World Bank Resilience M&E (ReM&E)
Good Practice Case Studies
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acknowledgements</td>
<td>1</td>
</tr>
<tr>
<td>Background</td>
<td>3</td>
</tr>
<tr>
<td>Kenya Climate-Smart Agriculture Project</td>
<td>5</td>
</tr>
<tr>
<td>Country Context</td>
<td>5</td>
</tr>
<tr>
<td>The Kenya Climate-Smart Agriculture (CSA) project</td>
<td>6</td>
</tr>
<tr>
<td>CSA Project Resilience M&E</td>
<td>7</td>
</tr>
<tr>
<td>Summary</td>
<td>9</td>
</tr>
<tr>
<td>References</td>
<td>9</td>
</tr>
<tr>
<td>Mozambique PROIRRI Sustainable Irrigation Development Project</td>
<td>11</td>
</tr>
<tr>
<td>Country Context</td>
<td>11</td>
</tr>
<tr>
<td>Mozambique Sustainable Irrigation Development Project (PROIRRI)</td>
<td>12</td>
</tr>
<tr>
<td>PROIRRI Project Resilience M&E</td>
<td>13</td>
</tr>
<tr>
<td>Status of Implementation and Preliminary Findings</td>
<td>14</td>
</tr>
<tr>
<td>Summary</td>
<td>15</td>
</tr>
<tr>
<td>References</td>
<td>16</td>
</tr>
<tr>
<td>Mekong Delta Integrated Climate Resilience and Sustainable Livelihoods Project</td>
<td>17</td>
</tr>
<tr>
<td>Country Context</td>
<td>17</td>
</tr>
<tr>
<td>Mekong Delta Integrated Climate Resilience and Sustainable Livelihoods Project</td>
<td>18</td>
</tr>
<tr>
<td>Mekong Delta Project Resilience M&E</td>
<td>19</td>
</tr>
<tr>
<td>Summary</td>
<td>21</td>
</tr>
<tr>
<td>References</td>
<td>21</td>
</tr>
<tr>
<td>Annex 1. Mekong Delta Project Results Framework and Indicators</td>
<td>22</td>
</tr>
</tbody>
</table>
Acknowledgements

This publication is a product of the World Bank ‘Results Monitoring and Evaluation for Resilience Building Operations’ (ReM&E) project, which is part of a broader Programmatic Approach on ‘Enhancing Climate and Disaster Resilience of World Bank Sustainable Development Operations.’ This project is managed by the Climate Change Strategy and Operations Team and the Sustainable Development Chief Economist Office, under the Sustainable Development Vice Presidency and the Global Themes Vice Presidency.

The ReM&E team is led by Nathan Engle and Ulf Narloch. Core team members include Sundus Siddiqi, and Karima Ben Bih. Additional support to the team has been provided by Anna Williams, Calli VanderWilde, Christina Irene, and Silvia Marquina-Leon. The World Bank’s Independent Evaluation Group has played a key role in facilitating the learning components of this project. Management oversight is provided by Marianne Fay, Stephen Hammer, and Neeraj Prasad. The team also expresses gratitude to the following individuals for their support in serving on the project’s Advisory Group: Rosina Bierbaum, Nancy MacPherson, Heather McGray, Christine Roehrer, Christopher Nelson, Niels Holm-Nielsen, Holger Kray, and Luis Andres.

This publication was prepared by Anna Williams and Sundus Siddiqi, under the direction of Nathan Engle. The authors acknowledge, with gratitude, the teams that provided research and analytical contributions to this work. Staff providing useful input and review include Aidan Coville, Anders Jensen, Anjali Acharya, Aniceto Bila, Astrid Zwager, Christophe Crepin, Christine Heumesser, Dinesh Aryan, Florence Kondylis, Iain Shuker, Ladisy Chengula, Maria Iskandarani, and Paul Christian.

Finally, the team is deeply appreciative of funding from the Global Facility for Disaster Reduction and Recovery, which has supported the ReM&E project and the drafting of this product.
Background

These case studies were developed as part of the World Bank’s Results Monitoring and Evaluation for Resilience Building Operations (ReM&E) project, which aims to develop and increase the application of systematic, robust, and useful approaches to monitoring and evaluation (M&E) for resilience-building projects/programs within the World Bank. The case studies propose to foster a grounded understanding of good ReM&E practices through real-world examples.

The intended audiences are Task Team Leaders (TTLs) and operational staff of the World Bank who design and/or oversee the implementation of M&E for resilience-building operations, as well as their counterparts at other development organizations.

The case studies focus on three World Bank projects, each highlighting different ReM&E good practices. These projects are the following:

• Kenya Climate-Smart Agriculture Project—Agriculture Global Practice;
• Mozambique PROIRRI—Sustainable Irrigation Development Project—Water Global Practice; and
• Mekong Delta Integrated Climate Resilience and Sustainable Livelihoods Project—Environment & Natural Resources Global Practice.

GOOD PRACTICES

The following good practices arise from one or more case studies:

• Strengthening project design with the help of resilience M&E experts
• Engaging relevant stakeholders in the project’s M&E design
• Embedding strong resilience framing in project design
• Building multiple M&E approaches into project design
• Clearly defining resilience-relevant indicators and providing guidance on measurement approaches
• Balancing indicator ambition with practicality
• Securing resources needed for robust M&E
• Making a clear case and choosing clear objectives for impact evaluation
• Undertaking evidence-based learning throughout the course of the project to improve implementation and enhance results, in addition to accountability
Resilience M&E is a relatively new focus area for M&E, and as such these projects reflect a set of emerging good practices. A common theme throughout these cases is “learning by doing,” which includes tailoring M&E design to the unique learning needs and opportunities for a given project. These good practices are just as much process-, capacity-, and resource-focused as they are subject-, sector-, and/or method-focused. Many resilience-focused projects, particularly those that have embedded strong M&E design, are in the early stages of planning or implementation. Their evolution will offer additional lessons over the next several years.

The case studies should be viewed in this light—as good emerging practices to continue to observe and learn from—just as our understanding of resilience will continue to evolve over time.
Agriculture is the dominant source of employment for roughly half of the population of Kenya, contributing to almost 27 percent of the national Gross Domestic Product (GDP) in 2013. Agriculture generates most of Kenya’s food requirements, 65 percent of merchandise exports, and about 60 percent of foreign exchange earnings.

About 83 percent of Kenya’s land area is in acutely drought-vulnerable, arid, and semi-arid lands (ASALs) devoted to pastoral practices. Livestock production provides as much as 90 percent of employment and family income in the ASALs, making drought conditions—responsible for more than US$1.08 billion in livestock losses within the last decade alone—especially concerning. Drought response costs, as well as ancillary losses related to production assets and future income, are several times higher in ASALs than in the medium-to-high rainfall areas. The burden on communities only grows as increasing incidence of droughts across the ASALs diminishes the amount of time available to recover, rebuild assets, and strengthen resilience.

Only 17 percent of the country, home to 80 percent of the population, is suitable for crop production. An Agriculture Sector Risk Assessment for Kenya conducted by the World Bank in 2015 highlights the significant impact of drought events on Kenya’s agricultural growth: Drought poses the paramount risk to production in the ASALs. Threatened not only by drought, but also by major dislocations, extreme pressure to provide livelihoods for young people, and more frequent and severe food crises provoked by poverty and broader climate change implications, many farms face a potentially untenable future. Furthermore, resource disparities disproportionately affect women, young people, and other vulnerable groups in agriculture, thereby aggravating socio-economic marginalization.
In this country context, the World Bank Board approved the Kenya CSA project in early 2017, to increase agricultural productivity and build resilience to climate shocks in arid and semi-arid regions. Co-developed by the Government of Kenya and the World Bank, project implementation is scheduled between 2017 and 2022. The project development objective (PDO) is to increase productivity and build resilience to climate change risks in targeted smallholder farming and pastoral communities in selected counties in Kenya (see Exhibit 1 for the complete articulation of the PDO).

Four components, including three related to upscaling, strengthening, and supporting CSA, will support the achievement of the PDO (see Exhibit 1). As described in Exhibit 2, the concept of CSA focuses on transforming agricultural systems to support development and to provide more security in a changing climate.

The Kenya CSA project focuses primarily on:

- Improving water and soil management, especially in marginal rainfall zones;
- Promoting sustainable, community-driven rangeland management and improving access to quality livestock services in ASALs;
- Supporting the generation and dissemination of improved agricultural technologies, innovations, and management practices, including sustainable seed systems; and
- Enhancing access to quality agro-weather, climate, advisory, and market information services among farmers/herders for improved decision making.

The project beneficiaries include approximately 522,000 households of smallholder farmers, agro-pastoralists, and pastoralists. Of these, approximately 18,000 households are part of vulnerable and marginalized groups.
The Kenya CSA project is at the beginning stages of implementation; therefore, this case focuses on aspects of up-front M&E design that reflect good practices for resilience M&E. The good practices include a carefully designed resilience-focused results framework and indicators, engagement of stakeholders in project and resilience M&E design, designing multiple qualitative and quantitative implementation approaches for M&E that will inform mid-course project implementation at different scales, and ensuring that there are sufficient resources for robust M&E throughout the project.

To understand the current resilience M&E landscape and good practices, the project design team worked with a consulting firm, UNIQUE forestry and land use GmbH (UNIQUE). UNIQUE worked with stakeholders to develop a capacity “lens” to resilience building that they then applied, along with applicable resilience definitions and concepts, to the project’s PDO and theory of change—to the project as a whole as well as to each project component.

The UNIQUE consultants helped the project design team refine how project activities would tie to a resilience-focused theory of change; to consider what progress tracking activities might be missing (e.g., feedback loops between farmers and developers of the ICT\(^1\) system); and to

\(^1\) Information and Communication Technology.

EXHIBIT 2

What is climate-smart agriculture (CSA)?

The UN Food and Agriculture Organization defines CSA as “an approach that helps to guide actions needed to transform and reorient agricultural systems to effectively support development and ensure food security in a changing climate. CSA aims to achieve three outcomes (‘triple-wins’): (i) sustainably increasing agricultural productivity and incomes; (ii) adapting and building resilience to climate change; and (iii) reducing and/or removing greenhouse gas emissions, where possible.”

identify appropriate SMART\(^2\) indicators that consider aspects such as aggregation and relevance at different scales.

GOOD PRACTICE | Engaging stakeholders in the design of M&E project components, theory of change (results framework), and indicators

The project task team, UNIQUE, and the Kenyan Government jointly developed project components and indicators. Stakeholder discussions generated a holistic view of the project—how each component, subcomponent, output and/or outcome statement links with another and with appropriate indicators, which could inform progress at the different scales.

GOOD PRACTICE | Building multiple M&E approaches into project design to inform evidence-based learning during implementation

The Kenya CSA project design builds in advanced planning and resource investment to support ongoing evidence-based learning, as well as rigorous impact evaluation, going beyond standard minimal M&E requirements. This is particularly important for resilience which inherently involves an iterative learning process with and for stakeholders. The Kenya CSA project’s Subcomponent 4.2: Monitoring & Evaluation and Impact Evaluation, includes a budget of US$4.5 million to finance a web-based M&E system that will collect and process information at the national, county, and community levels, and verify the inputs, outputs, effects, and eventually the impacts of project activities over time. Aside from supporting routine M&E functions (data collection, analysis, and reporting), and the baseline, mid-point, and end of project surveys and assessments, the project will finance a rigorous project impact evaluation;\(^3\) conduct thematic studies (quantitative, qualitative, and quality of implementation processes) on demand; and support development and operation of an ICT-based Agricultural Information Platform.

GOOD PRACTICE | Securing resources needed to deploy a range of demand-driven data collection and analysis approaches to utilize at various scales—and thus recognizing the multidimensionality, interconnectedness, and scaling considerations particularly relevant to resilience interventions

\(^2\) Specific, Measurable, Achievable, Relevant, and Time-bound.

\(^3\) This impact evaluation will be undertaken in collaboration with other counterparts, including DIME.
The Kenya CSA project has an intentional and carefully constructed resilience M&E design, which reflects multiple good practices:

- Bringing in resilience M&E experts to work with the design team;
- Strengthening project design by using a strategic and proactive M&E strategy to inform the project PDO, components, and activities;
- Engaging stakeholders in the design of the project components, theory of change (results framework), and indicators;
- Building multiple M&E approaches into project design to inform evidence-based learning during implementation; and
- Securing resources needed to deploy a range of demand-driven data collection and analysis approaches to utilize at various scales.

Many important learning opportunities, both for the Kenya CSA project and for resilience M&E more broadly, will undoubtedly be offered over the next several years as the project is implemented.

REFERENCES

Although Mozambique has experienced significant growth over the previous two decades—with an average annual real GDP growth rate of over seven percent—over half of the population (21.5 million) still lives below the poverty line. The prevalence of poverty is generally attributable to a failure to increase yields for smallholder farmers (farmers utilizing less than 10 hectares of land), who dominate 95 percent of the agricultural sector. Over three-quarters of the people in Mozambique depend on agriculture for their primary livelihood, yet only 10 percent of the arable land is currently being cultivated, and agricultural productivity is extremely low. Maize and rice yields are many times below regional and international levels.

The majority of agricultural production is rain-fed, and as such rainfall patterns across agricultural seasons critically influence crop yields and affect production variability. Among African countries, Mozambique is the third most exposed to weather-related risks including periodic floods, cyclones, and droughts. Climate change is only expected to increase exposure to extreme weather.

In terms of climatic stresses, drought conditions impact the largest number of people by far—more for lack of adequate irrigation infrastructure than lack of water availability. In fact, Mozambique has abundant water resources, and thus enormous potential to address drought stress by increasing its capacity for irrigation.
for irrigated agriculture. At present, only eight percent of farmers have access to irrigation. Recognizing that promoting sustainable irrigation and drainage is essential to strengthening smallholder farmers’ resilience to intensifying climate variations, which should in turn stimulate agricultural growth and rural development, the Government of Mozambique has made the establishment of irrigation systems with participatory management through water user groups a priority.

MOZAMBIQUE SUSTAINABLE IRRIGATION DEVELOPMENT PROJECT (PROIRRI)

PROIRRI, approved in 2011, seeks to support smallholders:

- to use water for agriculture more efficiently, whereby minimizing producer dependency on rainfall patterns;
- to improve and diversify their farming systems to mitigate their production risks; and
- to increase their yields and either produce a surplus that can be marketed to generate income (e.g. rice), or take market-led production planning decisions and dedicate part of their production for a secured market outlet (e.g. outgrowers scheme).

Exhibit 3 shows the PDO and project components.

EXHIBIT 3

PDO and Project Components

PDO: To increase agricultural production marketed and raise farm productivity in new or improved irrigation schemes in the provinces of Sofala, Manica, and Zambezia.

Project Components

- Institutional Capacity Development and Participatory Irrigation Management
- Investments in Irrigation Systems and Support Infrastructure
- Financial Support to Production and Value Chain Development
- Project Management and Implementation Support
PROIRRI PROJECT RESILIENCE M&E

The project design includes a results-based M&E system aimed at measuring progress towards the PDO to allow for timely course corrections and evidence-based decision-making.

Based on extensive consultations with M&E experts during the project design phase, emphasis was placed on a rigorous impact evaluation of alternative advisory messages and extension mechanisms within the management of selected schemes, with technical assistance provided under the World Bank’s Development Impact Evaluation/Agricultural Adaptations and Natural Resource Management (DIME-AADAPT) initiative.

DIME’s approach to impact evaluation is to apply randomized control trials to establish a counterfactual to an intervention. The counterfactual measures what would have happened to participants had the intervention not taken place, and it is estimated using a comparison group that does not receive the intervention. DIME impact evaluations evaluate both the effectiveness of packages of interventions (the “what”), and experiment with mechanisms (the “why/how”), to better understand what drives impact. The latter is the focus of this case study, because the why and the how provide clues about the adaptive capacity of beneficiaries as indicative of resilience.

The impact evaluation, with a budget of approximately US$1.35 million, is designed to answer central operational questions, such as when to scale-up extension service delivery mechanisms, how to measure farmers’ knowledge and adoption of improved technology, and how to assess the relative impacts of simultaneously occurring interventions. PROIRRI’s impact evaluation uses randomized control trials to establish carefully identified control and treatment groups to generate statistically rigorous information on the impact of the program.

It is not feasible, or appropriate, to conduct impact evaluations for all projects and interventions. In this case, however, there is a lack of existing evidence on smallscale irrigation development projects due to the difficulty of finding suitable comparison groups for irrigation interventions. PROIRRI’s impact evaluation thus seeks to fill a significant knowledge gap in this respect. With multiple irrigation schemes offering the opportunity to explore diverse sites for experimentation, the project is well-suited for impact evaluation. Furthermore, willingness on the part of project stakeholders to invest in a learning agenda around measurement of water use and scheme management meant that practices would be well-implemented and lessons immediately adopted. Additional funding from donors, including the UK Department for International Development and the U.S. Agency for International Development, also allows for continuous innovation and experimentation during the impact evaluation process.
The impact evaluation specifically intends to:

- Determine the extent to which measuring and reporting water use can improve equity and efficiency of water allocation;
- Inform protocols for low-cost, community-based water measurements that can be implemented in schemes throughout Mozambique;
- Gather evidence on which smallholder irrigation interventions have the potential to improve productivity; and
- Build capacity within INIR, the Instituto Nacional de Irrigação (National Institute for Irrigation), to monitor other schemes and larger scales.

The impact evaluation has thus far employed three irrigation schemes to pilot methods of measuring water flow. Pilot testing and development of water measurement methods began in June 2015 and are ongoing as of June 2017. To date, a community monitoring system, with a set monitoring protocol and designated responsible community personnel, has been established.

STATUS OF IMPLEMENTATION AND PRELIMINARY FINDINGS

Pattern of availability does not seem to track requirements by growth stage (one of several impact evaluation preliminary results)

EXHIBIT 4

Source: DIME
Preliminary results indicate that the pattern of water availability does not seem to track requirements by growth stage (see Exhibit 4), suggesting that people have plenty of water in early growth stages. However, those with the most water in the early growth stage seem to get lower yields. Preliminary results also show that conflict over water happens in months when farmers feel they do not have enough water.

The second piloting stage began in November 2016. Aimed at adjusting program implementation based on evidence-based learning, it involves a feedback experiment in which half of the farmers receive reminders about water requirements for their main crops, and half of the farmers receive feedback on how much water is measured in their field. The experiment proposes to uncover the instrumental modes of information provision and components of extension for alleviating resource overexploitation. By analyzing farmers’ responses to either general reminders about best practices, or to feedback on their own water use, the impact evaluation will provide input onto the most effective design of extension programs that can enhance resilience.

Informed by the work of the impact evaluation completed thus far, PROIRRI is planning to scale-up its measurement to additional schemes, and to build further capacity within INIR, including offering financial literacy and matching grants.

Building rigorous impact evaluation into program/project design requires both significant up-front planning and recognizing the conditions that make the approach suitable and feasible. Early on in project design, the Mozambique PROIRRI project made the case for pursuing an impact evaluation, and secured the resources to do so. The impact evaluation has been carefully designed and is being carefully implemented. It is informing and refining PROIRRI as it moves forward, and is building a broader evidence base for design of irrigation schemes across Mozambique and beyond.

The final outcomes of this impact evaluation will not only inform agricultural resilience and production in Mozambique, but will also provide insights into how impact evaluation, a relatively uncommon practice in the nascent field of resilience M&E, can be suitable and useful as an option for resilience-building operations.

Incorporating rigorous impact evaluation is not feasible or appropriate for all interventions. The ReM&E project has published an Evaluation Guidance document that seeks to provide conceptual and operational guidance support to improve the design of evaluations for resilience-building projects/programs. The ReM&E project has also published an M&E guidance document to provide practical guidance for M&E of resilience results of World Bank operations, with the aim to improve the understanding of design options for resilience-relevant operations. Teams are encouraged to refer to these complementary efforts of the ReM&E project.
DIME. 2015. Impact Evaluation Concept Note: Group Interventions for Agricultural Transformation in Mozambique.

GOOD PRACTICE CASE STUDIES

Vietnam has experienced rapid and inclusive economic growth since the early 1990s, transforming it from one of the poorest countries in the world to a lower-middle-income country. The percentage of people living in extreme poverty dropped from around 50 percent in the 1990s to under three percent by 2015.

Development of the agriculture sector, particularly in the Mekong Delta, has contributed significantly to the development of Vietnam. The Mekong Delta alone contributes to 50 percent of Vietnam’s rice (90 percent of which is for export), 70 percent of its aquaculture products, and a third of Vietnam’s GDP.

The Mekong Delta is also home to 22 percent of Vietnam’s population, most of whom live in rural coastal areas and are highly dependent upon rice or shrimp farming for their livelihoods. Many of these households are “near poor” and are vulnerable to external shocks that can push them back below the poverty line.

The Mekong Delta has been identified as one of world’s deltas most vulnerable to the impacts of climate change. In addition to increased pressures from the unsustainable use of land and water resources, economic growth of the Mekong Delta is challenged by climate change impacts in the form of increased saline intrusion in coastal areas, greater coast erosion, and higher levels of flooding. Already, Vietnam is experiencing wetter wet seasons, drier dry seasons, intensified rainfall, flash flooding, and more frequent tropical cyclones. Over time, poor and marginalized groups will incur the greatest burden from these and other climate change impacts.
The Government of Vietnam recognizes the threats and has started to develop a more holistic and spatially integrated vision to manage current and future risks and opportunities in the Mekong Delta. However, at present, there are no tools or frameworks that allow delta planners to systematically assess the resilience of their investment decisions against the breadth of potential change.

MEKONG DELTA INTEGRATED CLIMATE RESILIENCE AND SUSTAINABLE LIVELIHOODS PROJECT

In response to these challenges, the World Bank Board approved the Mekong Delta Integrated Climate Resilience and Sustainable Livelihoods Project in 2016. The project aims to enhance tools for climate-smart planning and improve climate resilience of land and water management practices in selected provinces of the Mekong Delta.

The PDO (see Exhibit 5) will be achieved through the provision of capital investments (especially in water management infrastructures), technical assistance (related to agricultural and aquaculture livelihoods), and capacity building for farmers (in selected Mekong Delta provinces) and government institutions (at national and sub-national levels).

Project activities are estimated to directly benefit over 1.2 million people living in nine provinces. These include ethnic minorities and farmers (especially of rice) in the upper Delta provinces, and aquaculture farm and fisher folk households along the coastal provinces. The livelihoods of these groups are affected by climate change, salinity intrusion, coastal erosion, and flooding.

The project will span a period of six years, with the financing of US$387 million. The project has five Components, shown in Exhibit 5. Component 1, “Enhancing Monitoring, Analytics, and Information Systems,” is specifically designed to provide monitoring equipment and accompanying analyses and decision-support needs to better manage and contribute to

EXHIBIT 5
PDO and Project Components

PDO: To enhance tools for climate-smart planning and improve climate resilience of land and water management practices in selected provinces of the Mekong Delta in Vietnam.

Project Components
- Enhancing Monitoring, Analytics, and Information Systems
- Managing Floods in the Upper Delta
- Adapting to Salinity Transitions in the Delta Estuary
- Protecting Coastal Areas in the Delta Peninsula
- Project Management and Implementation Support

4 US$310 million from international development assistance (IDA) and US$77 million from the Government of Vietnam. The project is seeking an additional US$6 million from the Global Environment Facility to finance research and innovation activities relating to climate-resilient solutions for the Delta.
climate-resilient investments for the Delta. In parallel, Components 2, 3, and 4 work to scale up smaller, successful pilots (e.g., cropping, aquaculture models) designed to be climate resilient, and demonstrate how multi-sectoral solutions can be implemented.

MEKONG DELTA PROJECT RESILIENCE M&E

The World Bank has previously deployed several projects in the area, yet all have been based in specific sectors, and have operated in parallel “silos.” The Mekong Delta project is different: It squarely focuses on a complex hydro-ecological system with upstream and downstream linkages that require integrated solutions to build resilience to climate change and development impacts. Resilience is not a secondary consideration or co-benefit for this project; it is the core objective adopted by the World Bank’s project team through a system’s lens with careful planning and analysis.

The Mekong Delta project’s M&E system consists of standard elements established through extensive analysis and discussion that moved beyond simply meeting minimum project requirements. Project development also involved making the case for additional resources to commission an M&E firm to provide technical assistance throughout implementation. Although the project is currently in the preliminary stages of implementation, foundational M&E good practices have already been undertaken.

The M&E design stemmed from discussions between project TTLs, a World Bank Senior M&E specialist, and other sector experts. This design team held numerous discussions, some of which were challenging, to sort through different considerations, assumptions, data needs, in order to achieve both clarity and rigor (see Exhibit 6).

EXHIBIT 6

Reflections from the TTL on the tough, yet fruitful discussions that informed the results framework

“Our practice manager strongly encouraged us to get to work early and concretely on designing an appropriate M&E foundation—one that reflected the multi-sectoral complexity of the project, and yet was measurable and relevant.

The World Bank Senior M&E Specialist we worked with was a tough but fair guy. There was a lot of back and forth! The discussions were extremely helpful in the end, and they helped us deconstruct our project design and devise appropriate ways to measure and monitor project impacts and outputs.

The team spent a lot of time pouring over maps and deliberated on the individual subprojects to discuss the context. These discussions also helped us fine-tune our project design and improved the specificity of our subproject descriptions. A very useful feature of our final framework was providing definitions of terms like ‘river bank’ and ‘coastline protection’—this enabled us to have a consistent interpretation of the precise indicators,” – TTL of Mekong Delta Integrated Climate Resilience and Sustainable Livelihoods Project.

GOOD PRACTICE | Creating a strong M&E foundation that was more than “checking the box”

The M&E design stemmed from discussions between project TTLs, a World Bank Senior M&E specialist, and other sector experts. This design team held numerous discussions, some of which were challenging, to sort through different considerations, assumptions, data needs, in order to achieve both clarity and rigor (see Exhibit 6).

This includes the PDO, results framework with PDO indicators and interim outcome indicators, required monitoring and reporting systems, mid-term review, and final evaluation.
The team also closely collaborated with the Government of Vietnam and reached out to other stakeholders and donors working on Mekong Delta initiatives. M&E discussions involved identifying the PDO, project components/subcomponents, and indicators (which collectively comprise the project results framework), as well as emphasizing the need for additional M&E technical assistance to support monitoring throughout project implementation.

Unlike other relatively simplistic results frameworks that rely on common, often generic, sector-based measures (e.g., km of dykes built), the multi-sectoral team developed the results framework to reflect the spatial context of the planned sub-projects. These sub-projects comprised of integrated “packages” of water- and agriculture-related infrastructures as well as climate-resilient livelihood practices, articulated within a resilience framework. Component 1 focuses on enhancing water and salinity monitoring systems, providing decision-support, and developing an Integrated Master Plan for the Mekong Delta. Components 2-4 are spatially based to reflect the resilience framing, in contrast with traditionally sector-based components.

So as to not overpromise delivery, the team carefully considered what objectives the project could realistically achieve in the country context over a six-year period, keeping resource constraints in mind. The conversations crystalized a need to define simple and practical project objectives while still clearly aiming for transformational turning points. The TTL described how the approach sought to support transformation by influencing long-term, climate-resilient, integrated master planning and piloting investments that demonstrate a balanced approach.

The team also aimed to design an M&E framework that captures both accountability and evidence-based learning, which will provide data for evidence-informed policy—and decision-making in the Mekong Delta. The project budget thus earmarked resources for a specialized M&E consulting firm to monitor project progress and update monitoring indicators from participating
provinces. The project design also took into consideration global experience from delta initiatives in other countries, building in learning from the beginning.

Finally, the design team dedicated time and effort toward carefully documenting each indicator’s definition and measurement approach in the project appraisal document (see World Bank 2016). The process leads to more transparent and robust indicators, and creates institutional memory that will be useful as project staff turnover occurs during the course of the six-year project.

SUMMARY

The Mekong Delta Integrated Climate Resilience and Sustainable Livelihoods Project is a strong example of several good resilience M&E practices, including:

- Creating a strong M&E foundation that was more than “checking the box;”
- Engaging stakeholders and securing donor buy-in and collaboration upfront;
- Embedding strong resilience framing in project design;
- Balancing ambition with practicality;
- Designing for learning;
- Allocating resources to support evidence-based learning, enhancing results and accountability; and
- Clearly defining indicators and providing guidance on measurement approaches.

This case holds promise, and it will undoubtedly offer numerous insights and lessons on resilience M&E over the next several years.

REFERENCES

Jensen, Anders. 2017. Personal communication. 4 May.

Annex 1. Mekong Delta Project Results Framework and Indicators

Project Development Objectives (PDO): To enhance tools for climate-smart planning, and improve climate resilience of land and water management practices in selected provinces of the Mekong Delta in Vietnam.

PDO Level Results Indicators

- Adoption of Mekong Climate Resilience Assessment by MONRE (score)
- Area with climate resilient land and water-management practices supported by the project (hectares)
- Project supported farm households who have adopted climate resilient land and water management practices (percentage)
- Direct project beneficiaries, percent of which female (number, percentage)
- Citizens in selected provinces who participated in consultations on formulation of district land use plans (number)

Intermediate Results Indicators

Component 1: Enhancing Monitoring, Analytics, and Information Systems

- Mekong Delta Center established and operational (yes/no)
- Specialized Studies to facilitate climate resilient decision making supported by the project (number)
- Monitoring stations established or upgraded through project support, and fully operational (number)

Component 2: Managing Floods in the Upper Delta

- Project supported farm households in selected provinces transitioned to third rice crop alternatives (percentage)
- Flood retention areas with water management infrastructure supported by the project (hectares)
- August dikes rehabilitated and operational supported by the project (kilometers)
2.4: August dike sluice gates constructed and operational supported by the project (number)

Component 3: Adapting to Salinity Transitions in the Delta Estuary

3.1: Farm households in selected provinces who have transitioned to climate resilient alternatives livelihoods supported by the project disaggregated by: (a) Estuary Provinces; (b) Peninsula Provinces (percentage)

3.2: Brackish water aquaculture area with sustainable and climate resilient infrastructure supported by the project disaggregated by (a) Estuary Provinces; (b) Peninsula Provinces (hectares)

3.3: River bank and coast line protection supported by the project: Coastal dike; River bank; Embankment (kilometers)

3.4: River Bank and coastal sluicegates constructed and operational through project support (number)

Component 4: Protecting Coastal Areas in the Delta Peninsula

4.1: Coastline protection through project support (kilometers)

4.2: Coastal sluice gates constructed and operational through project support (number)

4.3: River bank and coast line protection supported by the project: (a) Coastal dike; (b) River bank; (c) Embankment (kilometers)