taxi minibus’ industry. Initially, this development was viewed as a positive ‘entrepreneurial’ trend as it required little to no state control.

The ability of the private sector to make money with low levels of investment quickly led to an oversupply and intense competition between service providers. By the 1990s, as in many cities across the developing world, the situation had degenerated into a system that served the operators, while simultaneously marginalizing the user with poor travel times, high fares and unsafe vehicles driven by drivers with poor skills.3

Johannesburg’s bus rapid transit system Rea Vaya has saved South Africa as much as $890 million so far in reduced travel time, improved road safety and reduced carbon emissions, according to a recent report by the New Climate Economy, a project affiliated with the World Resources Institute.4

LAND TENURE & LAND VALUE CAPTURE

The Rea Vaya provided enhancements to the surrounding areas creating an increase in land values for neighboring property owners. Some of these enhancements include:

- Increases in regional productivity
- Enhanced employment accessibility;
- Environmental Benefits

KEY STAKEHOLDERS & GOVERNMENT RELATIONSHIPS

One of the most challenging aspects of implementing any transport reform is the resistance to change by those benefiting most from the present system. In much of the developing world this usually means the informal minibus owners and drivers.1

In Johannesburg, much of the resistance to changes in transport organization came from the powerful taxi unions. These strong groups made a solid defense of their right to operate unhindered and un-regulated. This was identified early on as a major challenge to successful public transportation implementation.

Today, there are four levels of institutions responsible in some way for transport in South Africa. There are national, regional (provincial), city or metropolitan area and local or district bodies.1 The national Ministry of Transport is responsible for policy and legislation for transport. It is also responsible for:

- Implementing national policy and legislation;
- Coordinating the functions of the Department of Transport
- Preparing and initiating legislation
- Performing any other executive function provided for in the Constitution or in national legislation.

The Gauteng Provincial Government’s role is to ensure the implementation of national policy across the province by providing oversight.3 A creation of a new body called the Gauteng Transport Management Authority became responsible for improving transport at the regional-level and in setting quality standards and norms. The Gauteng Intermodal Strategic Public Transport Network (GISPTN) forms the basis for reform and requires linkage between the road and rail networks. It also prioritized public transport services and investments in developing infrastructure.3

In 2003, the City of Johannesburg formulated an Integrated Transport Plan (ITP) signed by the political head of province, as well as the Minister of Transport. It consisted of the priority for public transport, improvements to curbside lanes, infrastructure for commuters, better signage and improved passenger information.3 These improvements really gave minibuses a better traffic environment to function.
Typically in transport, there is a split in responsibility between national and city governments that can be challenging to resolve. There was also the additional challenge of engaging existing operators and establishing a forum under which they can productively participate in the eventual delivery of mass transit. The technical skills required for planning are complex and often do not exist at the local-level. Thus, it was not until city officials and the Mayor became aware of the system in Bogotá, Colombia that the idea of BRT for Johannesburg was born.

The new city administration decided to more aggressively explore BRT systems in other cities, specifically Bogotá, Columbia and Guayaquil, Ecuador. Through a step-by-step approach, Johannesburg established a planning and development department for the delivery of the BRT. The BRT system had to be planned within a fairly constrained urban environment, both financially and in land provision. It would be planned as the backbone of a future transport system interconnected with rail to provide high levels of accessibility and capacity.

DESIGN STRATEGIES TO ENCOURAGE TRANSIT USE

Attention was given to making the system and stations functional and attractive. This included pre-paid boarding; level boarding for full accessibility; multiple stopping bays; and secure, weather-protected stations. Stations have been designed with the local urban environment in mind and aesthetics were prioritized, commissioning local artists to add character and culture to bus stops.

BUS MANAGEMENT SYSTEM USING INTELLIGENT TRANSPORT SYSTEMS (ITS)

A robust but affordable bus management system was required in the context of Johannesburg. The Automatic Public Transport Management System (APTMS) was developed by a private consortium to deliver an ambitious range of information and services, including dynamic passenger information.

Passenger information provision was a new concept to both those providing public transport and those using it. Traditionally, minibuses were merely numbered or known by the drivers’ names and routes varied and stop locations were unpredictable. The concept of having a set timetable and frequency was, therefore, a learning curve for drivers and passengers.

INCLUSIVE & AFFORDABLE TOD SYSTEMS

It was also agreed that the development of Rea Vaya would be employment neutral, providing an equal number of jobs to citizens as those that were lost. It was also decided that it should have a strong identity and brand image – and the concept Rea Vaya ‘we are going’ was adopted.

Since its inception, 700 permanent jobs have been created in Phase 1A and some 3300 temporary jobs during the construction period. Efforts have been made to design a system that is accessible to those with mobility impairments, such as level boarding at the BRT stations. This system has been a considerable benefit to all levels of society, but especially to women as minibuses were often unsafe, especially at night. The stations are manned, the surroundings are monitored and initial overcrowding of the service has now been overcome, solving many of the grievances with former minibus service.

Executive Mayor Parks Tau stated “Left to the forces of the market alone, the poor would be cast to the edges of the city, huddled together in crowded shacks, trapped there by the cost of mobility,” Mayor Tau said in his address. “This is exactly what we seek to disrupt and transform when we speak of confronting apartheid spatial patterns.” Rea Vaya created the ability to have mixed-use, mixed-class development, and focuses on location and affordability of housing.
IMPLEMENTATION OF TRANSIT ORIENTED DEVELOPMENTS

APPROXIMATE TIMELINE

- **2003**- The City of Johannesburg formulated an Integrated Transport Plan (ITP)
- **November 2006**- A transportation department was created within the city of Johannesburg’s government
- **October 2007**- Rea Vaya BRT construction begins
- **April 2009**- Beginning of Phase 1A
- **August 2009**- First bus began operating
- **June 2010**- FIFA World Cup 2010 awarded 12 cities infrastructure funding.
- **February 2011**- Taxi industry shareholders hand over their operating licensed and equity in return for share in Rea Vaya.
- **October 2013**- Phase 1 completed

ACTIONABLE STEPS

1. Identify needs/ Take Inventory
2. Create Strategy Plan (Phases)
3. Establish Transportation Department
4. Identify Key Stakeholders
5. Find Funding
6. Mitigate Competition
7. Create Brand
8. Market Plan
9. Optimize/ Utilize Land Value
10. Create Design Strategies to Encourage Transit Use

KEY LESSONS LEARNED AND BEST PRACTICES

SUMMARY

The successful implementation of Rea Vaya is a real milestone in Africa, a place which has suffered, particularly low-income populations, lacking formal public transport for the past 25 years. An affordable but high-quality bus system has been put in place, while also overcoming significant political challenges that have hampered initiators before them. In addition, it has saved South Africa $890 Million so far by reducing travel time, improving road safety, and cutting down on carbon emissions.

ROADBLOCKS AND WAYS TO IMPROVE

One of the most challenging aspects of implementing any transport reform is the resistance to change by those benefiting most from the present system. In much of the developing world this usually means the informal minibus owners and drivers, which fought to remain unregulated in the case of Johannesburg.

To improve this relationship, Johannesburg created a plan that integrated all forms of transportation with political support. The plan consisted of modest priority for public transport, both minibus taxis and buses, improvements to curbside lanes, modest infrastructure for commuters, better signage and improved passenger information. These improvements really gave minibuses a better traffic environment to function rather than creating a proper public transport network across the city.

KEY LESSONS

The following key takeaways should be derived from the Johannesburg example:

- Rea Vaya was designed to address historical inequalities, increase civic pride and to provide safe, affordable transport
- Inclusion of a strong and powerful informal sector into formal and professional transport planning
- Marketing plan was highly inspired by the Transmilenio in Bogota
- Project was employment neutral- creating at least as many jobs as it removed.
Endnotes

GLOSSARY OF TERMS
Glossary of Terms

Active Uses
Land uses, such as retail, coffee shops, storefronts, cafes, restaurants and hawkers zones, which keep the area active with pedestrian activity at street level and maintain visual interest, are termed as active uses.

Affordable Housing
Affordable housing provides housing mainly for those whose income is below the median household income. Both the private sector and government in India are exploring options for creating housing for low-income groups. The Government of India, both at central and state level has initiated various schemes to assist in the delivery of affordable housing. It includes public sector working as a facilitator and engaging the private sector to build housing, with rental units that are subsidized by the government through rental subsidy programs.

Annual Depreciation Allowance
Annual depreciation allowance is the amount of tax deduction allowed by the tax code that investment property owners may take each year until the entire depreciable asset is written off.

To calculate, you must first determine the depreciable basis by computing the portion of the asset allotted to improvements (land is not depreciable) and then amortizing that amount over the asset’s useful life, as specified in the tax code: Currently 27.5 years for residential property and 39 years for non-residential.

\[
\text{Property Value} \times \text{Percent Allotted to Improvements} = \text{Depreciable Basis}
\]

Then,

\[
\frac{\text{Depreciable Basis}}{\text{Useful Life}} = \text{Annual Depreciation Allowance}
\]

Asset
In financial accounting, an asset is an economic resource. Anything tangible or intangible that can be owned or controlled to produce value and that is held by a company to produce positive economic value is an asset.

Business Improvement District (BID)
A business improvement district (BID) is a defined area within which businesses are required to pay an additional tax (or levy) in order to fund projects within the district’s boundaries. The BID is often funded primarily through the levy but can also draw on other public and private funding streams. These districts typically fund services, which are perceived by some businesses as being inadequately performed by the government with its existing tax revenues, such as cleaning streets, providing security, making capital improvements, construction of pedestrian and streetscape enhancements and marketing the area. The services provided by BIDs are supplemental to those already provided by the municipality[1]. The revenue is derived from a tax assessment on commercial property owners and in some cases, residential property owners.

Break-Even Ratio (BER)
BER is a ratio some lenders calculate to gauge the proportion between the money going out to the money coming, so they can estimate how vulnerable a property is to default on its debt if rental income declines. BER reveals the percent of income consumed by the estimated expenses.

\[
\frac{(\text{Operating Expense} + \text{Debt Service})}{\text{Gross Operating Income}} = \text{Break-Even Ratio}
\]

BER results:
Less than 100% - expenses consuming less than available income
Greater than 100% - expenses consuming more than available income

Brownfield Redevelopment
Development on a brownfield site is commonly referred to as Brownfield redevelopment. Brownfield sites are abandoned or underused industrial and commercial facilities available for reuse. Expansion or redevelopment of such a facility is often complicated by real or perceived environmental contaminations. The land may be contaminated by low concentrations of hazardous waste or pollution and has the potential to be reused once it is cleaned up. Land that is more severely contaminated and has high concentrations of hazardous waste or pollution, such as a superfund site, does not fall under the brownfield classification.
GLOSSARY OF TERMS

BUS RAPID TRANSIT (BRT)
BRT systems use buses or specialized vehicles on roadways or dedicated lanes to transport passengers without interference from other traffic. Such systems usually include dedicated bus lanes, signal priority at intersections, off-bus fare collection to speed up boarding, level boarding (low-floor buses or high-level platforms) to speed up boarding and enhance accessibility and enclosed stations.

CAP RATE
This popular return expresses the ratio between a rental property’s value and its net operating income. The cap rate formula commonly serves two useful real estate investing purposes: To calculate a property’s cap rate, or by transposing the formula, to calculate a property’s reasonable estimate of value.

\[
\text{Net Operating Income} \div \text{Market Value} = \text{Cap Rate}
\]

Or,

\[
\text{Net Operating Income} \div \text{Cap rate} = \text{Market Value}
\]

CAPACITY
The maximum number of people that can be carried past a given location during a given time period under specified operating conditions, without unacceptable delay, hazard, or restriction, and with reasonable certainty.

CAPACITY BUILDING
Capacity building (or capacity development) is the process by which individuals and organizations obtain, improve and retain the skills, knowledge, tools, equipment and other resources needed to do their jobs competently or to a greater capacity (larger scale, larger audience, larger impact, etc).

CAPITAL INVESTMENT
Capital investment refers to funds invested in a firm or enterprise for the purpose of furthering its business objectives. Capital investment may also refer to a firm’s acquisition of capital assets or fixed assets, such as manufacturing plants and machinery that is expected to be productive over many years.

CASH FLOW AFTER TAX (CFAT)
CFAT is the amount of spendable cash that the real estate investor makes from the investment, after satisfying all required tax obligations.

\[
\text{Cash Flow Before Tax} - \text{Tax Liability} = \text{Cash Flow After Tax}
\]

CASH FLOW BEFORE TAX (CFBT)
CFBT is the number of dollars a property generates in a given year after all expenses, but in turn still subject to the real estate investor’s income tax liability.

\[
\text{Net Operating Income} - \text{Debt Service} - \text{Capital Expenditures} = \text{Cash Flow Before Tax}
\]

CASH ON CASH RETURN (COC)
CoC is the ratio between a property’s cash flow in a given year and the amount of initial capital investment required to make the acquisition (e.g., mortgage down payment and closing costs). Most investors usually look at cash-on-cash, as it relates to cash flow before taxes during the first year of ownership.

\[
\frac{\text{Cash Flow Before Taxes}}{\text{Initial Capital Investment}} = \text{Cash on Cash Return}
\]

CATALYST PROJECTS
Catalyst projects are public or private projects that are planned and designed to cause a corresponding and complementary development reaction to surrounding properties. They are projects of sufficient magnitude to stimulate redevelopment of underdeveloped properties or major rehabilitation of underutilized buildings. The identification and implementation of catalyst projects provide an opportunity for public and private investments to receive a reasonable return. The measure of return on investment can include jobs creation, increase in land value, improved transportation and access and new housing units.

CENTRAL BUSINESS DISTRICT (CBD)
The heart of an urban area, usually located at the meeting point of the city’s transport systems, containing a high percentage of shops and offices. High accessibility leads to high land values, and therefore intensive land use. Consequently, development is often upwards. Within the CBD, specialist areas, such as a jewelery quarter, benefit from external economies. Vertical land-use zoning is also common, so that retail outlets may be on the ground floor, with commercial users above them and residential users higher up.
CENTRALITY
In graph theory and network analysis, indicators of centrality identify the most important nodes. Centrality can be used to identify the most influential people in a social network, key infrastructure nodes in the Internet or urban networks, and superspreaders of disease. Betweenness, closeness, and degree centrality are the three most important indicators for transit networks.

CLOSINESS CENTRALITY
A measure of accessibility to a node within a network that measures the inverse of the sum of the distances of a node from all other nodes.

COMPLETE STREET
Road design philosophy where road space is allocated to safely balance the needs of all road users, including pedestrians, cyclists, transit and motorists. Transportation choice is increased when safe and appealing options for getting from place to place are provided- options to walk and bike provide opportunities for increased community health and reductions in air and noise pollution.

CRIME PREVENTION THROUGH ENVIRONMENTAL DESIGN (CPTED)
Crime Prevention Through Environmental Design (CPTED) is a multi-disciplinary approach to deterring criminal behavior through environmental design. CPTED strategies rely upon the ability to influence offender decisions that precede criminal acts. As of 2004, most implementations of CPTED occur solely within the built environment.

DEBT COVERAGE RATIO (DCR)
DCR is a ratio that expresses the number of times annual net operating income exceeds debt service (e.g. total loan payment, including both principal and interest).
Net Operating Income ÷ Debt Service = Debt Coverage Ratio
DCR results:
Less than 1.0 - not enough NOI to cover the debt
Exactly 1.0 - just enough NOI to cover the debt
Greater than 1.0 - more than enough NOI to cover the debt

DEGREE CENTRALITY
Number of times a node has with other nodes in a network. In transit networks, interchange stations between many lines or modes (hubs) have a high degree centrality.

DEVELOPMENT CONTROL REGULATIONS (DCRS)
DCRs are the primary regulatory tool used to guide development that ultimately shapes a city’s urban form and functions. It includes guiding the development and use of land, built environment FAR’s, density, heights, setbacks and the public realm. Critical to the success of an efficient and effective transit system is the combination of basic employment opportunities and a mix of housing typologies supported with major retail, civic, cultural, entertainment and community facilities. The DCRs, which are currently proposed as blanket for the entire city, need to be revisited and should be modified into more context-specific Development Code Regulation.

DEVELOPMENT PLAN
It is an aspect of town and country planning comprised of a set of documents that set out the local authority’s policies and proposals for the development and use of land in their area. The development plan guides and shapes day-to-day decisions as to whether or not planning permission should be granted, under the system known as development control or development management. In order to ensure that these decisions are rational and consistent, they must be considered against the development plan adopted by the authority, after public consultation and having proper regard to other material factors.

EMPLOYMENT DENSITY
Number of jobs in an area.

ENCLOSURE
Degree to which buildings, walls, trees, and other vertical elements define streets and other public spaces.

FLOOR AREA RATIO (FAR)/FLOOR SPACE INDEX (FSI)
The FAR or FSI is the ratio of the total floor area of buildings at a certain location, to the size of the land at that location, or the limit imposed on such a ratio.
As a formula: Floor Area Ratio= (Total covered area on all floors of all buildings on a certain plot)/(Area of the plot).
Thus, an FSI of 2.0 would indicate that the total floor area of a building is two times the gross area of the plot on which it is constructed, as would be found in a multiple-storey building.

FEEDER BUS ROUTES
A feeder bus route is a bus service that picks up and delivers passengers to a higher order transit station, such as a rapid rail transit station, express-bus stop or terminal.

FORM-BASED CODE
Form-based codes foster predictable built results and a high-quality public realm by using physical form (rather than separation of uses) as the organizing principle for the code. These codes are adopted into city or county law as regulations, not mere guidelines. Form-based codes are an alternative to conventional zoning. Form-based codes address the relationship between building facades and the public realm, the form and mass of buildings in relation to one another and the scale and types of streets and blocks. The regulations and standards in form-based codes, presented in both diagrams and words, are keyed to a regulating plan that designates the appropriate form and scale (and therefore, character) of development, rather than only distinctions in land-use types. This is in contrast to conventional zoning’s focus on the micro-management and segregation of land uses and the control of development intensity through abstract and uncoordinated parameters (e.g., FAR, dwellings per acre, setbacks, parking ratios, traffic LOS) to the neglect of an integrated built form. Not to be confused with design guidelines or general statements of policy, form-based codes are regulatory, not advisory.

FUTURE VALUE (FV)
FV shows what a cash flow or series of cash flows will be worth at a specified time in the future. FV is calculated by “compounding” the original principal sum forward in time at a given “compound rate”.

GROSS VEHICLE MASS (GVM)
Gross vehicle mass is the maximum operating weight/mass of a vehicle as specified by the manufacturer [1], including the vehicle’s chassis, body, engine, engine fluids, fuel, accessories, driver, passengers and cargo, but excluding that of any trailers. [2]. The term is used for motor vehicles and trains.

The weight of a vehicle is influenced by passengers, cargo, even fuel level, so a number of terms are used to express the weight of a vehicle in a designated state. Gross combined weight rating (GCWR) refers to the total mass of a vehicle, including all trailers. GVWR and GCWR both describe a vehicle that is in operation and are used to specify weight limitations and restrictions.

GREENFIELD DEVELOPMENT
Greenfield development is the creation of planned communities on previously undeveloped land. This land may be rural, agricultural or unused areas on the outskirts of urban areas. Unlike urban sprawls, where there is little or no proper suburban planning, greenfield development is about efficient urban planning that aims to provide practical, affordable and sustainable living spaces for growing urban populations. The planning takes future growth and development into account, as well as avoiding the various infrastructure issues that plague existing urban areas.

GROSS OPERATING INCOME (GOI)
GOI is gross scheduled income after vacancy and credit loss, plus the income derived from other sources such as coin-operated laundry facilities. Consider GOI as the amount of rental income the real estate investor actually collects to service the rental property.

\[
\text{Gross Scheduled Income} - \text{Vacancy and Credit Loss} + \text{Other Income} = \text{Gross Operating Income}
\]

GROSS RENT MULTIPLIER (GRM)
GRM is a simple method used by analysts to determine a rental income property’s market value, based upon its gross scheduled income. You would first calculate the GRM using the market value at which other properties are sold and then apply that GRM to determine the market value for your own property.

\[
\frac{\text{Market Value}}{\text{Gross Scheduled Income}} = \text{Gross Rent Multiplier}
\]

Then,

\[
\text{Gross Scheduled Income} \times \text{Gross Rent Multiplier} = \text{Market Value}
\]

GROSS SCHEDULED INCOME (GSI)
GSI is the annual rental income a property would generate if 100% of all space was rented and all rent was collected. If
vacant units do exist at the time of your real estate analysis, then include them at their reasonable market rent.

\[
\text{Rental Income (actual) + Vacant Units (at market rent)} \\
= \text{Gross Scheduled Income}
\]

HIGHER ORDER TRANSIT

Higher order transit refers to a transit service that operates on a dedicated right-of-way or in a priority situation, and therefore moves more efficiently than the regular flow of traffic and can carry large numbers of people quickly and comfortably. Examples of higher order transit include buses that have dedicated lanes, metro and commuter rail, which operate on their own separate tracks.

HISTORICAL DAILY PEAK HOUR FACTOR

The ratio of Peak Hour Peak Direction Passenger Demand for a typical route (i.e. representative of the system as a whole) to its total daily boardings in both directions. This factor helps to convert daily passenger flows into peak hour passenger flows. It should be ideally be determined by looking at historical data. Please note that this factor is usually higher for public transport as compared to total traffic.

INFILL DEVELOPMENT

Infill development is the term used for new development within existing communities on previously underutilized sites, typically at a higher density. Good infill developments fit in seamlessly within the existing urban fabric and the contributing elements include: setback- the distance from the front facade of the house to the street and should be the same distance as other houses on the street, height- which should be compatible with the height of buildings surrounding the lot and mass- the bulk of the house.

INFORMATION AND COMMUNICATION TECHNOLOGIES (ICT)

It refers to technologies that provide access to information through telecommunications. It is similar to Information Technology (IT), but focuses primarily on communication technologies. This includes the internet, wireless networks, cell phones and other communication mediums.

INTELLIGENT TRANSPORTATION SYSTEMS (ITS)

ITS refers to the application of information and communication technologies to transportation infrastructure and vehicles.

INTENSIFICATION

Urban intensification is the construction and reconstruction of compact communities in the existing built-up area of the city. Intensification includes new development, which raises the density on sites and within communities. These compact communities are supportive of transit, cycling and are pedestrian-friendly and promote local jobs and services.

INTERMODAL TRANSIT HUB

Intermodal Transit Hubs are stations or centres where a range of different transportation modes (i.e. cycling, walking, metro, private vehicle, bus, autos and taxis) come together and allow for easy transfers from one mode to another. They can also facilitate transfers at different scales: local, regional and intercity.

INTERNAL RATE OF RETURN (IRR)

This popular model creates a single discount rate, whereby all future cash flows can be discounted until they equal the investor’s initial cash investment. In other words, when a series of all future cash flows is discounted at IRR, that present value amount will equal the actual cash investment amount.

LAND AMALGAMATION

Amalgamation can relate to the combining of one or more allotments to create one single parcel of land. It is required for the purpose of assembling land for urban expansion, infill development, or redevelopment. In this process, the original landowners or occupants voluntarily contribute a certain percentage of their land to the government or other project initiators, and in return receive compensation in the form of money, or serviced land, or any other form.

LAND VALUE CAPTURE (LVC)

Land value capture is a policy approach that enables communities to recover and reinvest land value increases that result from public investment and other government actions. Common land value capture tools include: transferable development rights, betterment contributions, public land leasing, inclusionary housing and zoning, linkage or impact fees, business improvement districts and certain applications of the property tax. These tools can help finance transit and infrastructure improvements, affordable housing, parks and open spaces, utility upgrades and other critical services.
this additional funding, local and regional governments can more sustainably advance municipal fiscal health, enable infrastructure investment and address the challenges of sustainable urbanization.

LEGIBILITY
Ease with which people can create a mental map so that the spatial structure of a place can be understood and navigated as a whole.

LIGHT RAIL TRANSIT (LRT)
It is a form of urban rail transport using rolling stock similar to a tramway, but operating at a higher capacity, and often on an exclusive right-of-way. It operates primarily along exclusive rights-of-way and uses either individual tramcars or multiple units coupled to form a train that is lower capacity and lower speed than a long, heavy-rail passenger train or metro system.

A few light rail networks tend to have characteristics closer to rapid transit. Other light rail networks are tram-like in nature and partially operate on streets. Light rail systems are found throughout the world, on all inhabited continents. They have been especially popular in recent years, due to their lower capital costs and increased reliability compared with heavy rail systems.

LOAN TO VALUE (LTV)
LTV measures what percentage of a property’s appraised value or selling price (whichever is less) is attributable to financing. A higher LTV benefits real estate investors with greater leverage, whereas lenders regard a higher LTV as a greater financial risk.

\[
\text{Loan Amount} \div \text{Lesser of Appraised Value or Selling Price} = \text{Loan to Value}
\]

LOCAL TRANSIT
Public transport operating on fixed routes with frequent stops (100–400 m apart), generally in mixed traffic on surface roadways, relying heavily on walk access and egress.

LOCAL TRANSIT SERVICE AREA
The reasonably contiguous area served by the local transit network, not including regional services. Indicative extent would be the area within 1 km of regularly served local stops. This area does not include portions of the metropolis connected to the local service area solely by regional services.

LOCAL TRANSIT BOARDINGS
The annual number of passengers boarding local transit vehicles, counting separately each boarding made in the course of single journey or trip between origin and destination. Also known as unlinked passenger trips (UPT). Boardings on regional services should not be included in city totals when using this tool.

MASS RAPID TRANSIT
It is a type of high-capacity public transport, generally found in urban areas. Unlike buses or trams, mass rapid transit systems are electric railways that operate on an exclusive right-of-way, which cannot be accessed by pedestrians or other vehicles of any sort and which is often grade separated in tunnels or on elevated railways.

Modern services on rapid transit systems are provided on designated lines between stations, typically using multiple electric units on rail tracks, although some systems use guided rubber tires, magnetic levitation or monorail. The stations typically have high platforms, without steps inside the trains, requiring custom-made trains in order to minimize gaps between train and platform. They are typically integrated with other public transport and often operated by the same public transport authorities. However, some rapid transit systems have at-grade intersections between a rapid transit line and a road or between two rapid transit lines. It is unchallenged in its ability to transport large numbers of people quickly over short distances, with little to no use of land.

MARKET POTENTIAL VALUE
Unrealized market value of a station area, sometimes measured through a composite index considering major drivers of demand, including current and future human densities, current and future number of jobs accessible within 30 minutes by transit, and major drivers of supply (including the amount of developable land, potential changes in zoning, and market vibrancy).

MEAN LOCAL TRANSIT TRIP LENGTH
The average distance traveled by one public transit boarding passenger, calculated by dividing total local transit person-km by total local transit boardings.
MIDBLOCK CROSSING
Midblock crosswalks facilitate crossings to places that people want to go, but that are not well served by the existing traffic network. These pedestrian crossings, which commonly occur at schools, parks, museums, waterfroonts and other destinations, have historically been overlooked or difficult to access, creating unsafe or unpredictable situations for both pedestrians and vehicles.

MIXED-USE
Mixed uses are defined by a diverse mix of land uses, including housing, employment, regional attractions and public spaces, allowing people to walk to work or to shop rather than driving for all daily needs. It also includes vertical types of mixed-use development, like residential land use over the commercial uses, so that the distance between the activities is decreased and accessibility between different activities is increased.

MODE SHARE
Trips taken by a particular mobility choice, such as car, transit, cycling or walking, as a proportion of the total number of trips.

MULTI-MODAL TRANSPORT SYSTEM (MMTS)
Multi-Modal Transportation System (MMTS) explores the coordinated use of two or more modes of transport for efficient, safe, pleasant and comfortable movement of passengers in urban areas. It provides the convenient and economical connection of various modes to make complete journeys from origin to destination. Generally, MMTS has been characterized by increased capacity, efficient access and better location of both integration and nodes. Public transport is an important constituent of the multi-modal transportation system and hence, the local and regional public transportation system must be an integral part of the same.

MULTI-LEVEL CAR PARKING
Structured parking refers to an above- or below-grade structure designed to accommodate vehicle parking. This type of parking is more expensive than surface parking, but is a much more efficient use of land (a 3-storey parking structure requires a third as much land as a surface lot) and has long-term value for integrated mixed-use development.

MULTI-USE DEVELOPMENT
Multi-use development is a type of urban development that blends residential, commercial, cultural, institutional or entertainment uses, where those functions are physically and functionally integrated and provide pedestrian connections [1][2]. Mixed-use development can take the form of a single building, a city block or entire neighborhoods. The term may also be used more specifically to refer to a mixed-use real estate development project—a building, complex of buildings or district of a town or city that is developed for mixed-use by a private developer, (quasi-) governmental agency, or a combination thereof.

NET OPERATING INCOME (NOI)
NOI is a property’s income after being reduced by vacancy, credit loss and all operating expenses. NOI is one of the most important calculations to any real estate investment because it represents the income stream that subsequently determines the property’s market value—that is, the price a real estate investor is willing to pay for that income stream.

\[
\text{Gross Operating Income} - \text{Operating Expenses} = \text{Net Operating Income}
\]

NET PRESENT VALUE (NPV)
NPV shows the dollar amount difference between the present value of all future cash flows using a particular discount rate—your required rate of return—and the initial cash invested to purchase those cash flows.

\[
\text{Present Value of all Future Cash Flows} - \text{Initial Cash Investment} = \text{Net Present Value}
\]

NPV results:
Negative - the required return is not met
Zero - the required return is perfectly met
Positive - the required return is met with room to spare

NETWORK EXTENT
The number of kilometers of route in a public transport network, without double-counting kilometers where routes share the same path.

NODE VALUE
Measure of importance of a public transit station based on passenger traffic volume, intermodality, and centrality within the network; measured through a composite index.
NON-MOTORIZED TRANSPORTATION (NMT)
Non-motorised Transportation (also known as active transportation and human-powered transportation) includes walking and cycling and variants such as small-wheeled transport. It can be a very attractive mode of transport for relatively short distances, which make up the largest share of trips in cities. The key to reversing the trend toward more private vehicle use is making walking and cycling attractive, together with improving public transport. This can be done through a range of activities, including construction of sidewalks and bike lanes, bike sharing programmes, urban planning and pedestrian-oriented development. NMT is a highly cost-effective transportation strategy and brings about large health, economic and social co-benefits, particularly for the urban poor.

OPERATING EXPENSES
Operating expenses include those costs associated with keeping a property operational and in service. These include property taxes, insurance, utilities and routine maintenance. They do not include payments made for mortgages, capital expenditures or income taxes.

OPERATING EXPENSE RATIO (OER)
OER expresses the ratio (as a percentage) between a real estate investment’s total operating expenses dollar amount to its gross operating income dollar amount.

\[
\text{Operating Expenses} \div \text{Gross Operating Income} = \text{Operating Expense Ratio}
\]

OVERLAY ZONE
Overlay zone means a set of land use and development requirements designed to be applied over, or in addition to, the requirements of the underlying zone for a specific purpose, without removing or modifying the underlying zone.

PERT CHART (PROGRAM EVALUATION REVIEW TECHNIQUE)
A PERT chart is a project management tool used to schedule, organize and coordinate tasks within a project. A PERT chart presents a graphic illustration of a project, as a network diagram consisting of numbered nodes (either circles or rectangles), representing events or milestones in the project linked by labelled vectors (directional lines), representing tasks in the project. The direction of the arrows on the lines indicates the sequence of tasks.

PASSENGER-KILOMETERS TRAVELED
The total distance traveled by passengers on transit vehicles (for a single route or a system), which may be determined by multiplying the number of unlinked passenger trips by the average length of such trips.

PASSENGER TRAFFIC DENSITY
The total number annual transit passengers passing the average point along a system or route in both directions combined, formed by dividing system PKT by network extent (for a system) or route PKT by route length (for a single route).

PARK AND RIDE
Park and rides are car parking lots that offer transit users a place to park their car, then transfer to a public transit service to complete their journey. They are typically used in suburban locations where distances from destinations to transit service are further. Park and ride facilities should be visible from, and located along, heavily used commuter routes. They should be landscaped, weather resistant, well-lit and should contain a range of amenities.

PEDESTRIAN PLAZA
A public space that can act as an important organizing element within a station area, helping to facilitate transfers between modes, acting as receiving points for pedestrians and containing a range of services and amenities for transit users.

PEDESTRIAN-FRIENDLY DESIGN
Design intended to enhance the pedestrian experience, typically through improved amenities (for example, attractive landscaping, lighting, and seating areas) and by improving the efficiency of walking (for example, small city blocks, grid street patterns, and high road connectivity that provide direct, less circuitous pathways).

PER CAPITA
For each person; in relation to people taken individually.
The term is used in a wide variety of social sciences and statistical research contexts, including government statistics, economic indicators and built environment studies.
PERMEABILITY
Extent to which urban forms permit the movement of people or vehicles in different directions.

PEAK HOUR PEAK DIRECTION PASSENGER DEMAND
The number of transit passengers carried in the peak hour in the peak direction. This occurs almost universally on weekdays and is measured for a single route at its maximum load point.

PUBLIC INFORMATION CENTER (PIC)
Public Information Centers aim to establish a more effective, centralized distribution mechanism to safeguard the integrity and accurate distribution of government information. Moreover, it serves as a vital framework for collecting public opinions and feedback through building a communication path between the public and the government. It shall be the information source where the government can pertain constant betterment in government administration.

The PIC tends to public inquiries, complaints, suggestions and provides a centralized communication channel with the government. It offers a one-stop service in the provision of government information.

PUBLIC-PRIVATE PARTNERSHIP (PPP)
A formal partnership between a public sector entity and a private corporation often used to construct and operate infrastructure facilities or develop certain urban areas.

PLACEMAKING
Placemaking is a term that began to be used in the 1970s by architects and planners to describe the process of creating squares, plazas, parks, streets and waterfronts that will attract people because they are pleasurable or interesting.

PLACE VALUE
Determinants of the attractiveness of a place, including amenities; schools; health care facilities; type of urban development; local accessibility to daily needs by walking and cycling; quality of the urban fabric around the station, in particular its pedestrian accessibility; small size of urban blocks and fine mesh of connected streets, which create vibrant neighborhoods; and mixed pattern of land use. It is measured through a composite index.

POPULATION DENSITY
Population density is a measurement of population per unit area or unit volume; usually quoted per square kilometer or square mile (which may include or exclude, for example, areas of water or glaciers).

Commonly this may be calculated for a county, city, country, territory or the entire world.

PRESENT VALUE (PV)
PV shows what a cash flow or series of cash flows available in the future is worth in today’s dollars. PV is calculated by “discounting” future cash flows back in time, using a given “discount rate”.

PUBLIC-PRIVATE PARTNERSHIPS (PPP)
Public-private partnership (PPP) describes a government service or private business venture, which is funded and operated through a partnership of government and one or more private sector companies. These schemes are sometimes referred to as PPP or P3.

PPP involves a contract between a public-sector authority and a private party, in which the private party provides a public service or project and assumes substantial financial, technical and operational risk in the project. In some types of PPP, the cost of using the service is borne exclusively by the users of the service and not by the taxpayer. In other types (notably the private finance initiative), capital investment is made by the private sector on the strength of a contract with the government to provide agreed services and the cost of providing the service is borne wholly or in part by the government. Government contributions to a PPP may also be in kind (notably the transfer of existing assets). In projects that are aimed at creating public goods like in the infrastructure sector, the government may provide a capital subsidy in the form of a one-time grant, so as to make it more attractive to private investors. In some other cases, the government may support the project by providing revenue subsidies, including tax breaks or by providing guaranteed annual revenues for a fixed period.

PPP involves many models, including Design-Build-Finance (DBF) and Design-Build-Finance-Maintain (DBFM).

PUBLIC REALM
The public realm consists of public spaces such as streets, parks and sidewalks. The public realm is also a place where the community can come together through collaborative activities, such as street festivals and other programmable activity.
RAPID TRANSIT
Public transport operating on fixed routes at a significantly higher average speed than local service, usually in exclusive rights-of-way and/or completely separated from surface traffic. Access depends on both walking and local public transport service. Stations are typically 800m-2km apart.

REAL ESTATE ASSESSMENT
The primary goal of the Real Estate Assessment Department is to ensure the fair and equitable assessment of all real property in the County of Gloucester, based on fair market value, with the end result being the fair and even distribution of the tax burden among all property owners.

REGIONAL TRANSIT
Public transport operating on fixed routes within and outside the local service area, offering higher average speeds than even rapid transit, with average station spacing usually longer than 2km. A large share of access may be by motorized transport.

REFUGE ISLAND
A refuge island, also known as a pedestrian refuge, pedestrian island and colloquially as a “pork chop” island, is a small section of pavement or sidewalk, completely surrounded by asphalt or other road materials, where pedestrians can stop before finishing crossing a road. It is typically used when a street is very wide, as the pedestrian crossing can be too long for some individuals to cross in one traffic light cycle. They can often been seen on roads with higher speed limits also.

RIGHT-OF-WAY (ROW)
A right-of-way is land that is used for transportation purposes, such as for a trail, driveway, rail line, street or highway. A right-of-way is often reserved for the purposes of maintenance or expansion of existing services.

ROAD DIETS
A road diet, also called a lane reduction or road rechannelization, is a technique in transportation planning whereby the number of travel lanes, and/or effective width of the road, is reduced in order to achieve systemic improvements.

SENSE OF PLACE
Though sense of place has been defined differently and used in different ways, it is often used in relation to characteristics that make a place special or unique, as well as to those that foster a sense of authentic human attachment and belonging.

SPECIAL ECONOMIC ZONE (SEZ)
A special economic zone (SEZ) is an area in which business and trade laws are different from the rest of the country. SEZs are located within a country’s national borders and their aims include: increased trade, increased investment, job creation and effective administration. To encourage businesses to establish in the zone, financial policies are introduced. These policies typically regard investing, taxation, trading, quotas, customs and labour regulations. Additionally, companies may be offered tax holidays, whereupon establishing in a zone they are granted a period of lower taxation.

SHARED PARKING
Shared parking is a land use/development strategy that optimizes parking capacity by allowing complementary land uses to share spaces, rather than producing separate spaces for separate uses. In effect, shared parking makes spaces publically accessible, rather than reserved for a particular tenant or property owner. It may be privately constructed and operated, depending on a contractual agreement, but should remain within the government’s jurisdiction for long-term transport planning purposes.

SIDE LANES
Side lanes are a type of bike lane in-between a main travel lane and a dedicated turn lane. They can help prevent conflicts between cyclists and motorists who wish to make a turn (this assumes there is a bike lane along the street on the preceding block or blocks).

SIGNAGE
Signage is wayfinding and instructional signs erected at the side of or above roads, to provide information to road users.

SIMULATION
Simulation is the imitation of the operation of a real-world process or system. The act of simulating something first requires that a model be developed; this model represents the key
characteristics, behaviors and functions of the selected physical or abstract system or process. The model represents the system itself, whereas the simulation represents the operation of the system over time.

Simulation is used in many contexts, such as simulation of technology for performance optimization, safety engineering, testing, training, education and video games. Often, computer experiments are used to study simulation models. Simulation can be used to show the eventual real effects of alternative conditions and courses of action.

SOLID WASTE

Solid waste means any garbage, refuse or sludge from a wastewater treatment plant, water supply treatment plant or air pollution control facility. It also includes discarded materials, like solid, liquid, semi-solid or contained gaseous material, resulting from industrial, commercial, mining and agricultural operations and from community activities. It does not include solid or dissolved materials in domestic sewage or solid or dissolved materials in irrigation return flows or industrial discharges.

SPRAWL

A pattern of development characterized by uniform low density, lack of a distinctive core, poor accessibility, dependence on automobiles, and uncontrolled and noncontiguous land expansion.

SMART GROWTH

Smart growth refers to a collection of land use and development principles that aim to enhance our quality of life, preserve the natural environment and save money over time. Smart growth principles ensure that growth is fiscally, environmentally and socially responsible and recognizes the connections between development and quality of life. Smart growth enhances and completes communities by placing a priority on infill, redevelopment and densification strategies.

STATUTORY PLAN

A statutory plan is a legal document that must go through three readings and a public hearing before it is adopted. Once adopted, there is a legal obligation on the part of both the municipality and the residents to adhere to the plan.

STORMWATER

Stormwater is water that originates during precipitation events and snow/ice melt. Stormwater can soak into the soil (infiltrate), be held on the surface and evaporate or runoff and end up in nearby streams, rivers, or other water bodies (surface water).

STREET GRID NETWORK

The grid plan, street grid plan or gridiron plan is a type of city plan in which streets run at right angles to each other, forming a grid. These patterns display a higher degree of connectivity than other road hierarchical patterns, which feature dead-end streets and fewer through connections.

STREETSCAPE

It is a term used to describe the natural and built fabric of the street and defined as the design quality of the street and its visual effect. The concept recognizes that a street is a public place where people are able to engage in various activities. A streetscape needs to have boundaries to ensure safe travel for all roadway users. Signs, curbs, fences and landscaping can effectively create an inclusive, yet safe environment that provides a sense of physical comfort for diverse users and activities. The aesthetic appeal elements of beautification initiatives, attractive lighting, street furniture, clean streets and outdoor dining contribute to sense of place. Amenities should be designed to get people out of their cars to socialize, interact with their environment and discover other mobility options.

SWOT ANALYSIS

SWOT analysis (or SWOT matrix) is a strategic planning technique used to help a person or organization identify the Strengths, Weaknesses, Opportunities, and Threats related to business competition or project planning [1]. It is intended to specify the objectives of the business venture or project and identify the internal and external factors that are favorable and unfavorable to achieving those objectives.

TAX INCREMENT FINANCING (TIF)

TIF is a method to use future gains in taxes to finance current improvements (which theoretically will create the conditions for those future gains). When a development or public project is carried out, there is often an increase in the value of surrounding real estate, and perhaps new investment. This increased site value and investment sometimes generates increased tax revenues. The increased tax revenues are the “tax
increment. Tax Increment Financing dedicates tax increments within a certain defined district to finance debt issued to pay for the project. TIF is designed to channel funding toward improvements in distressed or underdeveloped areas where development might not otherwise occur. TIF creates funding for "public" projects that may otherwise be unaffordable to localities, by borrowing against future property tax revenues.

GLOSSARY OF TERMS

TAXABLE INCOME
Taxable income is the amount of revenue produced by a rental on which the owner must pay federal income tax. Once calculated, that amount is multiplied by the investor’s marginal tax rate (i.e., state and federal combined) to arrive at the owner’s tax liability.

\[
\text{Net Operating Income - Mortgage Interest - Depreciation, Real Property - Depreciation, Capital Additions - Amortization, Points and Closing Costs + Interest Earned (e.g., property bank or mortgage escrow accounts)} = \text{Taxable Income}
\]

Then,
\[
\text{Taxable Income} \times \text{Marginal Tax Rate} = \text{Tax Liability}
\]

TRANSFERABLE DEVELOPMENT RIGHTS (TDR)
Transferable development rights are the transfer of rights to develop land, to government, local authorities or corporations. When an owner of land transfers his rights to develop their land to a government, local authority, corporation or government use, the same land is used for infrastructure projects such as road widening, metro rail projects, parks, gardens and schools or may be for making new roads or for any other projects of public utility. DRC (Development rights certificate) will then be issued to the owner of the land, the main purpose of the whole process being to acquire the required amount of land in a hassle-free manner. The DRC will allow the landowner an additional built-up area in return for the area for which their rights have been relinquished and enables them to develop the given area or transfer rights for consideration.

TIME VALUE OF MONEY
Time value of money is the underlying assumption that money, over time, will change value. It’s an important element in real estate investing because it could suggest that the timing of receipts from the investment might be more important than the amount received.

TRANSFER OF DEVELOPMENT RIGHTS (HEIGHT AND DENSITY EXCHANGE)
Also called density bonusing, this tool offers developments a level of density that surpasses the allowable Floor Area Ratio (FAR). In exchange for increased height/density that surpasses the zoning by-law, developers are required to provide a service or benefit to the community as negotiated by the municipality, such as amenities or housing needed by the community. Density bonusing policies must be written into a municipality’s Official Plan in order for it to be used as a development tool.

TRAFFIC CALMING
Traffic calming is intended to slow or reduce motor-vehicle traffic in order to improve safety for pedestrians and cyclists and improve the environment for residents. These may include narrower traffic lanes, speed bumps, raised pedestrian crossings and pedestrian refuge islands in medians, amongst others.

TRANSFEROR STATION
A station of an electricity generation, transmission and distribution system where voltage is transformed from high to low, or the reverse, using transformers

TRANSIT-ADJACENT DEVELOPMENT (TAD)
Development that is in close proximity to transit stops or facilities. However, this type of development is not designed to promote transit ridership. A TAD lacks functional connectivity to transit, whether in terms of land-use composition, station access or site design.

TRANSIT-ORIENTED DEVELOPMENT (TOD)
Transit-oriented developments (TOD) are ‘urban villages’ where all residents are within a 5-10 minute walk of efficient public transit and can ‘live, work, play, shop and learn’ in a pedestrian-friendly environment without the need of a car. TOD is a planning approach that calls for high-density, mixed-use business/residential neighborhood centers to be clustered around transit stations and corridors. TOD is considered a “smart growth” strategy because it addresses the issue of where growth should occur from a sustainability perspective and it coordinates land use and transportation such that both land and infrastructure are used efficiently. As its name implies, TOD is designed to be served by transit, rather than or in addition to the automobile. Networks of streets and multi-use paths are
also created to provide a walkable and bikeable environment that is conducive to living, working and shopping in the same area. TOD is focused within an 800m radius of transit stops, with the highest intensity and mix of land uses concentrated within one-quarter mile or adjacent to the station. Land use intensities and densities decrease away from the core area, with transitions included in development plans to ensure compatibility with existing neighborhoods.

Peter Calthorpe summarizes the main characteristics and goals of TOD as follows:

- Organize growth on a regional-level to be compact and transit-supportive.
- Place commercial, housing, jobs, parks and civic uses within walking distance of transit stops.
- Create pedestrian-friendly street networks, which directly connect local destinations.
- Provide a mix of housing types, densities and costs.
- Preserve sensitive habitat, riparian zones and high-quality open spaces.
- Make public spaces the focus of building orientation and neighbourhood activity.
- Encourage infill and redevelopment along transit corridors within existing neighborhoods.

TRANSIT SUPPORTIVE DEVELOPMENT (TSD)

TSD consists of a mix of housing, shops, restaurants, offices, civic buildings and open space in close proximity to a transit station. Transit-supportive planning and development rethink land use and development patterns to achieve a balanced transportation system where walking, cycling and riding transit are used more than the private automobile. This is primarily accomplished by designing communities so that walking, cycling and riding transit are more convenient and attractive options.

TRANSIT PRIORITY SIGNALS

Traffic signal priority allows transit vehicles to travel through signalized intersections with little or no delay. Since transit vehicles hold many people, giving priority to transit can potentially increase the person throughput of an intersection. There are different types of signal priority: passive, active and real-time. A passive priority strategy uses timed coordinated signals in the area-wide traffic signal timing scheme. An active priority strategy involves detecting the presence of a transit vehicle and gives the transit vehicle special treatment. The system can give an early green signal or hold a green signal that is already displaying. Real-time control strategies can consider not only the presence of a transit vehicle, but the adherence to schedule and the volume of other traffic. One common strategy is to give priority only to late buses, but not to early buses. This strategy optimizes schedule adherence (and therefore waiting time) rather than running time.

TRANSPORTATION DEMAND MANAGEMENT (TDM)

By influencing travel behavior through the implementation of strategies such as carpooling, parking management, cycling programs, flexible working hours, high occupancy vehicle lands and incentives for transit, walking and cycling, the resulting transportation system is more efficient.

URBAN REDEVELOPMENT

It is conceptually similar to land readjustment, with the exception that it happens in existing urban areas and often involves a rezoning by the government of a given area from a low-density (single-family housing) to higher-density (mixed-use or commercial) development. It is also accompanied by a provision of infrastructure improvements (mass transit, such as metro lines) that can support such up-zoning.

URBAN HEAT ISLAND

An urban heat island (UHI) is an urban area or metropolitan area that is significantly warmer than its surrounding rural areas, due to human activities. The temperature difference usually is larger at night than during the day and is most apparent when winds are weak. UHI is most noticeable during the summer and winter. The main cause of the urban heat island effect is from the modification of land surfaces. Waste heat, generated by energy usage, is a secondary contributor. As a population center grows, it tends to expand its area and increase its average temperature. The less-used term, heat island, refers to any area, populated or not, which is consistently hotter than the surrounding area. Monthly rainfall is greater downwind of cities, partially due to the UHI. Increases in heat within urban centers increases the length of growing seasons and decreases the occurrence of weak tornadoes. The UHI decreases air quality by increasing the production of pollutants such as ozone and decreases water quality, as warmer waters flow into area streams and put stress on their ecosystems.
VALUE CAPTURE
An opportunity to generate revenues by capitalizing on the value created by infrastructure investments (often transit and other government-backed projects) by developing or selling property or collecting fees or taxes. Value capture can be facilitated through direct measures, such as the sale of properties or the granting of a development franchise, or through indirect methods, such as extracting surplus from other property owners (through a betterment tax, for example) or reaping higher proceeds from regular property taxes.

VEHICLE CAPACITY
The average number of people that a vehicle can be scheduled to carry at capacity (as defined herein)

WASTEWATER DISPOSAL
It is a process used to convert wastewater into an effluent (outflowing of water to a receiving body of water) that can be returned to the water cycle with minimal impact on the environment or directly reused.

WAYFINDING
The means in which people orient themselves in physical space and navigate from place to place. Can include the physical design of spaces and assistive features, such as signage.

WORLD BANK (WB)
The World Bank is an international financial institution that provides loans to countries of the world for capital projects. The World Bank’s stated goal is the reduction of poverty, which its Articles of Agreement define as commitments to the promotion of foreign investment, international trade and to the facilitation of capital investment.

ZONING REGULATIONS
Zoning regulations specify whether zones can be used for residential, commercial, industrial, institutional or open space purposes, that may also regulate lot size, placement, bulk (or density) and the height of structures.

Zoning consists of dividing a particular region of land into districts or zones and specifying the types of land uses that are allowed and prohibited for each zone. This is performed by the county and is typically specific to certain, unincorporated areas. Zoning, in its basic form, attempts to separate residential property use from other property uses.

Disclaimer: The Transit-Orientated Development Implementation Resources & Tools knowledge product is designed to provide a high-level framework for the implementation of TOD and offer direction to cities in addressing barriers at all stages. As the context in low and middle-income cities varies, the application of the knowledge product must be adapted to local needs and priorities, and customized on a case-by-case basis.

© 2021 International Bank for Reconstruction and Development / The World Bank
INTRODUCTION

This supplement to the TOD Knowledge Products provides examples of documents, reports, and terms of references from cities throughout the world where TOD is under implementation. The most relevant case examples are provided for specific groups of knowledge products. The intent of providing these examples is not to limit the scope or understanding of a subject matter. Rather, the user may choose to refer to them to understand the type of output that can be expected by using the various tools and resources provided under the TOD Knowledge Products, knowing and acknowledging that outputs will differ depending on the context of the assignment.

CONTENTS

AS-A01 TOD Readiness Assessment / AS-A02 TOD Scale and Context Assessment 599

AS-A03 Thresholds for Real Estate Demand / AS-H01 How to Undertake Real Estate Market Analysis / AS-R01 Real Estate Analysis Best Practices / AS-P01 Real Estate Analysis Terms of Reference Template 600

AS-A04 Thresholds for Rapid Transit Mode Selection / AS-H02 How to Undertake Rapid Transit Alternatives Assessment / AS-P02 Transit Alternatives Analysis Terms of Reference Template 601

AS-H03 How to Undertake Infrastructure Carrying Capacity Assessment / AS-P03 Infrastructure Analysis Terms of Reference Template / FI-A01 Infrastructure Capital and Operating Cost Estimates 602

EN-C01 Stakeholder Game / EN-C02 Making a Case for TOD to the Public-Communication Strategy / EN-P01 Communication Strategy Terms of Reference Template 603

PD-H01 How to Prepare a City-wide TOD Plan / PD-H02 How to Prepare a Corridor TOD Plan / PD-H03 How to Prepare a Station Area Plan / PD-H04 How to Prepare a Site Level TOD Plan 604

PD-H05 How to Develop TOD Supportive Zoning Framework) / PD-R02 TOD Zoning Cod Template 605

PD-H06 Land Amalgamation Framework 606

FI-A02 Real Estate Development Pro-forma 607

FI-H01 Land Value Capture Framework / FI-R01 Development Incentives / FI-R02 Land Value Capture Mechanisms and Best Practices / FI-R03 Municipal Finance Tools 608

FI-H02 Private Sector Participation Framework 609

IM-A01 Monitoring and Evaluation Checklist / IM-A02 TOD KPIs 610

IM-H01 How to Undertake Capacity Building / IM-P01 Capacity Building Terms of Reference Template 611

Disclaimer: The Transit-orientated Development Implementation Resources & Tools knowledge product is designed to provide a high-level framework for the implementation of TOD and offer direction to cities in addressing barriers at all stages. As the context in low and middle-income cities varies, the application of the knowledge product must be adapted to local needs and priorities, and customized on a case-by-case basis. © 2021 International Bank for Reconstruction and Development / The World Bank
PRODUCT SUMMARY

The TOD Readiness Assessment and Scale and Context Assessment tool are developed to help cities in understanding the contextual readiness of the city, corridor, or site and identify the appropriate scale and context at which to plan for TOD.

CASE EXAMPLES

<table>
<thead>
<tr>
<th>Example</th>
<th>Type</th>
<th>Example Source</th>
<th>URL</th>
</tr>
</thead>
</table>
PRODUCT SUMMARY

The real estate tools aid in establishing the real estate knowledge required to undertake a successful TOD development. Through the use of the tools, the market area with the appropriate demand can be determined. It can also be better understood what development is most in demand, based on demographic, geographic and economic trends.

CASE EXAMPLES

<table>
<thead>
<tr>
<th>Example</th>
<th>Type</th>
<th>Example Source</th>
<th>URL</th>
</tr>
</thead>
</table>
PRODUCT SUMMARY
The rapid transit assessment tools are intended to help cities who are planning the first rapid transit corridors or those that are planning an extension of existing transit networks.

The tools will aid in identifying, evaluating and selecting the appropriate rapid transit alternative including route alignment, mode and technology relative to existing city conditions and financial viability.

CASE EXAMPLES

<table>
<thead>
<tr>
<th>Example</th>
<th>Type</th>
<th>Example Source</th>
<th>URL</th>
</tr>
</thead>
</table>
PRODUCT SUMMARY

These tools help in evaluating the infrastructure carrying capacity of a site for transit-supportive densities, based on the development context. Further, they help in estimating the cost requirements for infrastructure capital and operating costs.

CASE EXAMPLES

<table>
<thead>
<tr>
<th>Example</th>
<th>Type</th>
<th>Example Source</th>
<th>URL</th>
</tr>
</thead>
</table>
PRODUCT SUMMARY

The Communications tools help to build ownership among all the TOD stakeholders. The myriad tools that can be employed include online and print strategies, physical games and other media that can communicate the benefits of the TOD plans.

CASE EXAMPLES

<table>
<thead>
<tr>
<th>Example</th>
<th>Type</th>
<th>Example Source</th>
<th>URL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strategic Communications Plan, Manassas Park</td>
<td>Report</td>
<td>Arup USA, Inc. 2009. “Marketing TOD Strategic Communications/Marketing Plan.” Manassas Park.</td>
<td>Link</td>
</tr>
</tbody>
</table>
PRODUCT SUMMARY

The How-to Guides for Plan+Design along with the Planning Principles demonstrate the processes to be followed in undertaking TOD planning at different scales under different contextual conditions. The outputs below are an illustration of how these tools will help you define the final products.

CASE EXAMPLES

<table>
<thead>
<tr>
<th>Example</th>
<th>Type</th>
<th>Example Source</th>
<th>URL</th>
</tr>
</thead>
</table>
PRODUCT SUMMARY

The TOD Zoning Framework tools provide guidance on how TOD concepts and ideas can be converted into a statutory zoning regulation within the city.

CASE EXAMPLES

<table>
<thead>
<tr>
<th>Example</th>
<th>Type</th>
<th>Example Source</th>
<th>URL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample TOD Overlay Zoning Ordinance -</td>
<td>Report</td>
<td>Valley Connections. 2001. Model Transit-Oriented District Overlay Zoning Ordinance. [Link]</td>
<td>[Link]</td>
</tr>
<tr>
<td>Reconnecting America</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The Land Amalgamation Framework tools guides cities on how to develop and define the area to be amalgamated and different ways to undertake the amalgamation process.

CASE EXAMPLES

<table>
<thead>
<tr>
<th>Example</th>
<th>Type</th>
<th>Example Source</th>
<th>URL</th>
</tr>
</thead>
</table>
PRODUCT SUMMARY

The Real Estate Development Pro-Forma tool provides primary understanding about the assessment of return on investment (ROI), based on certain basic project development parameters.

CASE EXAMPLES

<table>
<thead>
<tr>
<th>Example</th>
<th>Type</th>
<th>Example Source</th>
<th>URL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transit-Oriented Development in Mexico City</td>
<td>Presentation</td>
<td>DUSP (Department of Urban and Spatial Analytics), MIT. 2016. “Transit-Oriented Development in Mexico City.” Mexico City.</td>
<td>Link</td>
</tr>
</tbody>
</table>
PRODUCT SUMMARY

The development incentives, municipal finance, LVC and PPP tools will guide cities or developers in structuring projects so as to maximize value and revenue and share the risks during the life cycle of the project.

CASE EXAMPLES

<table>
<thead>
<tr>
<th>Example</th>
<th>Type</th>
<th>Example Source</th>
<th>URL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Land value capture as a funding source, Warsaw Metro</td>
<td>Report</td>
<td>Polska, Sprawne Panstwo Program- Ernst & Young. 2011. “Land value capture as a funding source for urban investment- The Warsaw metro system.” Warsaw.</td>
<td>Link</td>
</tr>
</tbody>
</table>
PRODUCT SUMMARY

This resource provides a compilation of municipal financing tools that are applied globally and a guide for the cities on how to deploy these tools.

CASE EXAMPLES

<table>
<thead>
<tr>
<th>Example</th>
<th>Type</th>
<th>Example Source</th>
<th>URL</th>
</tr>
</thead>
</table>
PRODUCT SUMMARY

The Monitoring and Evaluation tools provide cities with guidance on how to monitor and evaluate the performance of ongoing and completed projects with respect to TOD goals.

CASE EXAMPLES

<table>
<thead>
<tr>
<th>Example</th>
<th>Type</th>
<th>Example Source</th>
<th>URL</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOD Scores</td>
<td>Weblink</td>
<td>The Institute for Transportation and Development (ITDP). 2014. TOD Scores.</td>
<td>Link</td>
</tr>
</tbody>
</table>
PRODUCT SUMMARY

These tools will help cities assess their own capacities and formulate a response to be able to build capacities as needed for planning and implementing TOD.

CASE EXAMPLES

<table>
<thead>
<tr>
<th>Example</th>
<th>Type</th>
<th>Example Source</th>
<th>URL</th>
</tr>
</thead>
</table>
GOOD PRACTICE NOTE

Integration of Road Safety Considerations in Transit-Oriented Development projects

© 2021 The World Bank
This note was prepared with funding from UK AID, through the Global Road Safety Facility (GRSF), for the World Bank as part of the assignment: “Integration of Road Safety Considerations in Transit-Oriented Development Projects”.

It has been prepared by World Resources Institute India (WRI India) team led by Prema V. Mehta and included Abhishek Behera, Binoy Mascarehns and Jaya Dhindaw, and supported by Madhav Pai, Chetan Sodaye, Dhawal Ashar, Himanshi Kapoor and Rajeev Malagi; under the leadership of Gerald Ollivier and Alina Burlacu, with peer review by Blanca Domine, Said Dahdah, Wanli Fang, and Juan Miguel Velasquez Torres. Dipan Bose offered helpful comments during the finalization of the document.

September 2020
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AE</td>
<td>Automated Enforcement</td>
</tr>
<tr>
<td>BRT</td>
<td>Bus Rapid Transit</td>
</tr>
<tr>
<td>FOB</td>
<td>Foot over bridge</td>
</tr>
<tr>
<td>GDP</td>
<td>Gross Domestic Product</td>
</tr>
<tr>
<td>IPT</td>
<td>Intermediate Public Transport</td>
</tr>
<tr>
<td>NMT</td>
<td>Non-motorized Transport</td>
</tr>
<tr>
<td>PIARC</td>
<td>World Road Association</td>
</tr>
<tr>
<td>RSIA</td>
<td>Road Safety Impact Assessment</td>
</tr>
<tr>
<td>ROW</td>
<td>Right of Way</td>
</tr>
<tr>
<td>RSA</td>
<td>Road Safety Audit</td>
</tr>
<tr>
<td>RSI</td>
<td>Road Safety Inspection</td>
</tr>
<tr>
<td>SAM</td>
<td>Safe Access Mass-transit</td>
</tr>
<tr>
<td>TOD</td>
<td>Transit Oriented-Development</td>
</tr>
<tr>
<td>VKT</td>
<td>Vehicle Kilometers Traveled</td>
</tr>
<tr>
<td>WRI</td>
<td>World Resources Institute</td>
</tr>
</tbody>
</table>
LIST OF TABLES

Table 1. Distribution of deaths by road user type by WHO Region 621
Table 2. Three components of a sidewalk 648
Table 3. Comparison between location of crosswalks in different types of intersections. 650
Table 4. Comparisons highlighting issues of inadequate pedestrian waiting areas and mitigation measures 651
Table 5. Comparing different types of dedicated cycle lanes. 653
Table 6. Summary table for different types of intersections 656
Table 7. Alternatives for ROW redistribution 665
Table 8. Vertical speed control alternatives 666
Table 9. Horizontal speed control alternatives 668
Table 10. Alternatives for a modified intersection 670

LIST OF FIGURES

Figure 1. Safe system diagram 623
Figure 2. Five principles of Safe Access 632
Figure 3. The different realms for planning of station area 642
Figure 4. Hierarchy of priority for mobility planning 642
Figure 5. Oriented the feeder network in a greenfield station area 643
Figure 6. Determining the feeder priority area in the station area. 645
Figure 7. Pedestrian only street in Sao Paulo, Brazil 646
Figure 8. Three components of a sidewalk 647
Figure 9. Immovable obstructions on the sidewalk restricting pedestrian movement 648
Figure 10. Deviations made around obstructions for continuous walking path. 648
Figure 11. Typical multi-utility zone with different types of uses 649
Figure 12. Natural walking path and desire lines for a right-angled intersection. 650
Figure 13. Crosswalks aligned along desired movement patterns in a skewed intersection. 650
Figure 14. Crosswalks aligned along shortest crossing distance in a skewed intersection. 650
Figure 15. Reduced intersection corner curvature for pedestrian safety 651
Figure 16. Existing conditions with wider corner radius 651
Figure 17. Tighter corner radius provides more waiting area for pedestrians. 651
Figure 18. Curb extensions created by removing travel lanes further reduce crossing times for pedestrians. 651
Figure 19. Uni-directional marked cycle lane. 654
Figure 20. Bi-directional marked cycle lane. 654
Figure 21. A shared bus and bike lane 654
Figure 22. Separate bus and cycle lanes, with cycle lane going behind the bus stop 654
Figure 23. A bus station bypass in Rio de Janeiro, Brazil 654
Figure 24. Cycle lane between travel lane and parking lane 654
Figure 25. Cycle lane between sidewalk and parking lane without any buffer 655
Figure 26. Buffer between cycle lane and parking lane using on-street markings using paint. 655
Figure 27. Protected bike lanes with physical separations using raised median as buffers 655
Figure 28. Advanced termination of bike lane as it nears an intersection. 656
Figure 29. Turning lane inserted between cycle lane and sidewalk. 656
Figure 30. Advanced stop lines with cycle boxes for cyclists to align in direction of turn 658
Figure 31. Two-phase cycle turn boxes
Figure 32. Cycle lanes hooked with pedestrian crossing
Figure 33. Single phase for cycle movement in all directions.
Figure 34. Two-phase cycle turn at intersection with Bus priority lanes
Figure 35. Bus stop location at mid-block has a limited reach and longer interchange distance
Figure 36. Bus stop located near an intersection increases connectivity and reduces the interchange distance.
Figure 37. Transfer distances of two stops positioned at mid-blocks
Figure 38. Transfer distances of stops near the intersection
Figure 39. Impact on traffic due to stop positioned before intersection
Figure 40. Impact on traffic due to stop positioned after intersection
Figure 41. Impact on traffic due to stop positioned close to intersection
Figure 42. Impact on traffic due to stop positioned short distance from the intersection
Figure 43. Incorrect location of mid-block bus stops along curved roads
Figure 44. Ideal mid-block location of bus stops with common crosswalk
Figure 45. Existing typical distribution of ROW with wide travel lanes
Figure 46. Redistributed ROW with narrower travel lanes, cycle lanes, and bus lane
Figure 47. Redistributed ROW with narrower travel lanes, cycle lanes, and center turn lane
Figure 48. Redistributed ROW with narrower travel lanes, cycle lanes, and on street parking
Figure 49. Redistributed ROW with narrower travel lanes, cycle lanes, and wider sidewalks
Figure 50. Speed hump
Figure 51. Speed table
Figure 52. Speed bump
Figure 53. Speed humps before pedestrian crossing.
Figure 54. Pedestrian crossing on top of speed table
Figure 55. Speed table doubling up as a mid-block crossing with safety bollards in New Delhi, India
Figure 56. Chicanes
Figure 57. Staggered on-street parking
Figure 58. Chokers
Figure 59. Median bulb-out
Figure 60. Mid-block crossings in BRT lane as a combination of horizontal and vertical traffic calming measures
Figure 61. Extending curb corners at intersections to create gateways
Figure 62. Raised intersection, at the level of sidewalk
Figure 63. Mini roundabout
Figure 64. Restricting movement at intersections using barriers
Figure 65. Cycle parking facility and pedestrian only area at the entrance of Transmilenio in Bogota, Colombia
Figure 66. Transit station access using segregated sidewalks, Mexico
Figure 67. Designed access to DN Nagar Metro Station Mumbai near an intersection
Figure 68. Pedestrian access to a raised BRT station in the center of the ROW
Figure 69. Facilities for cyclists to access the BRT station along with pedestrians
Figure 70. Thane Suburban station in India with lower level for auto-rickshaws and upper levels for bus bays
Figure 71. Typical transfer platform at station along Bogota, Colombia’s TransMilenio BRT corridor
Figure 72. Transfer facility between two intersecting BRT Lines
Figure 73. Para-transit access and transfers to transit station
CONTENTS

Abbreviations 615
List of Tables 616
List of Figures 616

Introduction 621
- Road crash and impact 621
- Safe system approach 622
- Case for transit-oriented development (TOD) 624

Scoping 625

Assess 626
- Road safety capacity reviews: Policy, regulatory and institutional framework 626
- Road inventory, road crash data collection and analysis 627
- Road safety assessment and engineering tools 629

Enable 631

Plan+Design 633
- Planning of TOD networks 633
- Design of elements within TOD network 635

Finance 636

Implement 637
- Institutional set-up and capacity building 637
- Execution of design 638
- Monitoring and evaluation 639

Appendix A 641

Appendix B 647

References 677
Based on 2018 findings of the World Health Organization (WHO), the number of deaths due to road crashes is 1.35 million deaths per year. While this number is quite high and increasing every year, the rate of road crash deaths per 100,000 of population has remained constant, at around 18 deaths, over the years. This rate of deaths is however not distributed proportionately amongst the different regions and countries. The high-income countries have recorded lowest average rate at 8.3 per 100,000. In contrast to this number, low-income countries have the highest annual road traffic fatality rates averaging at 27.5 deaths per 100,000– more than three times the average for high-income countries.

Most of the deaths and injuries from road crashes are of the working age population, which negatively impacts both the economy and the demography of the region. Road traffic injuries are currently the 8th leading cause for death for all age groups, and further compounding the demographic impact is the fact that road crashes are the leading cause of death for children and young adults, between the ages of 5 and 29 years.

Road traffic crashes have a high economic impact, costing 3 percent of a country’s GDP on average. They also cause a significant impact on the individuals as well as their families. Injuries arising due to road crashes can lead to trauma for the individual and loss in productivity. Along with costs of treatment, economic challenges may further be increased due to temporary or permanent loss of income as well. Along with the victim, road crashes take an emotional toll on the immediate family members and caregivers during treatment process or any deaths and add to the economic burden as they may need to take time off work or school to care for the injured.

The distribution of road users varies within different regions and income groups of countries. This impacts the variations in death rates amongst the users. The low- and middle-income countries have a significantly high proportion of pedestrians, cyclists and two- or three-wheeler motorized vehicles. Overall, the global road traffic deaths for pedestrians and cyclists is at 26% and another 28% for two- and three-wheeler motorcyclists, totaling nearly 54% of vulnerable road users. This proportion varies in comparison between the economic group of countries, with a high percentage of road crash victims being car occupants.

<table>
<thead>
<tr>
<th>Drivers/ passengers of 4 wheeler vehicles</th>
<th>Americas</th>
<th>Europe</th>
<th>Africa</th>
<th>Eastern Mediterranean</th>
<th>South-east Asia</th>
<th>Western Pacific</th>
<th>World</th>
</tr>
</thead>
<tbody>
<tr>
<td>34%</td>
<td>48%</td>
<td>40%</td>
<td>39%</td>
<td>16%</td>
<td>22%</td>
<td>22%</td>
<td>29%</td>
</tr>
<tr>
<td>Motorized 2-3 wheeled vehicles</td>
<td>23%</td>
<td>11%</td>
<td>9%</td>
<td>15%</td>
<td>43%</td>
<td>36%</td>
<td>28%</td>
</tr>
<tr>
<td>Cyclists</td>
<td>3%</td>
<td>5%</td>
<td>4%</td>
<td>2%</td>
<td>2%</td>
<td>6%</td>
<td>3%</td>
</tr>
<tr>
<td>Pedestrians</td>
<td>22%</td>
<td>27%</td>
<td>40%</td>
<td>34%</td>
<td>14%</td>
<td>22%</td>
<td>23%</td>
</tr>
<tr>
<td>Others/ unspecified</td>
<td>18%</td>
<td>9%</td>
<td>7%</td>
<td>10%</td>
<td>25%</td>
<td>14%</td>
<td>17%</td>
</tr>
</tbody>
</table>

Table 1. Distribution of deaths by road user type by WHO Region (Source: WHO 2018)
5. Globally, a significant percentage of road crash victims being car occupants is also an indicator of insufficient infrastructure for controlling traffic speeds and volumes. Furthermore, when people use private cars more for their daily activities, it results in a higher level of total vehicle-kilometers traveled (VKT). Choice of using personal vehicle over using non-motorized transport or public mass transport may be attributed to the car-centric planning and design of road infrastructure. Many countries lack adequate protected infrastructure for pedestrians and cyclists. This discourages users to walk or bicycle to their destinations.

6. Mode-choice plays a critical role in road safety. Public mass transit systems not only provide faster and safer transportation mode choices, they also help reduce dependency on privately owned vehicles on the road. Public mass transit services typically follow designated routes as well, thereby minimizing interferences between different types of road users. While many countries still have to develop mass transit infrastructure such as metro rails, public bus system is quite prevalent, with bus rapid transit (BRT) and bus only lane infrastructures being developed. Absence of proper first and last mile connectivity to the transit stations poses security threats for road users and discourages them from using public transport.

7. Additionally, a city’s urban form conditions, such as built density, land-use mix and street layout, are also critical aspects for road safety, and can impact a variety of influencing factors, ranging from traffic speed to modal choice. Larger block sizes and suburban layouts mean longer walking and biking distances for users and hence a preference for private vehicles. Barcelona, Spain and Atlanta, USA both have comparative population sizes (2.8 million and 2.5 million respectively). However, they vastly differ in built-up area, with just 162 sq.km for Barcelona, compared to 4280 sq.km for Atlanta. This has a significant impact on mode choice, where only 20% of trips in Barcelona are car dependent, compared to 77% in Atlanta. The road safety impact is clearly evidenced by the traffic fatality rate of just 1.9 deaths per 100,000 population in Barcelona compared to 9.7 deaths in Atlanta.

SAFE SYSTEM APPROACH

8. The Safe System approach derives from the Swedish Vision Zero and Dutch Sustainable Safety strategies that have a long-term goal for a road traffic system to be eventually free from fatalities and serious injuries. It represents a shift away from traditional approach of preventing collisions to a more forgiving approach of preventing fatalities and mitigating serious injuries in road crashes. The traditional approach emphasizes the responsibility of road users to avoid crashes rather than the responsibility of system designers to provide a safe mobility system.

9. The Safe System approach takes into account that humans are vulnerable and fallible, and errors are to be expected. It aims at ensuring these mistakes do not lead to a crash, and if a crash does occur, it is sufficiently controlled to not cause a death or a life-changing injury. Thereby with a “zero-harm goal”, it places a strong emphasis on road builder/operator and vehicle manufacturer accountability for road safety performance.

10. The Safe System approach emphasizes shared responsibility. Government agencies at different levels and a range of multi-sectoral agencies and stakeholders – including policy makers, road engineers, planners, vehicle manufacturers, enforcement officers, emergency medical agencies, road safety educators etc. – are accountable for the system’s safety and all road users – drivers, cyclists, and pedestrians are responsible for complying with the system rules.

11. This approach further caters to the larger socio-economic and environmental challenges faced in urban areas. While making the road an equitable space for all users, ensuring accessibility and usability for all, it helps address issues associated with road traffic such as congestion, public health, and pollution.
12. The Safe System approach is anchored around the following four principles:

- **People make mistakes** that can lead to road crashes.
- **People are vulnerable** – The human body has a limited physical ability to tolerate crash forces before harm occurs i.e. being seriously injured or killed.
- **A shared responsibility** – Those who plan, design, build, and manage roads and vehicles and provide post-crash care share the responsibility to prevent crashes resulting in fatal and serious injuries. In a true Safe System, road users also have the responsibility such as vehicle safety feature maintenance, complying with the policies etc.
- **Strengthen all parts of the system** – There is a need to improve the safety of all parts of the system - roads and roadsides, speeds, vehicles, and road use - and if one part fails, road users are still protected.

13. Along with these principles, it must also be noted that road crash deaths and serious traffic crashes and injuries are preventable and should not be accepted as part of the mobility system. Lack of safety should not be a trade-off for faster mobility. Rather, the mobility system should be both safe and efficient.

14. Safe system comprises of four components below (Figure 1):

- **Safer Roads**: Safety features are to be included into the design of roads in order to reduce the risk of crashes and the severity of injuries if a crash occurs. Typical measures include segregation of different types of road users and traffic moving at different directions and speeds, traffic calming measures, targeted improvements of crash hot-spot etc.

- **Safer Speeds**: Speed limits help in avoiding crashes and the severity of the same. The human body being vulnerable has a limit for experiencing and enduring physical trauma. Based on road types and the contexts, appropriate speed limits need to be established and enforced.

- **Safer Vehicles**: Vehicles are to be designed and maintained to minimize the occurrence and consequences of crashes focusing on the survivability post a collision. While the vehicle design technology (braking systems, sensors, passive safety components etc) is critical, the onus is also on the users to buy safer vehicles and maintain them to the highest standards.

- **Safer Road Users**: As part of the shared responsibility, it is necessary for road users to comply with the road rules and for system designers to actively work towards reduction of traffic volumes, educating users of the risks, adhering to proper usage of roads, ensuring proper post crash health facility etc.
CASE FOR TRANSIT-ORIENTED DEVELOPMENT (TOD)

15. In order to achieve sustainable growth, globally cities are looking at integrating land use and transportation planning. An outcome of this endeavor is the application of transit-oriented development, better known by its acronym TOD. It is a “multidisciplinary planning and design strategy to ensure compact, mixed-use, mixed-income, pedestrian and two-wheeler friendly cities, and suitably dense urban development organized around transit stations”. By virtue of its character, a TOD scheme advocates for environmental sustainability by promoting public transit and non-motorized transport, and socially-inclusive economic development that is equitably distributed creating safe urban spaces for all users.

16. The World Bank’s TOD Community of Practice summarizes eight key principles for implementing TOD:

- Align human densities, economic densities, mass transit capacity, and transit network characteristics for greater accessibility.
- Create compact regions with short commutes.
- Ensure the resilience of areas connected by mass transit.
- Plan and zone for mixed-use and mixed-income neighborhoods at a corridor level.
- Create vibrant, people-centric public spaces around mass transit stations.
- Develop neighborhoods that promote walking and cycling.
- Develop good-quality, accessible, and integrated public transit.
- Manage demand for private vehicles.

17. TOD involves creating concentrated nodes of moderate-to-high density developments supporting a balanced mix of diverse land uses which are located within 5-10 minutes of walking distance, i.e., 800m-1km from mass rapid transit stations. This integration of transportation and land use planning, with other elements such as market demands, environmental systems, community input and technical efficiencies, allows for placement of employment, entertainment, leisure and residential uses near each other around the rapid transit stations. This allows for reduced trip lengths and number of trips and prioritizes public transit use and reduces dependency on private motor vehicles.

18. There is a strong interrelationship between TOD and road safety. A well-executed TOD scheme has the potential to make far-reaching impacts on the road safety scenario in the city. At the citywide level, TOD influences urban form and mode-choice; two very critical factors for road safety. The mixed-use land use developments with active frontage and accessible services centered within safe walking and cycling distances around transit stations, encourages users to choose for transit combined with non-motorized commute over use of cars. This pattern of considerable mode shift minimizes the number of cars on the street thereby reducing the chances of conflicts. At the neighborhood level, TOD promotes more pedestrian-friendly streets with lower traffic speeds, which significantly improves the safety of the most vulnerable road-user group.

19. This note forms a part of the engagement between the World Bank and World Resources Institute India (WRI India) to leverage existing work on “TOD Implementation and Resource Tools” being developed as part of the Global Platform for Sustainable Cities (GPSC), by identifying and addressing road safety gaps to develop improved guidelines to apply the safe system approach to existing TOD projects around the world.
20. As part of the engagement between the World Bank and WRI India, a review of existing literature and references on TOD projects developed by the World Bank and other leading organizations and practitioners across the world was undertaken to analyze best practices of urban road safety. A road safety diagnostic on the existing TOD Toolkit Knowledge Products was also carried to identify gaps and how to address the same.

21. It was observed that the existing literature and the toolkits discussed the importance of TOD and how to execute a TOD project from an institutional setup, planning along transit routes, and financing of the same. They however did not explicitly discuss the need for enabling or ensuring road safety within a TOD area.

22. These gaps have then been subsequently addressed by World Resources Institute to support systematic inclusion of road safety and universal accessibility in TOD projects through five stages of TOD implementation - Assess, Enable, Plan & Design, Finance and Implement.

23. This Good Practice Note summarizes the various road safety considerations and measures that may be undertaken.
24. ‘Assess’ is the first stage of the TOD Resources and Implementation toolkit. This initial stage helps in determining how “ready” a city is for TOD, based on “analysis of a complementary set of economic, geographic, demographic, economic, urban form, and institutional factors.” TOD readiness assessment also involves road safety assessment. This further contributes to the case for implementing a TOD design.

25. The road safety assessment must be further aligned to a TOD network design, i.e. it should be able to highlight issues and direct towards appropriate design interventions catered for a TOD area. Through the knowledge products and the literature reviewed it is evident that road safety assessment for TOD readiness involves three distinct measures:

- Road safety capacity reviews: policy, regulatory and institutional framework assessment,
- Road inventory, road crash data collection and analysis,
- Road safety assessment and engineering tools.

ROAD SAFETY CAPACITY REVIEWS: POLICY, REGULATORY AND INSTITUTIONAL FRAMEWORK

26. The first measure looks at assessing ‘efficiency and effectiveness’ of the various existing policies and regulatory frameworks and institutional setups available at the local, regional, and national levels. These are analyzed based on their capacities to execute planning, design and implementation of a TOD project, including road safety.

27. The World Bank’s Road Safety Capacity Review Guidelines present a two-stage, iterative process that culminates in the preparation and implementation of projects designed to launch the identified long-term country investment strategy. These two stages are based on the six recommendations provided for road traffic injury prevention:

1. Identify a lead agency in government to guide the national road safety effort.
2. Assess the problem, policies and institutional settings relating to road traffic injury and the capacity for road traffic injury prevention in each country.
3. Prepare a national road safety strategy and plan of action.
4. Allocate financial and human resources to address the problem.
5. Implement specific actions to prevent road traffic crashes, minimize injuries and their consequences and evaluate the impact of these actions.
6. Support the development of national capacity and international cooperation.

28. The first stage of the process concerns the conduct of a country capacity review (recommendation 2). The capacity review assesses the lead agency role (recommendation 1) and specifies a long-term investment strategy and identifies Safe System projects to be launched (recommendations 3 & 4). And the second stage of the process concerns the detailed preparation and implementation of the Safe System projects (recommendations 5 & 6).
29. While these Guidelines offer a comprehensive approach for any kind of road safety capacity review, as part of the “Assess” step of determining TOD readiness, we would focus on the first two recommendations.

30. Based on the reviews of existing literature, it was observed that more than often, road safety and TOD policies were independent of each other. However, road safety is an intrinsic component of TOD implementation, it therefore needs to be part of TOD readiness assessment. Any existing road safety mandate of the government such as Vision Zero – aiming at zero road crash – must be included as part of the TOD policy. Additionally, policies to prioritize implementation of public transport systems and encouraging citizens to use the same may be included in the TOD implementation policy as a champion cause.

31. Institutional capacities are also assessed to determine the right mix of professionals within the implementation agency. In order to make informed decisions to reduce road crashes and make safe spaces for all road users, it is essential to include road safety experts who are adept with safe system practices. Additionally, the team of experts should also ideally include urban designers and planners who have experience in complete street design.

32. This capacity assessment will help identify shortcomings in readiness for TOD implementation that may further be addressed through the remaining steps.

ROAD INVENTORY, ROAD CRASH DATA COLLECTION AND ANALYSIS

33. Evidence based advocacy helps in decision making and prioritizing funding and project implementation. Data collection and proper data analysis helps in sending the right message to communities and gaining their support and also support of various stakeholders, and provides the basis for making relevant improvements.

34. In order to undertake TOD readiness assessment of a city, it is essential to assess the existing physical infrastructure. Assessment of the existing physical urban fabric of the city and around the station areas – existing urban density and character, road network land use etc – help determine future planning and design, and strategies for implementation. These also have a direct correlation with ensuring road safety for all, especially the vulnerable users.

35. Socio-economic and demographic data, high-definition aerials and satellite imagery, site surveys, local employment data, travel pattern information, contextual information such as immediate land use, level of urbanization, future development and growth patterns, transport network information such as mode share, transit ridership, vehicle counts etc clearly play an essential role in TOD readiness. However, very often road crash data are not included during the data collection process for determining TOD readiness of a city. Analysis of crash data can help identify relevant patterns and assist in developing policies and institutional framework to reduce crash related deaths and injuries by using TOD development as a planning tool.

36. In order to make comprehensive road crash analysis, the crash data need to be supported by inventory of the roads and road network within the station area. Below there are typical components that should ideally be part of a road inventory. While this is not an exhaustive list of components in a road inventory, it may be modified based on the local context and data collection mechanisms available with the city.

37. Typical inventory includes:

- Type of road – arterial or connector
- Width of Right of Way (ROW), length, number of lanes and width, directionality
- Presence of lanes for transit, shared vehicles, shared use etc
- Presence of median
- Presence of sidewalk and width
- Intersections – signalized or not
- Presence of cycle lane, type, width, buffer and type, shared
- Use of transit along the ROW and nature of transit.
• Transit amenities like bus stops, BRT stops, train stations
• On street parking and alignment
• Drainage
• Mid-block crossings and any other type of pedestrian crossing such as foot over bridge (FOB) and underpasses
• Safety measures such as hawk-eye, speed cameras, etc
• Street amenities such as street lights trees, furniture, utility etc
• On-street vending, and any other relevant information

38. At a city level, a high road fatality rate can be used to advocate for a TOD plan and the urgency for implementation. At the corridor level, the mapping of road safety data will identify the vulnerable road users and indicate the most critical zones that can be improved through the implementation of TOD. If road crash data are analyzed in conjunction with traffic data, such as VKT and mode-share, they can make a stronger case for assessing TOD readiness. At the station-area level, safe access to the transit station can be assessed through road crash data.

39. Below there is a list of variables that needs to be collected as part of road crash data. Depending on the contexts, resources, and budget, these may be adapted and modified at local, regional and national levels. Based on the information collected different types of analysis may be carried as discussed later.

40. These variables collected as part of crash data should be comprehensively analyzed in a holistic manner. If it is observed that certain data variables aren’t robust, then necessary remedial measures must be undertaken by the concerned agencies.

<table>
<thead>
<tr>
<th>DATE & TIME</th>
<th>Recording of date and time variable allows for seasonal and hourly comparisons of the incidents. Frequent occurrences of road crashes during a time of the day can be compared with the local traffic data to establish if any correlation exists between the occurrences and traffic volumes.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHARACTERISTICS OF PERSONS INVOLVED</td>
<td>Crash data must include the number of persons involved in the incident and other basic information. Variables that need to be recorded about the persons involved in the crash include road user type (pedestrian, cyclist, vehicle driver, passenger etc), age and gender, persons with special needs including disabled and pregnant women, physical condition of the users including level of alcohol in the body, details about use of any safety equipment such as protective gears, seat belts etc and type of injury sustained.</td>
</tr>
<tr>
<td>CHARACTERISTICS OF VEHICLE</td>
<td>Data about the vehicles involved in the crash including type, age, country, safety equipment if any, date of last periodical technical check according to applicable legislation.</td>
</tr>
<tr>
<td>CRASH SEVERITY</td>
<td>Crashes are also defined by their severity – which is based on the impact on the persons involved - fatal injury, serious injury, minor injury, property damage/non-injury.</td>
</tr>
<tr>
<td>CRASH TYPE</td>
<td>Information on the type of crash including modes involved, for example vehicle-vehicle or vehicle-pedestrian or vehicle-bicycle, etc. during the crash needs to be recorded. Other information that is required includes maneuvering of vehicles during the crash: type of impact or collision, speed of vehicles etc. Understanding the events of the crash can help in determining the interventions necessary.</td>
</tr>
<tr>
<td>CRASH LOCATION (GEO-CODED)</td>
<td>Maintaining records of crash location over a period will help identify blackspot and critical areas within the city. A higher number of occurrences in an area would mean a higher priority and a greater scope of implementing improvements.</td>
</tr>
</tbody>
</table>
41. Based on the information available, following types of analysis techniques may be adopted:

- **Basic Trend Analysis:** This requires data to be recorded at the crash-level (date & time of crash, vehicles & modes involved, location of crash and number of serious injuries and fatalities) and each record in the dataset must correspond to one unique crash.

- **Crash Factor Analysis:** It is observed that the cause of road crash is often identified as an error on the part of the driver. Non-behavioral factors, such as road design or vehicle failure, are almost never considered. For a crash factor analysis, it is important to analyze the detailed crash report recorded by the police, and not just rely on the aggregated dataset.

- **Blackspot Identification:** Blackspots are locations with high crash risk, as determined by high crash occurrences. The analysis requires the geographic location of each crash, recorded as accurately as possible. Location information is particularly important in identifying priority areas for intervention and course correction.

42. Road crash data can be sourced from multiple agencies. However, each have their own challenges and limitations. A single crash-injury database does not always provide adequate information to give a holistic picture of road traffic injuries. Many countries have therefore started using both crash data collected by the police along with the health sector data.

- **Police records** are the primary source for crash data. Most road crash reports will typically contain date & time of crash, location, vehicles involved and number of injuries & fatalities. In addition, the crash description may contain information about how the crash occurred, Precinct-level data are then rolled-up and aggregated by the central police department, which is usually what is made available publicly. This information isn’t always the most accurate information – primarily due to human errors in the process of collecting and recording the data. Additionally, only major crashes that cause serious injuries or fatalities or involve more vehicles often get reported to the police. Minor crashes or near misses are often under-reported and thus do not always get included in this primary crash data source. It is therefore recommended to complement police data with other secondary data sources.

- **Hospital Records** are maintained by the government bodies like a City Municipal Health Department. These data are useful in cases where there isn’t adequate follow-up by the Police for example when a road crash victim is initially reported as injured but may have subsequently died after the police report was filed. Also, in some cases, a police report does not get filed due to various reasons.

- **Vehicle Insurance Records** supplement police records, especially in cases where a police report was not filed. Insurance records tend to provide a more comprehensive description of vehicle damage information, which is useful in understanding the causes of the crash.

ROAD SAFETY ASSESSMENT AND ENGINEERING TOOLS

43. Use of crash data for risk assessment mentioned above has traditionally been considered a reactive approach. In recent years, more proactive tools for risk identification have been developed. These aren’t merely a check on design compliance, but a holistic assessment of the road by considering the various elements present.

44. These risk identification tools are adopted at different stages of implementation of a road design and may be undertaken for both new roads or road feature or modification to an existing road. These tools also help in the identification of solutions to the risks identified and prioritizing suggested interventions.

45. The road safety check types are:

- **Road Safety Impact Assessments or RSIA** is a strategic comparative analysis of impact between different possible schemes of a new road design or any modifications to an existing network, to ensure that the scheme selected is the one that has the best outcome for road safety. This is carried out before detailed planning begins and helps in the decision-making process.
• **Road Safety Audit or RSA** is a formal detailed systematic and technical safety check performed to check that the selected scheme is designed and constructed in such a way as to yield the greatest road safety benefits, and to detect any potential hazards throughout all stages from planning to early operation. The auditors carrying out the checks should be trained and must be independent from the designer and from the contractor. Usually a list of potential safety deficiencies and recommendations for improvement are included in the audit report.

• **Road Safety Inspection or RSI** is a periodical on-site verification of road characteristics and defects, undertaken as part of a dedicated inspection of an existing road or through maintenance procedures to enable the detection of potential crash risks. These are largely a preventive safety procedure carried out by independently trained experts.

• **Road assessment programs** – typically undertaken on existing roads, these quantify the expected safety outcomes for a network, route or location.

<table>
<thead>
<tr>
<th>Road Safety Checks</th>
<th>Design Stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Road Safety Impact Assessment</td>
<td>Concept</td>
</tr>
<tr>
<td></td>
<td>Draft</td>
</tr>
<tr>
<td>Road Safety Audit</td>
<td>Detail Design</td>
</tr>
<tr>
<td></td>
<td>Construction</td>
</tr>
<tr>
<td>Road Safety Inspections</td>
<td>Open to Traffic</td>
</tr>
<tr>
<td></td>
<td>Maintenance</td>
</tr>
</tbody>
</table>

| Road Assessment Programs | Roads already in use |

46. While these tools are applicable for all types of contexts and road types, for the purpose of TOD readiness, these need to be applied within a framework created specifically for a TOD station area environment, reflecting their key characteristics:

• **Functionality of roads in TOD station area**: what is the function of the road around the station, as part of the overall road network: arterial road? Connector that caters to local traffic? Road including a mix of transit with the typical vehicular and pedestrian movements? Within a TOD area, roads are designed to include the mass transit within the ROW or are catered towards the mass transit station to accommodate the inflow and outflow of the users – feeder routes.

• **Homogeneity of road design in TOD station area**: what is the character of the road within a TOD context: orientation of streets towards the transit station; unidirectional or bi-directional; different types of speed limits that are enforced; level of segregation across the different road users using protective measures or adequate buffers with different speeds or having a common shared speed based on the most vulnerable user.

• **Predictability of road network in TOD station area**: what is the predictable use of the road space: are the road users familiar with the behavior demanded by different road types, and what they may expect from them and others? Do the roads have legible markings and signage for efficient use; what kind of priority is given to which road user and where, are these measures being enforced etc.

47. While these tools will help in determining the quality of the existing physical road infrastructure by identifying potential threats that may cause severe or fatal crashes in the future, they however need to be analyzed specific to the principles of TOD and the local socio-cultural contexts. Based on these assessments, any future planning and design interventions may be determined along with implementation strategies that may be temporary or tactical in nature leading to more permanent solutions.
48. The second step in the TOD Implementation and resources tool is ‘Enable’. It lays down “proactive tasks that cities and states will need to take towards creating successful TOD planning processes”. This stage focuses on strategies to institutionalize the process and objectives of TOD; build local capacity, both institutional and in civil society; and pursue policy and financial reforms conducive for successful TOD implementation.

49. As highlighted in the toolkit, successful TOD implementation requires advocacy to align stakeholder interests, and garnering political support for identification and elimination of policy barriers. This would eventually help in creating a mandate for TOD and establish the goals and objectives that align with the local needs and caters to its immediate context.

50. Road safety can be used as one of the metrics for making a successful case for TOD to the leadership, highlighting its social and economic benefits. As highlighted earlier, road crashes have a negative social and economic impact – leaving aside the individual emotional impacts it may have for the victims and their families. Formulating mitigation strategies around road safety primarily includes modal shift to Non-Motorized Transport (NMT) modes and public transport which further has far reaching economic and environmental benefits. TOD influences road safety in several ways:

- It moves more people onto public transit, thereby reducing the frequency of private motorized trips, which reduces the frequency of crashes.
- It promotes an urban form that is high density with mixed land-use; which facilitates more trips to be within walking or biking distance; thereby further reducing dependence on automobiles which further reduces crash frequency.
- It is designed to be pedestrian and bike friendly, providing safer infrastructure for the most vulnerable road user groups.

51. These safety benefits of TOD and their inter-relationships are not always easily apparent to stakeholders. It is crucial to demonstrate this linkage to stakeholders, both within government and in the community. The communication strategies and outreach mechanisms within the institutions, political leaderships, stakeholders and public needs to be strengthened to highlight that road safety is a shared responsibility and requires a buy-in from all those involved in decision making.

52. Safe system approach requires a shift in responsibility from road users to system designers, builders and managers. Therefore the existing regulations and institutional setups require changes that include mandates and provisions to enable road safety. In order to achieve this, education and capacity building needs to be extended to these system designers - planners, engineers, architects, health professionals, law enforcement officers and others.

53. This can be achieved through joint collaborative sessions or multi-agency workshop sessions with implementation agencies local civic bodies, professionals and different stakeholders with a wide representation that is inclusive of all age, gender, user groups and physically challenged and disabled persons. Results from crash data and physical infrastructure assessments discussed earlier may also be used to educate the participants about the road safety challenges and help in enabling them to advocate for better systems and strategies to mitigate these issues. This will help institutionalize road safety within the respective areas or jurisdictions. Such collaborations will help align interests of the different parties and identify a common road safety goals and objectives, addressing individual interests, motives and possible trade-offs.

54. These communication strategies will help champion the cause for road safety within the institutions and decision making agencies and will help include road safety as an integral component while drafting area TOD specific policies and regulations at local or regional scales. It will also advocate for a shift to more efficient and sustainable transport mode choices and create supporting infrastructure.
Safe Access to Mass transit: Role-playing activity

The Safe Access to Mass-transit (SAM) workshop toolkit is developed in the form of an interactive activity to address the need for safe access around mass transit stations. It includes the SAM capacity building workshop, which is based on the WRI India publication *Safe Access to Mass Transit Manual: Safe Access to Mass Transit Stations in Indian Cities*.

Using a workshop format, participants divided into groups will explore the processes involved with developing last-mile connectivity, and co-create proposals with community and city representatives for such strategies. It aims at inculcating awareness about the importance of safe and equitable access (through its principles) for all street/public space users and help derive solutions through a collaborative decision-making process.

The outcome of the exercise is to derive implementable solutions that are based on safe access principles, while negotiating the complexities involved in their adoption. These solutions are then prioritized based on an interactive bottom up role-play interactive activity. This activity solely focuses on last mile connectivity solutions to provide safe and livable station areas, applying the 5 principles of last mile connectivity, i.e. walking, cycling, public spaces, etc.
55. The Plan & Design stage of TOD Implementation and Resources tools has a significant role to play in ensuring road safety in comparison to the other four stages. It “focuses on providing guidance on the planning and design process that remain flexible and relevant to adapt over time specific challenges, and contexts change. It also presents action strategies and tools to create a more compact land development pattern hinged upon pedestrians and cyclists.”

56. TOD planning and design typically takes place at three levels - the city, the corridor and the station area. However, it is at the station area level that issues around the provision of safe access infrastructure are the most relevant. The station is the anchor point for the station area; and all development should be oriented towards it with a high level of safety for first and last mile connectivity. An efficient TOD neighborhood is one that facilitates the safe and convenient access to transit for all modes.

57. TOD projects highlight the co-relation between land use planning, transport planning and design. These developments advocate for a modal shift from private motorized vehicles to more safer and sustainable modes of transport. This leads to increased number of users within a station area and with availability of different mode choices, increase in number of conflicts between different modes and their respective speeds. These changes make road safety a crucial component in the context of a TOD.

58. An essential aspect of a TOD project is the identification of the conflict points and provision of safe and efficient connectivity between the transit station and the neighborhood around the station. It must be therefore be noted that this stage includes many specific features of street design for TOD, such as the creation of pedestrian networks with trunk routes oriented towards the transit station; the delineation of speed zones; and transfer and feeder service integration. Therefore in order to enhance the road safety considerations one has to consider two interconnected themes:

- Planning of networks in the TOD zone
- Design of the infrastructure within these networks.

PLANNING OF TOD NETWORKS

59. Typically, TOD is understood as densification around a transit station by increasing the built-up density and diversifying the permissible land uses with the station area. With such dense urban environments, the number of users in the public realm also increases significantly, posing safety concerns for all users. This requires provision of efficient networks connecting these developments to the transit station. If these networks are not adequately provided, then it discourages the use of transit and NMT infrastructure to access these developments, resulting in a much lower transit use than planned for.

60. To achieve safe networks within a TOD area, the “Sustainable Safety” principles of functionality, homogeneity and predictability will need to be looked more comprehensively for planning and designing of roads, so that they align with the TOD principles and can be integrated with the local context. These principles tailored for TOD requirements have been briefly explained below:

- **Functionality of roads in TOD area:** While assessing road safety it is critical to understand the mixed function of the road network – whether it is an arterial road that includes a mix of transit or a connector that caters to traffic accessing the developments in the TOD or feeders that focus on accessing the transit stations as well as distributing traffic within the station area. The planning and design considerations are therefore made keeping in mind the mixed function in the street. The functions of the road in a TOD are also related to the mix of land use along it and may vary through the time of the day impacting the volume of users on it.
• **Homogeneity of road design in TOD area:** Homogeneity of road design refers to the prevention of large differences in speed, mass and direction. The road network in a TOD area caters to all kinds of speeds and volume of vehicles within its ROW – slow moving pedestrians and persons with needs, cyclists, faster moving cars and other motor vehicles, feeder services such as intermediate public transport (IPT) and public buses, and high speed mass transit vehicles such as BRT or metro rails. It is crucial to ascertain the capacity of these network based on the function they serve and segregate the users and different modes by using protective measures or adequate buffers between the modes to ensure maximum safety. It is supported by orienting streets towards the station, determining directionality of these streets to enable ease of traffic flow within the station areas, and maintaining speeds based on the immediate context – nature of land use and function of the streets. These principles are detailed out on PD-H07 subsection Capacity, Orientation and Safety; as well as in safety design guidelines provided in PD-R02.

• **Predictability of road network in TOD area:** This refers to the usability of the road space – “are the road users familiar with the behavior demanded by different road types, and what they may expect from them and others”. The design of road infrastructure and amenities are such that the users can recognize the type of road and are aware of its function. Within a TOD, higher mix of users, reinforces the need for predictability to achieve safety. Prioritization of road users, distribution of lanes within a ROW, stops and utilities, markings on the roads, signage, visibility, movement lines at intersections (especially for pedestrians, cyclists and other vulnerable users) gets highlighted.

61. The most critical aspect for the creation of a strong inter-linkage between the transit station and the developments within station area is network planning. There are five key principles of network planning for TOD zones. This note briefly discusses each of the principles, which have been detailed out in the updated toolkit.

• **COVERAGE:** The network should have an extensive reach so as to connect every property within TOD zone.

• **CONTINUITY:** There should not be missing links (gaps) in the network.

• **ORIENTATION:** The network should be oriented towards the transit station, providing as direct connectivity as possible.

• **CAPACITY:** The capacity of the network should be adequate to meet the high volumes of transit commuters, particularly along the trunk routes leading to the station.

• **SAFETY:** Achieve a high standard of safety should be the guiding principal behind each and every decision on network planning; especially for the safety of vulnerable road users.

62. “Coverage” helps define the extent of street network and accessibility for different road users and hence provide for suitable solutions to ensure safe access. “Continuity” refers to the connectivity within the network and its density, ensures equitable access to the transit without congesting any area, and channelize traffic flow within the TOD zone. “Orientation” is facilitating the directed movement to and from transit stations and hence help in placing required infrastructure for safe movement. “Capacity” refers to the spatial quality of the network for all road users to ensure adequate space within the ROW based on the volumes of each type of user the network is catering to. Lastly “Safety” refers to creation of safer and segregated infrastructure within the network to avoid any type of crash. These as principles of network planning, help in creating framework for implementing physical safety measures.

63. For example, sidewalks are designed to function separate from vehicular travel lanes and cycle infrastructure. They are designed as per best practices and recommended design guidelines to accommodate the anticipated number of pedestrians using the segment of the network depending on how it connects to the transit station and any other node within the station area. However, these attributes will become redundant if the sidewalks are not part of a network that is not continuous and connect different nodes within the TOD area including the transit station.

Appendix A summarizes these five principles and includes guidelines and strategies on how to implement them.
DESIGN OF ELEMENTS WITHIN TOD NETWORK

64. The design of TOD network infrastructure looks at specific components of access infrastructure from a micro, site level scale. The objective is to ensure that the infrastructure meets the highest standards for safety for all road users, especially for commuters accessing the transit station.

65. Out of the various street design elements, the following are essential from a road safety perspective in TOD areas as they cater to the movement patterns of the users within the station area:

- **Walking infrastructure**: Walking is the direct mode to access transit stations and also are the most likely means for first and last mile connectivity to other modes.
- **Cycling infrastructure**: Cycling has a higher reach than walking, and as a healthy and sustainable mode of transport, greatly increases the commutable distance to the transit station.
- **Feeder transit and para-transit infrastructure**: Feeder and para-transit services considerably enhance the service area for a station and function to support the main transit service.
- **Design of shared streets**: Shared streets are designed to cater to the needs of the most vulnerable user and deploy various measures to reduce traffic volumes and decrease speeds.
- **Design of the station area**: The area around the transit station is meeting points for trunk routes and transfer of commuters from feeder services to main transit route takes place.

Appendix B provides design guidelines and consideration regarding these five elements with respect to a TOD area.

66. The guidelines in Appendix B are not intended to encompass design standard and guidelines for streets in the general context. For such guidance, one may refer the national codes of the relevant country, or one of the many published street design guidelines that are intended for this purpose. The intention of the Appendix is to cover only design guidelines that are specific to the provision of safe access to the transit station, within the context of the TOD zone. These guidelines must be seen as additional (and not a replacement) to general street design codes or guidelines, as the case may be.
FINANCE

67. The Finance stage of TOD Implementation and Resources Tool creates a framework for estimating capital costs for transit infrastructure and urban development, determining possible funding sources for execution of plans, establishing mechanisms for investments in real estate and user safety, enabling methods for forging public private partnerships, and identifying revenue generators. These financial tools are supported by various local and regional laws and other enabling regulatory tools, guidelines and different development incentives for developing successful TOD projects.

68. TOD implementation in high income countries is sometimes characterized by the intent to increase population densities and transit ridership supported by economic development. On the other hand, middle- and low-income countries are either characterized by high urban densities or else very low in areas that are at early stages of development.

69. TOD projects are developed with an intent to increase urban density (or support the existing high urban density in many medium- to low-income countries) and are supported by increased transit ridership and economic development that is derived from well-defined regulatory and policy frameworks and strong institutional capacities. This may increase traffic exposures resulting in increased road crash risks. Therefore, high quality transit investments supported with comparable investments in safe public infrastructure, timely revisions in development regulations, and active participation of the private sector are a must.

70. The resources available mostly cover financing mechanisms to support investments in developing transit and supporting infrastructure and real estate development, but they do not discuss tools for supporting road safety issues such as infrastructure provision or transport management. It should also be noted that financing of TOD projects doesn’t end with execution of the project on ground. Funding mechanisms and a sustainable business model needs to be developed that would also take care of financial aspects of maintenance of this newly developed infrastructure.

71. As discussed earlier, road crash related deaths and injuries have a significant economic impact. Additionally, different transit alternatives will also have a different impact on road safety. Therefore, it is prudent to include cost comparisons of alternatives and road safety net benefits when conducting cost-estimation studies for TOD.

72. Developing infrastructure for safety is an expensive task, and on many occasions, the local city governments may not have enough capacity and resources or finances to implement such interventions. As an alternative, development incentives are provided to the developers to implement pedestrian and cyclist safe infrastructure through their property in lieu of additional FAR or any other incentive. Large property owners would either subdivide their plots to create a NMT network through their property or else will grant easement access. These owners benefit by increasing footfall within their commercial establishments.

73. These property owners may also ‘adopt’ sidewalks adjacent to their property and help maintain them. This may require the city government to also layout guidelines for designing and maintaining sidewalks by property owners. Many city bye-laws have a provision for setbacks. Adjacent large developments may amalgamate their side setbacks along the common edge to create pedestrian and cyclist friendly space. Front setbacks may also be combined with the sidewalk to increase its width.

74. Furthermore, there may be local or national laws that may be specifically targeted towards generating funds for implementing NMT needs within their jurisdiction. These may be directed towards improving safety within the TOD projects.

75. Cordon area congestion road pricing is a system of charging users for entering and using roads in a demarcated or restricted area that is subject to congestion due to excess demand. This kind of a pricing strategy helps regulate demand and helps in managing congestion without increasing the supply. In some other countries, like Argentina, a percentage of money collected as insurance fees is directed to Agencia Nacional de Seguridad Vial (ANSV) – the nodal agency in charge of road safety.
76. The “Implementation” stage is the final stage of the TOD Implementation and Resources Toolkit. It concerns with “mobilizing a multitude of resources, partnerships and innovative implementation mechanisms that help leverage public sector investment in transit and infrastructure with private sector development”. The execution of a TOD project doesn’t follow a linear process and requires addressing institutional and regulatory shortcomings, guidelines for planning and execution – including prioritizing of projects, distribution of finances, as well as monitoring and evaluation followed by regular updates based on the feedbacks.

77. Like in any urban development project, TOD implementation takes shape after analysis of existing plans, institutional setup and infrastructure, completion of detailed planning and designing process, establishing a finance model with adequate investments etc. The issue of road safety doesn’t have much overlaps with this stage, however, based on the outcomes of these earlier stages, this stage may be strengthened with safety considerations at different steps of implementation:

INSTITUTIONAL SET-UP AND CAPACITY BUILDING

78. As part of the Assess stage, TOD readiness assessment captures the existing institutional capacity of the implementation agencies. Based on their existing team structure, necessary modifications may be made. In order to mitigate any road safety related shortcomings in the assessment, it is essential to include it as part of capacity building – given its importance as a co-benefit of TOD implementation.

79. As is the case of any large-scale public project, a multi-disciplinary team is required that is spread over different sectors. This would include local government officials, professionals with technical knowledge, and a range of specialists and advisors. New experts may need to be hired as staff or included as consultants. As mentioned earlier in the Assess section, qualified road safety experts with knowledge of safe systems are essential to be part of the project team to help it taking informed decisions to help reduce road crashes and improve safety. It would be more effective if the other members of the team, i.e. planners and urban designers, have prior experience and knowledge of transportation planning and complete street design. While this forms the core team, additional advisors and experts may also be engaged to make holistic decisions regarding the implementation and impact of TOD projects. Representatives from various government departments and private sector that are related to different aspects of TOD such as housing and real estate, environment, public works, economic development, and marketing and communication are desirable.

80. Representatives from the civil society such as neighborhood associations, business improvement districts, resident welfare associations, advocacy groups etc as part of the project team is also ideal as they have first-hand knowledge regarding challenges they face in their vicinity especially regarding road safety and security. This can be used to garner the required political support as well.
EXECUTION OF DESIGN

81. After developing the necessary plans and design of safety elements within a TOD project, and securing financing for the projects, the actual execution of the project may be carried out in phases after setting up the priorities. This priority-based phasing of projects may be prepared as part of an Implementation Plan by the nodal agency and infrastructure providers after discussions with stakeholders and public.

82. Stakeholder engagement is a continuous process since the project inception. This participatory design process not just helps in identifying the challenges and opportunity areas of a project and integrate with any other plan or development happening in the project area, but also contributes to placemaking and helps in contextualizing the project. It allows the implementation agency with prioritizing of the projects and mitigate road safety issues in the afore said implementation plan.

83. As these projects are expensive to implement, and full-fledged and permanent implementation of design should be executed after a temporary or interim re-design process that may be done as a pilot project in a small selected area within the TOD station area to monitor the impact and then implement at a larger scale across other station areas. Additionally, it may also be carried out using temporary tactical installations or cheap constructions to test the impact on the site. If needed, minor design changes or additions can be made for the entire design before making it permanent.

Intersection redesign at HP Intersection in Mumbai (WRI India)
MONITORING AND EVALUATION

84. Implementation of a TOD project doesn't complete with its execution. As mentioned earlier in Finance, maintenance and management of the built infrastructure is equally important in a TOD project cycle. A Maintenance Plan may be developed that would focus on maintenance of the road safety infrastructure to increase its usable lifespan and safety measures of the development. This avoids frequent repair work and the attached additional costs.

85. As also mentioned above, impact of any intervention has to be measured to understand its effectiveness. While earlier it was looking at feasibility and testing of an intervention, here one is measuring the long term impact of a more permanent implementation. For this comparison a before and after implementation stage data needs may be collected.

86. This measured project impact and user feedback further needs to be communicated to decision makers and community members. This will help formulate new regulatory policies and guidelines and inform design approach for future projects and assist in advocating for the same to community members, political leaderships and other stakeholders.
Typically, TOD is understood as densification around a transit station by increasing the built-up density and diversifying the permissible land uses with the station area. Along with this, another equally important aspect of TOD planning includes the provision of efficient networks connecting these developments to the transit station. If these networks are not adequately provided, then it discourages the use of transit and NMT infrastructure to access these developments, resulting in a much lower transit use than planned for. The most critical aspect for the creation of a strong inter-linkage between the transit station and the developments within station area is network planning. There are five key principles of network planning for TOD zones:

1. **Coverage**: The network should have an extensive reach, such that every property within the TOD zone is connected to the network.
2. **Continuity**: There should not be missing links (gaps) in the network.
3. **Orientation**: The network should be oriented towards the transit station, providing as direct connectivity as possible.
4. **Capacity**: The capacity of the network should be adequate to meet the high volumes of transit commuters, particularly along the trunk routes leading to the station.
5. **Safety**: Achieving a high standard of safety should be the guiding principle behind each and every decision on network planning; especially for the safety of vulnerable road users.

TOD Knowledge Product PD-H07 provides more details and covers these five principles in more detail.

Principle 1: Coverage

2. The principle of Coverage means that every property within the defined influence area, must connect to a network leading to the station. It is neither practical nor desirable, for the coverage of every network to be as extensive as another. The importance of direct access of a network will depend upon the property’s location with relation to the station.

3. As shown in Figure 3 below, a station area in the denser parts of the city, where transit network coverage is high, will normally only have two realms for the planning of access, the walking realm and the area outside the walking realm. This walking realm is normally considered as what an average commuter can walk in 5-10 minutes, which is about 400 to 800m. This distance increases in a low-density suburban area to a walking reach of 10 - 15 minutes (800m - 1.2km).

4. The realm for cycling is much higher, typically 3 - 5 times the size of the walking realm; based on an average cycling speed of 18 to 25km/h, and an average willingness to cycle time of 10 - 15 minutes. Likewise, the feeder service or para-transit realms are likely to reach up to 3 - 5km from the transit station, which typically extend up to and beyond the TOD zone boundary.

5. A key component for the planning of these realms is the delineation of trunk routes leading to the station. It is not possible for every property to have direct connectivity to the station across all realms. The more practical solution is to connect properties to a few trunk routes leading to the station. This creates a strong an extensive network that offers multiple choices to the users. Additionally, it is not practical to provide distinct networks for each feeder mode, and therefore prioritizing of network planning is required based on mobility needs of each mode as shown in Figure 4.
Figure 3. The different realms for planning of station area

- Walking realm
- Cycling/ Feeder transit/ Para-transit realm
- Trunk walking routes
- Trunk feeder routes
- Transit line

Figure 4. Hierarchy of priority for mobility planning

PRIORITY 1: Walking

PRIORITY 2: Cycling and Feeder transit services

PRIORITY 3: Para-transit and Shared vehicles

PRIORITY 4: Personal motor vehicles

Adaptation of hierarchy of priority for mobility planning, prominent in many global cities at the forefront of sustainability. This hierarchy of priorities is all the more relevant for station areas, given the focus of moving people away from personal vehicles and onto transit.
Principle 2: Continuity

6. Maintaining the network continuity within the context of the station area, means that every property should be seamlessly connected to every other property, and to the transit station without any gaps or missing links in the network. If access networks to the station are not continuous, then it forces the commuter to use other elements of the road infrastructure that do not meet its safety requirements.

7. The critical importance of network continuity is often neglected in cities in developing countries, where infrastructure provision is scattered and disjointed, making it near impossible to complete a trip entirely along the network.

8. In built-up, dense urban areas, it is generally difficult to build new infrastructure to complete the network. Therefore, one must rely on other more practical strategies to achieve a satisfactory result. Measures to bridge network gaps include:
 - Developing off-road connectors
 - Using development incentives to augment the network
 - Developing grade-separated infrastructure
 - Designing for shared infrastructure

Principle 3: Orientation

9. In the third principle of Orientation the station is placed as the anchor point of the network and connects properties to the transit station as directly as possible. The key component to ensure a network is well-oriented towards the station is to identify and develop trunk routes. As these trunk routes are expected to carry the majority of commuter volume to the station, these routes are therefore to be planned to be as straight as possible in the direction of the station.

10. In a greenfield TOD zone, orienting the network is a lot easier, as there aren’t too many hindrances that would interfere in this process. In this scenario, the network is likely to reflect with the station at the center and trunk routes emanating outward in every direction. Branch connectors can then be provided connecting to the main trunk routes, thus ensuring that every property is well connected to the station.

11. However it is a challenge in an already built-up urban environment. Here, one has to work within the limitations of the existing built-environment as well as the available right-of-way.

12. There are, broadly, three aspects to determining the alignment of the trunk routes that offer the best possible orientation towards the station. It is to be noted that these aspects aren’t necessarily to be assessed chronologically, because it is likely that one will have to iteratively assess different options, before arriving at the best possible solution. The three aspects are:
 - Determining the main nodes or activity generators
 - Assessing strategies to minimize deviations
 - Assessing favorable local conditions
Principle 4: Capacity

13. Capacity deliberations are most pertinent in the planning of the trunk routes along the network. The following sub-sections discuss various measures to augment capacity along the network. The following measures to augment network capacity have been briefly discussed:

- **Reallocate road space**
 The most important tool to ensure adequate capacity is to reorganize the use of road space in the TOD zone. Road space is a critical and finite commodity, especially in built-up urban areas. The judicious allocation of this space plays an important role in determining the quality and safety of mobility in the TOD zone. In order to determine what’s appropriate, it is important to carry out pedestrian and cyclist volume by capacity studies similar to determining vehicular traffic. This helps in understanding the requirements for reallocating road space to accommodate wider sidewalks that can meet the desired Level of Service for pedestrians.

- **Incorporate building setbacks**
 A TOD policy can be introduced to allow for the transformation of the street level floor of a residential property for commercial uses along major trunk routes. The city can link the permissions to develop ground-floor retail activities where the setback is maintained as an extension of the public sidewalk. The ownership of this space can remain with the property owner, but its built conditions and usage will be guided by the city TOD policy.

- **Eliminate on-street parking & streamline other road uses**
 An effective way to free-up road space is to reduce the provision of on-street parking, especially along the trunk feeder routes leading to the station. This additional space can then be allocated to sidewalks, cycle lanes or feeder-bus lanes.

- **Create one-way street networks**
 If there is a good network of parallel streets, and relatively small block sizes, one can consider creating a network of one-way streets, alternatively running in opposite directions. One-way street networks have the advantage of being easier to manage at intersections, as they require fewer signal phases than a regular two-way intersection. A one-way C-shaped loop is also a great way to connect to the transit station. By making loop one-way for vehicular traffic, more road space can be allocated to other feeder network infrastructure, such as sidewalks, cycle lanes and station transfer points.

- **Reduce interruptions in flow**
 The capacity of a trunk route on a feeder network is not only determined by the road space allocated to it, but also by the frequency of interruptions to its flow. The more frequent the interruptions to free-flow conditions, the greater will be the reduction in capacity. A crucial aspect of trunk route planning along the network is the adoption of various strategies to minimize interruptions, mainly through the diversion of conflicting traffic movements. Some measures for reducing interruptions in flow:
 - Eliminate traffic intersections along major trunk routes leading to the station. This can be achieved by converting intersecting streets into cul-de-sacs or by modifying the intersection to only allow vehicles to enter and exit the minor street, but not cut across the trunk route.
 - Limit the number of driveways on the main trunk routes. This reduces the number of breaks along the sidewalk, again improving free-flow conditions.
 - Another important measure especially pertinent to feeder transit service, is signal priority. Signal phasing can be designed to give more green time for traffic and pedestrians along the main trunk routes.

- **Provide more entry & exits at the station**
 The capacity of any network is determined by its most constrained point. In the context of feeder networks, this point is often the immediate station area, which has the highest volume of commuters utilizing the smallest amount of space. Station infrastructure can be designed with multiple entries and exits, directly taking people further along on the feeder network.

One can even consider different points of access for commuters on different modes, to reduce the load at one location.
Principle 5: Safety

14. Planning for the safe provision of access networks in a TOD zone, requires one to make certain hard decisions that may somewhat lessen the mobility of other traffic, in favor of the safety and mobility of the feeder network traffic. Traffic in a TOD zone (both vehicular and pedestrian) can broadly be divided into two buckets: traffic destined to or originating from the station; and traffic not concerned with the station in any way. In most instances, the priorities of these two groups will clash with each other. However, the principle of safety must have the highest priority.

15. The process of balancing these conflicting priorities can be made easier by defining the boundaries within a TOD zone, where the priorities of transit commuters are to be placed higher than those of other traffic. Typically, in the area closest to the station, traffic bound to the station must be given the highest priority. Similarly, traffic directed to and from the station should be of high priority along all the major trunk feeder routes leading to the station. Once the feeder priority areas of the TOD zone are defined, the next step is to determine measures to ensure a high level of safety for the feeder modes in question.

16. Measures to improve safety

- **Provide dedicated infrastructure**
 Dedicated infrastructure is a good measure on wide trunk routes, especially where there is a high volume of vehicular traffic, moving at a very high speed. It is considered as the safest measure, though not always the most practical. Excluding infrastructure for walking, it is not necessary, or even desirable, for the entire feeder network to be made up of dedicated infrastructure. This can take two forms; namely physically segregated infrastructure, and lane-marked infrastructure.

- **Implement speed zoning & traffic-calming measures**
 The severity of road crashes and injuries sustained, including fatality, is also related to the vehicle speeds. Vehicle speeds more than 50km/h have high fatality risks and have risk more than five times than that for vehicles driving below 30km/h. Furthermore, higher speeds reduce the driver’s capacity to stop the vehicle on time or having greater stopping distances and reduce the maneuvering ability to avoid a crash.

 Speed zoning is the single most effective measure for the provision of safe mobility in the TOD zone. It is recommended to adopt a uniform speed limit for the walking realm across all TOD zones in the city. Within the walking realm, a speed limit of 15-30km/h is strongly recommended. In certain short sections, where the high pedestrian volumes, coupled with local traffic accessibility demands, a significantly lower speed limit (of 5km/h) may be desirable.

 Recommended speeds for TOD zone planning
 - 5km/h: Narrow streets where traffic & pedestrians share the road
 - 15 - 30km/h: All streets within the station walking realm & neighborhood streets outside the walking realm
 - 30km/h: Trunk feeder bus / cyclist routes to the station
 - 50km/h: Maximum prescribed design speed for all other roads in the TOD zone
It is also important to note that the desired speeds and speed zoning measures do not only entail enforcing speed limits through regulation, but also requires the implementation of appropriate traffic-calming infrastructure (discussed later) to ensure that the design speed is in sync with the speed regulation. Enforcing speed limits may also be supported by the use of Automated Enforcement (AE) technologies that detect and record violation of road rules without direct human involvement. Speed cameras enforcing speed limits are a common application of AE.

- **Reduce vehicular traffic volume**
 There are different measures that can be considered to reduce traffic volume in the TOD zone, particularly in the walking realm. The measures are discussed here.

 - **Restrictive measures:** Traffic volume in the walking realm can be significantly reduced, by adopting strategies to discourage personal motor-vehicle usage. For instance, reducing parking availability, or increasing the cost of parking, in the walking realm encourages more commuters to avoid personal motor-vehicle usage.

 - **Regulatory measures:** Another strategy is to adopt regulatory measures, such as restricting certain vehicle classes during peak commuter time periods. For instance, freight vehicles may not be allowed in the walking realm from 8:00 AM to 9:00 PM.

 - **Alternate bypass routes:** Traffic volume in the walking realm can also be reduced through the creation of alternate routes that bypass this area. For instance, a new road may be developed to carry through traffic that does not originate, or is not destined to, a location within the walking realm.

 - **Eliminating through traffic:** Another measure to limit traffic volume within the walking realm is to convert certain streets into dead-ends (cul-de-sacs) or loops back to the same road outside the walking realm. This discourages the use of these streets by any traffic that is not locally bound. Loops are preferable to cul-de-sacs because often the streets in the near vicinity of the station are not wide enough to accommodate a functional cul-de-sac.

 - **Full Pedestrianization of Streets:** Pedestrian-only paved streets could be created for routes in the TOD station area that connect to the transit station with developments having high footfall, or generate heavy pedestrian traffic due to commercial and recreational activities along those routes. Barring access for emergency vehicles and delivery vehicles during early morning or late night hours, no motor-vehicle is allowed in these streets. Cyclists may also be required to dismount and walk their cycle (see Figure 7 below). Along with promoting economic activities and keeping the streets active, these pedestrian-only streets provide uninterrupted movement to and from the stations for pedestrians without any kinds of obstructions and safety concerns from other vehicles.

![Figure 7. Pedestrian only street in Sao Paulo, Brazil (Source: © WRJ)](image-url)
The design of TOD network infrastructure looks at specific components of access infrastructure from a micro, site level scale. The objective is to ensure that the infrastructure meets the highest standards for safety for all road users, especially for commuters accessing the transit station. This covers five subsections:

- Walking infrastructure
- Cycling infrastructure
- Feeder transit and para-transit infrastructure
- Design of shared streets
- Design of the station area

Walking infrastructure

2. Walking is the most important mode choice within any station area, not just for direct access to the transit station, but also, as the most likely means of first and last mile connectivity to other commute modes.

Sidewalk Design

3. The most crucial component of the walking network is the sidewalk which is assigned for the specific use of the pedestrians. A cohesive and dense network of sidewalks, (of adequate capacity), ensures a high level of safety for walking in the station areas. A well-functioning sidewalk will have spaces assigned for other important elements and uses. A sidewalk comprises of three components, namely the frontage zone, walking zone and the multi-utility zone as shown in Figure 8. The following Table 2 includes important considerations and challenges for designing sidewalks. Additional design guidelines for these and other concerns have been provided in the PD-R02 Knowledge Product.

APPENDIX B

1. The design of TOD network infrastructure looks at specific components of access infrastructure from a micro, site level scale. The objective is to ensure that the infrastructure meets the highest standards for safety for all road users, especially for commuters accessing the transit station. This covers five subsections:

- Walking infrastructure
- Cycling infrastructure
- Feeder transit and para-transit infrastructure
- Design of shared streets
- Design of the station area

Walking infrastructure

2. Walking is the most important mode choice within any station area, not just for direct access to the transit station, but also, as the most likely means of first and last mile connectivity to other commute modes.

Sidewalk Design

3. The most crucial component of the walking network is the sidewalk which is assigned for the specific use of the pedestrians. A cohesive and dense network of sidewalks, (of adequate capacity), ensures a high level of safety for walking in the station areas. A well-functioning sidewalk will have spaces assigned for other important elements and uses. A sidewalk comprises of three components, namely the frontage zone, walking zone and the multi-utility zone as shown in Figure 8. The following Table 2 includes important considerations and challenges for designing sidewalks. Additional design guidelines for these and other concerns have been provided in the PD-R02 Knowledge Product.
Table 2. Three components of a sidewalk

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Walking Zone</th>
<th>Multi-utility Zone</th>
</tr>
</thead>
<tbody>
<tr>
<td>This is the area touching the boundary of the right-of-away, that is, abutting the property edge line or compound wall. It is meant to accommodate spill-over uses from the adjacent property. Active frontage and multi-utility zones provide ‘eyes-on-the streets’ and creates a sense of security for pedestrians.</td>
<td>It is the area immediately adjacent to the frontage zone which is actually used by pedestrians to walk. This space should be kept free of encumbrances that impede walking.</td>
<td>It is the area, normally located between the walking zone and the traffic or parking lane. Its use will vary depending on the context, to accommodate street vending, street furniture, trees, utility boxes, light poles, signal posts, signage posts, crossing waiting areas, etc.</td>
</tr>
<tr>
<td>Typical Widths</td>
<td>For feeder lines to the main walking routes, a walking path width of 1.5m minimum may be acceptable. Typically, 3m should be the minimum width for the walking zone on a trunk route.</td>
<td>There is no standard width for this zone, as it will depend on context and the available right-of-way.</td>
</tr>
<tr>
<td>The width of the frontage zone can be between 0.2 to 1m.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>In the case of large developments, it is a good practice to ensure that building setbacks are designed to serve as additional frontage zones</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Distinguishing the walking path

4. It is important to note that the boundary lines of the three stated components of the sidewalk are notional. Their actual space requirements are likely to vary along the corridor, depending upon the context at that particular point along the right-of-way, as well as the adjacent land-use. However, it is a good idea to offer some visual cues to distinguish the walking zone, especially along the trunk walking routes to the transit station. This can be achieved by the use of softer design elements, such as a different pavement style or surface treatment (paved versus landscaped) or creating a marginal height difference. These cues aid in guiding road user behavior, informing people about the appropriate use of the space.

Deviations in the walking path

5. In some situations, deviations in the walking path are unavoidable - on account of the presence of a tree or a difficult-to-relocate utility box. In such cases, the walking path should be designed to curve around the encumbrance, preferably with a gradual transition.

Walking path continuity

6. Another important design consideration for the walking zone is to ensure a uniform height along the entire length of the sidewalk. This is especially important on the trunk walking routes, because it allows for a faster and more convenient movement of commuters. This is achieved by maintaining the same height for the walking path across property entrances and exits. There are two aspects as to how this can be achieved; the planning aspect – restricting vehicular access on main pedestrian routes; and the design aspect - bringing vehicles up to the sidewalk height through the use of ramps. The space for ramps can be accommodated in the multi-utility zone space on the traffic lane side, and in the frontage zone or within the property on the property edge side.
Streetlights & ‘Active’ Sidewalks

7. Streetlights contribute towards improved visibility, thereby help in preventing road crashes and injuries. Additionally, they also improve the pedestrian realm by providing a sense of security along with visibility of the walking space. An ‘active sidewalk’ can be achieved through active frontage from commercial and recreational activities at the street level of the developments as well as encouraging vending and other activities in the multi-utility zone. This ensures there are ‘eyes-on-street’ and provides a sense of security to pedestrians.

8. Lack of activities on the sidewalk (especially in the frontage and multi-utility zones) and inadequate street lighting can create unsafe experience for pedestrians and force them to use the vehicle travel lanes which are typically more well lit. This raises conflicts between the different road users leading to potential crashes. It must be noted that the lighting needs for pedestrians and vehicular traffic are different and therefore must be designed and integrated within the overall lighting strategy of the street.

Figure 11. Typical multi-utility zone with different types of uses

Crossing Design

9. Almost every walking trip will require the pedestrian to cross a road at some point along the trip. From the perspective of safety, they are as critical because it is at the crossing that the pedestrian is at the highest risk of collision with other traffic. Hence, the design of safe crossings is a crucial component of the walking network for a TOD zone. There are many important considerations for pedestrian crossings, which are discussed over the following sub-sections. Refer PD-R02

Crossing frequency and location

10. The most important aspects of pedestrian crossing provision are their frequency and location. From the perspective of access to the transit station, crossings must be provided such that the continuity of the walking network is maintained. The crossings are the bridges of the network, and hence, their location and design features should be congruent to its role in the network. If a particular stretch of the walking network cuts through the middle of a block, then a mid-block crossing must be provided to continue the network.

11. A TOD zone with a higher density of crossing opportunities is, typically, safer and better for walking. Crossing infrastructure must be provided at all intersections. Block sizes should be limited such that intersections crossings are not more than 150-200m apart in the high-density areas close to the station. In already developed areas, it may not be possible to modify block sizes. In this scenario, one should consider the provision of mid-block crossings, where necessary.
Crossing width

12. A pedestrian crossing must be at least as wide as the sidewalks that it connects. An even wider crossing width may be desirable, along the trunk walking routes to the transit station, as it allows for more people to cross at the same time, which reduces delay and allows for shorter pedestrian signal cycles. Moreover, a wider crossing is more likely to be distinctly visible to vehicular traffic. We recommend a minimum width of 3m, though a width closer to 5m may be desirable on high volume routes that connect to mass transit stations or BRT stops catering to the pedestrians going towards and coming out from the stations or BRT stops at the same time. Wider crossing would facilitate this opposite directional movement and avoid collisions between pedestrians in the station area with pedestrian traffic specifically due to transit station.

Crossing alignment

13. Deciding on the alignment of a pedestrian crossing raises two questions. Should the crossings be so aligned that it continues the natural walking path between the two adjoining sidewalks? Or should it be aligned perpendicular to the traffic lanes, such that crossing distance is minimized? Based on the type of intersection - right-angled or skewed - the crossing alignment would follow the natural walking path or else the shortest path to avoid increased exposure of crossing pedestrians to the incoming traffic. These alignments are same in right-angled intersections, whereas if the angle of the intersection is skewed, then there will be a deviation in the two paths. These have been compared in Table 3

<table>
<thead>
<tr>
<th>Right-angled intersections</th>
<th>Skewed intersections</th>
</tr>
</thead>
<tbody>
<tr>
<td>The natural walking path and the shortest crossing distance will align at a 4-arm, right angled intersection.</td>
<td>For signalized intersections, pedestrians will like to avoid deviations to their natural walking path. It is recommended aligning the crossing to the straight line connecting the two sidewalks. The pedestrian phase in the signal cycle should allow for the safe completion of this crossing distance.</td>
</tr>
</tbody>
</table>

Table 3. Comparison between location of crosswalks in different types of intersections.
Intersection corner curvature

14. The curvature of intersection corners has a significant impact on pedestrian safety. A generous curvature allows vehicles to make left turns (in the case where traffic drives on the left), or right turns (in the case where traffic drives on the right), at high speeds, which puts pedestrian at risks, particularly at un-signalized intersections. Moreover, a wide curvature increases the size of the intersection, which increased the area of undefined road space where conflicts may arise. Furthermore, pedestrian crossings get pushed further back and away from the natural crossings path. A wide intersection curvature eats into the sidewalk space, reducing the availability of space to accommodate pedestrians waiting to cross the road.

15. It is recommended to have intersection corner curvature radius approximately 4-6m, which allows for most vehicles to make a safe turn at a slow speed, from the corner-most lane to the corner-most lane. Larger vehicles may require entering into the adjacent lane either before or after the intersection. This is an acceptable design compromise, if this is not a major transit bus-turning route, and there aren’t too many large vehicles expected to use this intersection. These differences have been highlighted in Figure 15.

Pedestrian waiting area

16. The pedestrian waiting area is an important component of a crossing that often gets ignored in the design of intersections. This space is especially important for signalized intersections to accumulate the build-up of pedestrians waiting for their light to turn green. The space requirement of the pedestrian waiting area is likely to be very high on the trunk walking lines in a TOD zone. Table 4 below indicates different ways of accomplishing this.

<table>
<thead>
<tr>
<th>Existing concerns</th>
<th>Tighter curvatures</th>
<th>Curb extensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 16. Existing conditions with wider corner radius</td>
<td>Figure 17. Tighter corner radius provides more waiting area for pedestrians.</td>
<td>Figure 18. Curb extensions created by removing travel lanes further reduce crossing times for pedestrians.</td>
</tr>
</tbody>
</table>

| If adequate space is not provided, pedestrians may spill onto the traffic lane. The pedestrian waiting area must be kept distinct from the walking area, especially along the trunk walking routes; otherwise waiting pedestrians will hold up walkers who just want to pass through. | The pedestrian waiting area must be kept distinct from the walking area, especially along the trunk walking routes; otherwise waiting pedestrians will hold up walkers who just want to pass through. The best way to ensure a large waiting space, is to keep the intersection corner curvature as tight as possible. | Another measure is to eliminate the parking lane, if present, at the intersection, and create a curb extension to accommodate the waiting area. |

Table 4. Comparisons highlighting issues of inadequate pedestrian waiting areas and mitigation measures.
Traffic Signals

17. All major intersections in the TOD zone must be equipped with traffic signals, which incorporate pedestrian signal cycles. In general, any crossing that has more than two lanes, without the presence of a median, must have a pedestrian signal. The pedestrian green phase must be long enough to allow for most pedestrians to cross the road in one phase.

18. The pedestrian green times may have to be even longer on the main walking routes within the immediate station areas which may be synchronized with the timings of transit services to accommodate the higher volume of pedestrians going towards or coming out from the mass transit stations or BRT stops. These time synchronization are critical where interchanges between one mode to another takes place, and the connections aren’t direct and require crossing a road to access the stations.

19. On the major walking routes leading to the mass transit station, one can consider the implementation of signal priority and signal synchronization for pedestrians. This allows for pedestrians to face a “green wave” (uninterrupted green phases as soon as they reach the intersection); which aids in the safe and convenient access to the station.

20. Additional Intelligent Transportation System (ITS) technologies can be incorporated which include use of AE cameras to detect over speeding of vehicles and turning the signal red to ensure speeds under safety limits are maintained within the station area. Saw-cut loop detectors can also be buried at intersections to detect traffic presence and accordingly phase the signal cycles so as to avoid traffic jams that may impede movement of shared modes and feeder services.

21. Normally, right-turning traffic (in right-side driving countries) and left-turning traffic (in left-side driving countries) are allowed to share the phase with pedestrians. However, on the main walking routes in TOD zones, the high volume of pedestrians may warrant that turning traffic be restricted, at least for some length of the pedestrian signal cycle.

Off-road pedestrian paths

22. Off-road pedestrian paths aid in augmenting the walking network in a TOD zone, and also in mitigating network gaps. Normally, at-grade paths will cut through properties, public plazas, gardens, etc. These paths are for the exclusive use of pedestrians and/ or cyclists. Motor-vehicle traffic is not permitted entry. Thus, the safety considerations for such paths are limited.

23. Off-road pedestrian paths may also be augmented with the utilization of grade-separated infrastructure. There are broadly two categories for such infrastructure. The first category is infrastructure only meant to cross a single road, such as a FoBs or an underpass. The second category is grade-separated infrastructure of a much longer length that provides direct connectivity to multiple locations including the transit station, and may comprise of a network of interconnected sections. Such infrastructure is normally elevated, and commonly referred to as sky-walks, though there are cases of sub-terrain pedestrian networks as well.

24. As a general principle, FoBs and underpasses are not recommended as crossing substitutes. This infrastructure is very expensive, and impractical to implement at each location where a crossing is needed. Pedestrians also do not prefer them, because of the physical exertion and time delay involved, in comparison to crossing at street level. This infrastructure is unfriendly to the needs of differently-abled users, such as wheelchair-bound pedestrians, senior citizens and people using wheeled units like trolleys and strollers. Moreover, the access points of such infrastructure tends to impede the free movement of the sidewalk, because of the presence of stairwells and elevator shafts.

25. On the other hand, grade-separated pedestrian networks may be useful to augment at-grade pedestrian infrastructure. They are particularly useful in connecting to the transit station, when the station is at the same grade as the network. This eliminates the need to change grades for pedestrian commuters, at one of their trip. Such infrastructure can also provide direct connectivity of major establishments to the transit station, which can be have a positive impact both for walking and for transit patronage.

26. While there are contexts where the provision of such infrastructure has benefits, their provision must only be considered as additional to at-grade infrastructure, intended to provide commuters with more options. It should not be used indiscriminately, or at the cost of providing functional sidewalks. Care should be taken to ensure that this infrastructure is accessible for all users, and its civil structures do not impede the free flow of pedestrians on the sidewalks.
Cycling Infrastructure

27. Cycling is a healthy and sustainable mode of commute that can play an important role in enhancing connectivity to transit. It has a higher reach than walking, which greatly increases the commutable distance to the transit station.

28. The most crucial aspect for cycling safety is the design of street infrastructure. It is recommended to use dedicated cycling infrastructure, because average motor-vehicle speeds tend to be unsafe for cyclists. This is a good guiding principle for greenfield development. However, it is rarely practical to uniformly implement dedicated cycle lanes in most existing developments, due to either the paucity of road widths, or other land-use constraints. In these contexts, the cycling network for the TOD zones will comprise of the judicious use of dedicated cycle lanes where viable, in combination with traffic-calmed, shared streets. As a general principle, cycle lanes are recommended for the trunk routes leading to the station; while feeder lines to the trunk route may comprise of traffic-calmed streets.

Cycle Lanes

29. It is recommended to use dedicated cycle lanes on trunk routes of the cycling network, leading to the station. Normally, the trunk cycling corridors will also contain the trunk transit and motor-vehicular routes, and hence will have a high volume of large vehicles and fast-moving traffic. Thus, the provision of dedicated cycle lanes can have a significant positive outcome on cyclist safety. Table 5 below compares the types of dedicated cycled infrastructure that can be incorporated.

<table>
<thead>
<tr>
<th>Physically segregated cycle lanes</th>
<th>Marked cycle lanes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Segregated from vehicular traffic, either, by curbs, medians, railings or landscaping.</td>
<td>Normally delineated through the use of road-marking and roadside signage on the main carriageway.</td>
</tr>
<tr>
<td>Segregated infrastructure reduce the possibility of a motor-vehicle entering the cycle lane and colliding with a cyclist.</td>
<td>A uni-directional cycle lane, marked on the main carriageway, must be at-least 1.5m wide, and it will depend on whether there is parking space or a bus lane on the adjacent space. This allows for some buffer from traffic moving in the adjacent lane; but it does not provide enough width for a faster cyclist to overtake a slower one. For long block lengths, it is recommend the provision of pull-out zones to allow for cyclists to safely overtake.</td>
</tr>
<tr>
<td>It is recommended to avoid use of railings as segregation, because it effectively reduces the usable width of the cycle lane, as cyclists don't tend to ride closer to the railings. Median curbs or landscape strips should be used instead.</td>
<td>Can be designed to be either uni-directional or bi-directional. When designed to be bi-directional, the cycle lane acts much like a sidewalk, and cycle crossings can be designed in sync with pedestrian crossings.</td>
</tr>
<tr>
<td>Typically, are uni-directional, and cyclists are expected to ride in the same direction as traffic on their side of the road.</td>
<td>It is recommended to avoid use of contraflow cycle lanes.</td>
</tr>
</tbody>
</table>

Table 5. Comparing different types of dedicated cycle lanes.

30. There are two kinds of cycle lanes:

- A uni-directional cycle lane, marked on the main carriageway, must be at-least 1.5m wide. This allows for some buffer from traffic moving in the adjacent lane; but it does not provide enough width for a faster cyclist to overtake a slower one. For long block lengths, it is recommend the provision of pull-out zones to allow for cyclists to safely overtake (Figure 19).
- A bi-directional cycle lane must be at least 2.5m to allow for cycling units to pass each other. Keep in mind that the cycle lane is not only for bicyclists, but for all wheeled, active modes of transport, which includes wider vehicles, such as tricycles or cycle-rickshaws (Figure 20).
Cycle lanes positioning across bus stops

31. The overlap of cycling routes and feeder bus routes can create potential safety conflicts. Buses need to stop next to the sidewalk to pick-up and drop-off commuters. This may mean that the bus has to cut across the cycle lane to access the bus stop. This is a potential safety risk, given the mass and speed of the bus in relation to the cyclist. This risk is further heightened by the fact that the bus driver has to change lanes behind the line of sight of the cyclist.

32. It is recommended that, where possible, trunk cycling routes and bus-feeder routes be kept separate. If there are parallel roads leading to the station, then this becomes easier to implement. Where sharing the route is unavoidable, we recommend that the cycle lane be continued behind the bus stop, such that the bus does not have to enter the cycle lane to reach the bus stop. Here, the bus stop area is separated from the sidewalk, and commuters will have to cross the cycle lane to access the bus stop.
Cycle lanes and on-street parking

33. It is not recommended to provide on-street parking on trunk access routes leading to the transit station, unless there is enough road width remaining after providing for all feeder network infrastructure. This is generally a very impractical condition for already built-up TOD zones in the developed areas of the city. Often, the creation of a cycle lane is possible only by taking away space from on-street parking.

34. On-street parking creates other potential safety conflicts for cyclists. Vehicles benefit from being parked as close to the sidewalk as possible. This requires them to cut across the cycle lane (Figure 24), creating similar safety concerns as described in the previous sub-section on bus stops. Moreover, when the door of a parked car is suddenly opened on the side of the cycle lane, it creates a safety hazard for the cyclist (Figure 25).

35. It is recommended that paid on-street parking be provided on streets with cycle lanes, only where there is a possibility to separate the parked vehicles from the cycle lane by a buffer (Figure 26). This buffer should be at least half a meter wide, to contain the width of an opened car door, and also allow people to enter and exit their car safely, without standing on the cycle lane. It could also be designed as a raised median. (Figure 27).

Figure 24. Cycle lane between travel lane and parking lane

Vehicles cutting across cycle lanes to access on-street parking adjacent to sidewalk create safety hazards for cyclists

Figure 25. Cycle lane between sidewalk and parking lane without any buffer

Doors of cars opening on the side of cycle lane without adequate buffer may conflict with cyclists

Figure 26. Buffer between cycle lane and parking lane using on-street markings using paint.

Figure 27. Protected bike lanes with physical separations using raised median as buffers
Intersections and cyclist movement

36. The design of intersections is a crucial aspect for the overall safety of the cycling network. There have been a number of design alternatives that have been developed, which have different benefits and disadvantages with respect to the mobility and safety of cyclists. The traffic lights in such intersections should include a traffic signal for cyclists, which is synchronized with pedestrian lights. In larger intersections with multiple lanes, an advance phase cycle signal may also be provided. These alternatives have been summarized in Table 6 with details explained in TOD Knowledge Product PD-R02, followed by a graphical representation of an intersection with bus priority lanes and a two-stage cycle turn lane (Figure 34).

<table>
<thead>
<tr>
<th>Type</th>
<th>Diagram</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regular, traffic calmed intersection</td>
<td></td>
<td>Refer diagrams for modified intersections in a shared street: Figure 59 on Page 55, and Figures 60, 61 on Page 56. No definitive cycling infrastructure is provided; but intersection is designed with speed control standards of a shared street.</td>
</tr>
<tr>
<td>Advanced termination of the cycle lane</td>
<td></td>
<td>The cycle lane is terminated a few meters before the mouth of the intersection.</td>
</tr>
<tr>
<td>Provision of a turning lane between the cycle lane & sidewalk</td>
<td></td>
<td>A left turning lane* for general traffic is provided between the sidewalk and the cycle lane.</td>
</tr>
</tbody>
</table>

* Figure 28. Advanced termination of bike lane as it nears an intersection.
* Figure 29. Turning lane inserted between cycle lane and sidewalk.

Table 6. Summary table for different types of intersections
<table>
<thead>
<tr>
<th>Advantage</th>
<th>Disadvantage</th>
<th>Suitability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Easy to implement. Doesn’t require much street area.</td>
<td>It is not appropriate for high speed intersections, with high traffic volumes and/or high number of large vehicles.</td>
<td>Suitable for neighborhood, traffic calmed streets, that are normally non-signalized.</td>
</tr>
<tr>
<td>It allows motor-vehicles and cyclists to align themselves in the correct position at the intersection, depending upon the direction they intend to go.</td>
<td>No dedicated infrastructure for cyclists, where it’s need the most. There is a risk of collision between vehicles & cyclists, while they’re changing lanes.</td>
<td>Should be used very sparingly, only after all other options are considered.</td>
</tr>
<tr>
<td>It allows cyclists to continue straight through the intersection, without conflict with left-turning motor-vehicles.</td>
<td>There is a risk of collision at the place where the cycle lane and the motor-vehicular lane cross each other.</td>
<td>Should be used very sparingly, only after all other options are considered.</td>
</tr>
</tbody>
</table>

* Description is written on the context of countries where traffic drives on the left side of the road.
<table>
<thead>
<tr>
<th>Type</th>
<th>Diagram</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cycle boxes with 1-phase right turn</td>
<td> Advanced stop lines with cycle boxes for cyclists to align in direction of turn</td>
<td>Cyclists align themselves in a cycle box, (provided between the pedestrian crossing & the stop line)</td>
</tr>
<tr>
<td>Cycle boxes with 2-phase right turns</td>
<td> Two-phase cycle turn boxes</td>
<td>During the green signal phase, cyclists intending to turn right enter the intersection and align themselves in the cycle box of the perpendicular street.</td>
</tr>
<tr>
<td>Hooked cycle lanes</td>
<td> Cycle lanes hooked with pedestrian crossing</td>
<td>The cycle lane is slightly deviated at the intersection to align it with adjacent street pedestrian crossing.</td>
</tr>
<tr>
<td>Scramble signal phase</td>
<td> Single phase for cycle movement in all directions. Can be combined with pedestrian movement in all directions</td>
<td>A separate signal phase is provided for cyclists to move to and from all arms of the intersection; all motor-vehicular traffic has a red light.</td>
</tr>
<tr>
<td>Advantage</td>
<td>Disadvantage</td>
<td>Suitability</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>It provides dedicated infrastructure right up to the intersection mouth.</td>
<td>It creates some ambiguity on where the cyclist should wait if it reaches the</td>
<td>Suitable for trunk cycling routes with a high volume of cyclists. It is especially useful when the majority of cyclist movement makes a right* at the intersection</td>
</tr>
<tr>
<td>It allows cyclists to complete a turn in one signal phase.</td>
<td>intersection during the green signal phase for vehicular traffic on the same arm of the intersection</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Suitable for trunk cycling routes with a high volume of cyclists. An appropriate universal design principle, as it is likely to fit most contexts.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Suitable for trunk cycling routes with a high volume of cyclists. It is more intuitive to both cyclists and motorists.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Appropriate and safe option wherever there is adequate intersection area. It can be used for both signalized and un-signalized intersections.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Suitable when there is a high volume of cyclists, with no single dominant direction of movement. Suitable for intersections with more than 4 arms</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Vehicle lane eliminated to provide cycle lane with on-street parking and median buffer to protect cyclists from opening of car doors

Median refuge island

Segregated bus priority corridors

Cycle boxes for two-phase turns

Concrete bulb-out as horizontal traffic calming measure at the intersection

Curb extension as traffic calming measure as well as to provide additional waiting area for pedestrians and space to accommodate utility such as cycle rack

Guide rails along bus priority corridor to avoid jaywalking

Staggered stop lines for cyclists to ensure they are visible to right turning vehicles

Protected bike lanes with buffer

Figure 34. Two-phase cycle turn at intersection with Bus priority lanes (Source: WRI)
Feeder Transit and Para-transit Infrastructure

37. Feeder transit (generally in the form of buses) and para-transit (in the form of vans, taxicabs or auto-rickshaws) provide a valuable service in enhancing the commutable distance for transit users. This is particularly important for TOD zones in lower density area, where distances from the station may be too long for walking and cycling to be the only feeder alternatives.

38. In most cases, feeder transit and para-transit services will share the same road infrastructure as general motor-vehicular infrastructure. As such, the general design principles for safe streets will apply here. However, there are a few additional guidelines that have to be kept in mind, particularly with respect to the design of locations where these vehicles stop to pick-up and drop off passengers. These guidelines are discussed in the following sub-sections.

Bus stops near intersections

Service area for bus stops near intersections

39. The intersection is an optimal location for a bus stop for two important reasons:

- A bus stop located at an intersection is likely to have a larger area within walking distance as compared to a mid-block stop, because of the intersection of streets moving in different directions (Figure 34 and Figure 36 below).
- It reduces the walking distance to transfer between two intersecting bus routes, if their respective bus stops are located at, (or near) the same intersection (Figure 37 and Figure 38).
Position of Bus stop with respect to intersection

40. The presence of a bus stop in close proximity to an intersection can create certain challenges for traffic mobility and for safety. A bus waiting at its stop may hold up traffic trying to clear the intersection, which affects intersection throughput capacity. Furthermore, the waiting bus may act as a visual impediment for motorists and crossing pedestrians, which can have a negative impact on safety. These issues raise some crucial concerns with respect to the design and positioning of bus stops at intersections.

41. Normally, a bus stop is best positioned a few meters after the intersection. In this way, the bus would have to cross the intersection before reaching the stop. The advantage of this positioning is that it does not hold up traffic that wants to go through or make a turn at the intersection. This is especially important for signalized intersections. If the bus stop were to be located just before the intersection, then, if a bus happened to reach the stop during the green signal phase, it would unnecessarily hold-up traffic behind it even though the light is green. Motorists cannot overtake the bus from the other side if they plan to turn left at the intersection (in contexts where traffic drives on the left), so they would end up queuing behind the waiting bus (Figure 39).

42. Locating the bus stop after the intersections allows all traffic, (including the bus) to queue up in the correct lane, depending on which direction they intend to move. It mitigates the risk of motorists trying to overtake or cut across the bus in order to make a turn (Figure 40).

43. Another safety advantage of locating the bus stop after the intersection is that the pedestrian crossing for this intersection (which will also service the bus stop) will be located behind the bus. A bus is a large vehicle and can block the view of motorists and crossing pedestrians of each other. By positioning the bus stop after the intersection, it ensures that most bus commuters will walk back to the intersection in order to cross the road, putting them out of the blind-spot created by the bus.

Distance of bus stops from intersections

44. The bus stop should be located some distance away from the intersection to allow for vehicles entering this arm of the road to move out of the lane occupied by the bus in order to overtake the waiting bus (Figure 41 and Figure 42).
Mid-block bus stops

45. In some context, locating a bus stop along the mid-block of a road may have some advantages. The intersections in the near vicinity may have certain complications that make it difficult to locate the stop there. In some cases, the distance between successive intersections may be very far, warranting the need for a mid-block stop. In other cases, adjacent land-use conditions may dictate the location of the stop. For instance if a prominent node, such as an educational institution or a hospital, is located at the mid-block, then it may warrant the positioning of the stop as close to this node as possible.

46. There are certain aspects to be kept in mind regarding the provision of mid-block stops. Avoid locating the bus stops along curves or slopes in the roadway, as this effects visibility of crossing pedestrians (Figure 43). As a general principle, try to locate the bus stops on opposite sides of the road, such that they share a common pedestrian crossing that is located behind both stops (Figure 44). The safety implications of locating a crossing in front of a stop were already discussed in the previous section, that is, the waiting bus blocks the visibility of motorists and crossing pedestrians of each other.

![Figure 43. Incorrect location of mid-block bus stops along curved roads](image1)

![Figure 44. Ideal mid-block location of bus stops with common crosswalk](image2)

Para-transit nodes

47. Para-transit normally operates along the general traffic roadway in mixed traffic conditions. Typically, pick-up and drop-off happens all along the roadway, except where there are legal restrictions against stopping. As such, para-transit commuters do not normally require specific street infrastructure elements.

48. However, certain locations may warrant the provision of specific para-transit, where there is a high demand for para-transit services. These include nodes of high commuter footfall, such as shopping malls, educational institutes, office complexes, etc. Where demand is high, there tends to be a concentration of para-transit vehicles waiting to pick-up passengers. If adequate infrastructure is not provided, this can result in the haphazard stalling of vehicles along the roadway, which affects both traffic throughput and safety.

49. It is recommended that the provision of dedicated pick-up and drop-off infrastructure at all such nodes, to facilitate the orderly alignment of para-transit vehicles, which allow for passengers to embark and disembark these vehicles safely. The pick-up and drop-off zones function best when they are physically separated from each other, in a manner that allows for a para-transit vehicle to quickly move from the drop-off zone to the pick-up zone, (in order to pick-up new passengers). The length of each zone should be adequate to meet demand and operational conditions.
Traffic-Calming Measures for Shared Streets

50. A shared street is one where the infrastructure is designed to meet the mobility and safety standards of all road users. These standards are very different for motor-vehicle traffic than for non-motorized traffic. Thus, if a street is to be designed for all road users, it is essential that it meets the safety standards of the most vulnerable road users - pedestrians and cyclists.

51. The implementation of traffic-calming measures is an essential component of creating safe, shared streets. In most built-up urban areas, it is impractical to provide dedicated lanes to every feeder mode due to pre-existing constraints, like availability of right-of-way, traffic dynamics or adjacent land-use conditions. Where possible and practical, one may consider off-road connectors, (through parks and public places); or off-grade infrastructure. However, the opportunities for such interventions are limited, or their installation is immensely expensive. They cannot be considered as a blanket resolution for all areas where street right-of-way is limited. The most practical solution then becomes the implementation of shared streets.

52. The most important aspect of developing safe, shared streets is to slow down traffic speed. A slower street reduces the probability of conflicts between road users, while also reducing the severity of a crash when it happens. A second aspect of developing shared streets is the reduction of traffic volume, achieved mainly through the diversion of non-local traffic.

53. In some contexts, certain motor-vehicle user groups may prefer a slower street. For instance, local traffic accessing adjacent properties, will have a slower speed expectation than thoroughfare traffic. Similarly, feeder buses may also prefer slower streets, due to their need to frequently stop to pick-up and drop-off passengers. This is also true of para-transit services that may prefer slower movement, while scoping for passengers.

General design measures

Lane diet

54. The total width of the section of the road reserved for vehicular movement is often referred to as the carriageway. The width of this carriageway is a crucial factor in influencing traffic speed. There are two aspects to be considered here:

- The traffic lane width- Wider traffic lanes allow motorists to drive faster, because of perceived lower conflict risk with traffic in other lanes.
- Number of traffic lanes- Greater number of traffic lanes result in increased carrying capacity, which improves traffic free-flow conditions, which further allows for faster travel.

55. Streets in urban areas are still being designed as per inter-city highway standards, where lane width of 3.5m and more, are considered the norm. This standard allows for a design speed in excess of 50km/h, which is an extremely unsafe speed for urban conditions. Figure 45 illustrates a typical four-lane street.

56. If a street has to be shared with vulnerable road users, then the design speed should be closer to 30km/h. For local, neighborhood streets, and even lower design speed is desirable.

Figure 45. Existing typical distribution of ROW with wide travel lanes
57. A shared street must not have more than 2 traffic lanes in either direction. Anything more than 2 lanes makes it difficult to implement a design speed close to 30km/h. In most cases, 1 lane in each direction is adequate for local, neighborhood streets. If an existing road of more than 2+2 lanes is to be redesigned along shared street principles, then consider converting the additional lanes into a parking lane; or utilizing the additional road width to increase space for other street elements, such as sidewalks. Table 7 below includes some alternatives for re-distributing the street ROW.

<table>
<thead>
<tr>
<th>Diagram</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Figure 46. Redistributed ROW with narrower travel lanes, cycle lanes, and bus lane</td>
</tr>
<tr>
<td></td>
<td>Figure 47. Redistributed ROW with narrower travel lanes, cycle lanes, and center turn lane</td>
</tr>
<tr>
<td></td>
<td>Figure 48. Redistributed ROW with narrower travel lanes, cycle lanes, and on street parking</td>
</tr>
<tr>
<td></td>
<td>Figure 49. Redistributed ROW with narrower travel lanes, cycle lanes, and wider sidewalks</td>
</tr>
</tbody>
</table>

Table 7. Alternatives for ROW redistribution
Urban design measures: Streetscapes and gateways

58. Traffic-calming measures include several engineering interventions to slow down traffic. In addition, there are many urban design measures that act as visual cues, encouraging motorists to select the appropriate speed for this zone.

59. The presence of setbacks along the road front have a psychological impact on speed selection. A street where buildings are set nearer the road edge are perceived to be narrower than streets of similar widths, but where the buildings are further apart. This induces motorists to drive slower on the former kind of street, due to the narrower visibility range. Trees planted close to the carriageway edge have a similar impact on speed selection. From a TOD zone planning perspective, regulations can be implemented to relax frontage setback norms, (where appropriate), to encourage more compact development.

60. Another measure to encourage motorists to slow down when entering a traffic-calmed street is to include more diverse road users, such as on-street parking and street-vending. These uses increase the perceived disruptions to the motorist, which encourages them to slow down. In addition, softer streetscape elements may also be considered to signal to the motorists that they have entered a traffic-calmed street. This include measures such as change of carriageway surface material and color, as well as the increased use of landscaping and other street furniture.

61. If there are definitive entry points into a neighborhood from a main street, it is a good practice to install a gateway feature across the entry point, which informs motorists that they’re about to enter a different kind of right-of-way. This encourages them to slow down and choose the appropriate speed for this zone.

Mid-block design measures

Vertical speed controls: Speed humps, speed tables and speed bumps

62. There are three kinds of vertical deflectors, that are effective in controlling vehicular speed as shown below in Table 8. They have slightly different design features which also impacts their functionality and applicability.

<table>
<thead>
<tr>
<th>Type</th>
<th>Diagram</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speed Hump</td>
<td></td>
<td>Curved, raised area, along the width of the carriageway, which causes a vertical deflection for vehicles as they traverse it, which induces motorists to slow down in order to cross the hump comfortably.</td>
</tr>
<tr>
<td>Speed Table</td>
<td></td>
<td>Refers to an elongated speed hump, with a flattish section between the up and down slopes of the hump. A pedestrian crossing may be included along the flat section of a speed table.</td>
</tr>
<tr>
<td>Speed Bump</td>
<td></td>
<td>Significantly narrower in cross-sectional width than a speed hump, which causes a more striking vertical deflection for a vehicle. A vehicle, normally, has to come to a near stop, in order to cross the bump comfortably.</td>
</tr>
</tbody>
</table>

Table 8. Vertical speed control alternatives
63. Speed humps or tables are recommended for local, neighborhood streets as a traffic-calming device. Speed bumps are normally not recommended for public streets, because of their abrupt impact on vehicles. They are more suitable for driveway or parkway entries. The frequency of speed humps along a stretch of road should be such that it discourages speeding in-between two humps.

64. Speed humps may be provided before pedestrian crossings, especially in cities where motorists are unlikely to slow down for a crossing pedestrian (Figure 53).

65. If there is no median barrier on the roadway, it is better to locate the pedestrian crossing on top of the speed table (Figure 54).

66. If such vertical speed controls are needed near to an intersection, it is recommended to use a speed hump instead of a speed table so that pedestrians don’t confuse it with a pedestrian crossing.

67. Speed humps must be avoided along curved sections of the road, or in sections where forward visibility of the roadway is low. Speed humps should also be avoided on sloping sections of the road. Normally, a speed hump should not be installed just before a traffic signal, as it affects the green phase traffic throughput for this signal.
Horizontal speed controls: Chicanes, curb-extensions, bulb-outs and staggered on-street parking

Table 9 below discusses the various types of horizontal speed control measures.

<table>
<thead>
<tr>
<th>Type</th>
<th>Diagram</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chicanes</td>
<td></td>
<td>These refer to the series of physical deflectors that are installed along alternating sides of the road, which result in the creation of a serpentine-like roadway. This forces motorists to slow down as they steer left and right through the successive chicanes. Chicanes are a useful retrofit for long, neighborhood streets, though consideration should be given to their impact on cyclists and emergency vehicle movement.</td>
</tr>
<tr>
<td>Staggered on street parking</td>
<td></td>
<td>A similar traffic-calming impact that chicanes provide can be achieved by staggering the provision of on-street parking. The presence of on-street parking has the added advantage of increasing perceived traffic disruptions, which induces motorists to drive slower.</td>
</tr>
<tr>
<td>Curb Extensions</td>
<td></td>
<td>This refers to the physical extension of the curb, (normally the sidewalk curb) into the carriageway, partly or fully cutting out a traffic lane. Curb extensions are also referred to as chokers, because, they, in effect create a physical bottleneck, with the intention of choking traffic. This induces motorists to slow down while driving through the curb-extension area.</td>
</tr>
<tr>
<td>Median bulb-out</td>
<td></td>
<td>Curb-extensions may also be provided along a curbed median, which then creates, what is called a bulb-out in the center of the road. The advantage of such a bulb-out is that is allows for the inclusion of a pedestrian refuge area between the crossing, where pedestrians can stop and wait while crossing the road.</td>
</tr>
</tbody>
</table>
Intersection design measures

Tightening and/or extending curb corners

69. The most important measure to reduce traffic speed at intersection is to minimize the radius of curb corners at intersections. A tighter corner induces motorists to slow down to make a turn, which adds to safety. It also increases the available sidewalk area at the intersection and decreases the crossing length, which allows for safer crossings.

Figure 60. Mid-block crossings in BRT lane as a combination of horizontal and vertical traffic calming measures

(Source: © WRI India)

Figure 61. Extending curb corners at intersections to create gateways
Modified intersection

70. Table 10 below highlights features of different types of modified intersections.

<table>
<thead>
<tr>
<th>Type</th>
<th>Diagram</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raised intersection</td>
<td></td>
<td>A raised intersection is an effective traffic-calming measure, applicable for un-signalized intersections between neighborhood streets. They are similar in profile to a speed table, wherein the entire intersection area is slightly raised to create a vertical displacement for vehicles.</td>
</tr>
<tr>
<td>Mini roundabout</td>
<td></td>
<td>Mini-roundabouts consists of a small circle located within the intersection area, which creates a lateral displacement for vehicles, forcing them to slow down. They differ in form and function from conventional roundabouts, which are much larger, and their primary function is to channelize traffic circulation, rather than slowing down traffic.</td>
</tr>
<tr>
<td>Physical barriers</td>
<td></td>
<td>Restricting movement at intersections through the installation of physical barriers (median barrier across an intersection), impacts the volume of traffic using this intersection, (and the adjoining streets), by curtailing thoroughfare traffic. Another measure is to install a diagonal barrier across the intersection, preventing through movement in either direction.</td>
</tr>
</tbody>
</table>

Table 10. Alternatives for a modified intersection
Primary Station Area Design

71. The primary station area in the context of TOD, refers to the area immediately surrounding the transit station i.e. within 0 – 400m or 5 minutes walking, where the transfer of commuters between feeder modes and the main transit line takes place. This is the meeting point for the trunk routes of all feeder modes. Hence, safety and mobility challenges are the most crucial at the station area, given the high concentration of commuters and traffic into a relatively small space. Infrastructure for the transfer of pedestrian commuters should be provided nearest to the station gates, followed by infrastructure for cyclists and feeder buses, then para-transit, and finally, for personal motor-vehicles.

72. It is important to ensure that transit infrastructure, including station structures, do not impede the movement of any mode. It is commonly observed that the pillars of elevated transit stations completely block the sidewalks below them. In other cases, elevator shafts and stairways to the stations are placed across the sidewalk, forcing pedestrians to walk on the roadway.
Station access points

73. A transit station with one access point can become a potential bottleneck for commuter movement, especially during the peak commuting hours of the day. For a high-volume station, it is recommended to provide multiple entries and exits to the station, ideally connecting to different roads and different directions of the station areas as can be seen in Figure 67.

74. Often local access needs are combined with station access points. Access to underground mass transit stations also double up as underpasses to cross major roads. Similarly, BRT stops located in the middle of a highway do not typically have at-grade access. FOBs with ramps or elevators to access the stops are provided. However, if these stations are not functioning during some hours or closed, then the local access can get impeded due to closing of the access facility as well. It is advisable to have these FOBs or underpasses to remain functional all day long and have a connection made from these off-road connectors to the transit facility.

75. BRT services requiring dedicated lanes must be protected to avoid jay walking, with access to stops provided at intersections with wider crosswalks or at mid-block crossings. Additional button-activated mid-block crossings must be provided in the station area where the blocks are large or a high volume of pedestrian movement is expected.

76. Station access points can also be separated according to the transfer mode (Figure 68, Figure 69). A direct access link may be provided, connecting the station to the feeder bus routes separating the movement of bus commuters from other commuters.

77. Grade separated infrastructure can be utilized in conjunction with sidewalks, to increase access points to the stations. This is particularly useful when the grade separated infrastructure connects directly to important nearby land-uses that are likely to generate a high footfall of commuters, such as a shopping center or an office complex. However, such infrastructure must only be provided in addition to at-grade infrastructure, and must never come at the expense of at-grade sidewalks.
Cycle rack on sidewalk along the road perpendicular to the BRT lane, allowing riders to lock the cycles and transfer to BRT system.

Figure 68. Pedestrian access to a raised BRT station in the center of the ROW (Source: WRI)

Figure 69. Facilities for cyclists to access the BRT station along with pedestrians (Source: WRI)

Pedestrians crossing along the median, especially with longer BRT Green phase. (Many Latin American BRT Systems have such design including Macrobus in Guadalajara)

Wide at-grade refuge island in the median to accommodate passengers entering and exiting the BRT station using a protected ramp.
Transfer facility design

78. As far as possible, transfer zones in the vicinity of the transit station, should be provided such that it eliminates, or reduces the crossing requirement.

- Traffic management at the Thane suburban railway station in the Mumbai Metropolitan Region, India involves grade separated infrastructure for public bus services and IPT infrastructure. The bus services are on an elevated deck and connect to the railways station through skywalks, and the IPT services are available at grade with pick-up, drop-off and queuing areas (Figure 70).

![Figure 70. Thane Suburban station in India with lower level for auto-rickshaws and upper levels for bus bays. It connects to the road level via elevated walkways (Source: WRI India)](image)

79. Wherever possible, the transfer stop should be provided on the same side as the transit station access point. For instance, a feeder bus-loop / terminal may be located near the transit station. In such a case, it is a good idea to ensure that there is no road in between the feeder bus-facility and the station access point. Similarly, a para-transit facility is best located on the same side of the transit station.

- A typical transfer station along Bogota, Colombia’s TransMilenio BRT corridor includes an integrated transfer facility between the trunk BRT route and the feeder service (Figure 71). These terminals are designed to have a common central platform where both the services can dock on either side of the platform allowing the passengers to transfer by crossing across it.

![Figure 71. Typical transfer platform at station along Bogota, Colombia’s TransMilenio BRT corridor with height differences on either side to accommodate the different floor heights of BRT bus (on left side) and feeder services (right side) (Source: WRI)](image)
80. It may not always be possible to locate all transfer facilities on the same side of the transfer station. This may be the case, for feeder buses plying in opposite directions, in which case, only the stop for one direction can be located on the station side. In such contexts, it is essential that safe crossing infrastructure is provided to access the station. Given the high expected transfer volumes, a signalized crossing may be warranted.

81. If the transit station is located at a different level than the road, it may be a good idea to extend the grade-separated connector across the width of this road. In normal circumstances, grade-separated structures are not recommended for crossing the road. However, if they provide direct connectivity to a the grade-separated station, then this becomes acceptable.

82. When designing para-transit zones in station areas, it is important to separate the drop-off zones from the pick-up zone, to allow for the smooth functioning of such facilities. Normally, the drop-off zone should be located before the pick-up zone, which allows for the para-transit driver to enter the pick-up zone after dropping off passengers. There should also be a provision for the vehicle to leave the drop-off zone, in case the driver does not want to pick up new passengers.

83. Care should be taken to ensure that the movement of para-transit vehicles does not impede the movement of feeder bus services. This can be achieved through the physical segregation of both zones, which add to safety, while also creating more access points for the transit station.
Figure 73. Para-transit access and transfers to transit station, with connections for vehicular traffic, and with connections through motor-vehicle free shared streets (Source: WRI India)

Grade-separated feeder service stop and access to station and connection to developments using non-motorized shared streets

IPT parking and waiting area, separate from vehicle parking.

Motor-vehicle free shared streets to access the transit station
REFERENCES

Bertaud, Alain , and Harry W. Richardson. 2004. Transit and Density: Atlanta, the United States and Western Europe.

CEREMA. 2014. Signs and signals for cyclists and pedestrians: Comparison of rules and practices in 13 countries.

IRTAD. 2018. Road Safety: Annual Report. OECD.

ITDP. 2018. Pedestrians First: Tools for a Walkable City. ITDP.

Kidokoro, Tetsuo. 2019. Transit-oriented development policies and station area development in Asian cities. ADBI.

Wegman, Fred, Atze Dijkstra, Govert Schermers, and Pieter van Vliet. 2005. Sustainable Safety in the Netherlands: the vision, the implementation and the safety effects. Leidschendam: SWOV.

World Bank, and World Resources Institute. 2015. TOD Corridor Course.

WRI EMBARQ. 2015. Cities Safer by Design: Guidance and Examples to Promote Traffic Safety through Urban and Street Design. WRI.

