The Role of Markets, Technology, and Policy in Generating Palm-Oil Demand in Indonesia

The definitive version of the text was subsequently published in

Bulletin of Indonesian Economic Studies, 51(1), 2015-03-30

Published by Taylor and Francis and found at http://dx.doi.org/10.1080/00074918.2015.1016566

This Author Accepted Manuscript is copyrighted by World Bank and published by Taylor and Francis. It is posted here by agreement between them. Changes resulting from the publishing process—such as editing, corrections, structural formatting, and other quality control mechanisms—may not be reflected in this version of the text.

You may download, copy, and distribute this Author Accepted Manuscript for noncommercial purposes. Your license is limited by the following restrictions:

(1) You may use this Author Accepted Manuscript for noncommercial purposes only under a CC BY-NC-ND 3.0 igo license http://creativecommons.org/licenses/by-nc-nd/3.0/igo.

(2) The integrity of the work and identification of the author, copyright owner, and publisher must be preserved in any copy.

(3) You must attribute this Author Accepted Manuscript in the following format: This is an Author Accepted Manuscript by Gaskell, Joanne C. The Role of Markets, Technology, and Policy in Generating Palm-Oil Demand in Indonesia © World Bank, published in the Bulletin of Indonesian Economic Studies51(1) 2015-03-30 CC BY-NC-ND 3.0 igo http://creativecommons.org/licenses/by-nc-nd/3.0/igo http://dx.doi.org/10.1080/00074918.2015.1016566

© 2019 World Bank
The Role of Markets, Technology and Policy in Generating Palm Oil Demand in Indonesia

Joanne C. Gaskell

Keywords: Consumption, markets, palm oil

Words: 7620

Indonesia produces more palm oil and consumes more palm oil per capita than any country in the world. This paper examines the processes through which Indonesia has promoted palm oil consumption and some of the consequences of that transformation. Partial equilibrium modeling shows that Indonesia’s remarkable increase in palm oil consumption since 1985 is not largely attributable to population and income growth. Instead, much of Indonesia’s palm oil consumption growth results from substitution away from coconut oil, a process that was facilitated by government policies around technology, pricing, distribution, and trade. The switch from coconut oil to palm oil in Indonesia was associated with increased land conversions to agriculture and diminished smallholder competitiveness. Despite lower rates of cooking oil substitution in the future, simulations suggest that Indonesia’s total palm oil consumption in 2035 will be at least double that of 2010.
INTRODUCTION

Palm oil production has doubled every ten years since the 1960s, surpassing soybean oil in 2007 to become the world’s dominant vegetable oil (USDA 2011). With rapid production increases have come economic windfalls and environmental devastation. Indonesia, as the world’s largest palm oil producing country, is at the forefront of these changes. Palm oil has been Indonesia’s largest agricultural export for the last decade and has employed, in production and processing, some 2-3 million Indonesians, or about 2 % of Indonesia’s labor force (World Growth 2011; World Bank & IFC 2011). Palm oil production also threatens Indonesia’s extensive tropical forests including the biodiversity, carbon sequestration, and other ecosystem services that these forests provide (Carlson et al 2012; Wilcove, & Koh 2010). Across Asia, oil palm producers have relied almost exclusively (92%) on area expansion as opposed to intensification to meet demand (USDA 2011), a trend that puts enormous pressure on natural landscapes.

The rate at which palm oil plantations will continue to spread in Indonesia and elsewhere is a function of supply constraints: land and labor costs, yields, and other factors that affect both the intensive and extensive margin of production. But the structure of demand is equally important in determining palm oil’s price and, consequently, the incentives facing producers. This paper focuses on the evolution of cooking oil demand in Indonesia; however, cooking oil trends in other major palm oil consuming countries, such as India and China, also shape the global market. Lessons from Indonesia’s experience can give insights into the drivers of palm oil consumption growth in these other countries. Ultimately, future of palm oil expansion
patterns cannot be understood without a comprehensive analysis of the factors that determine
demand.

This paper comprises two sections. The first section evaluates the sources of palm oil demand
growth in Indonesia using a partial equilibrium framework. This approach is insufficient to
explain demand trends, so the second section of the paper introduces the role of Suharto-era
policies in altering cooking oil preferences. Supplementing the economic model with an
understanding of development projects and programs that promoted palm oil is necessary in
order to fully explain the agricultural development transformation that drove Indonesian
consumption dynamics.

A PARTIAL EQUILIBRIUM APPROACH TO DEMAND ANALYSIS: AN
EXERCISE IN HIND-CASTING

It is impossible to properly estimate a demand equation for palm oil given the paucity of data
on relative domestic cooking oil prices and given simultaneity issues in the data. A quick
glance, however, at trends in the basic structural determinants of demand – population,
income, urbanization, and prices – reveals a striking non-linearity in palm oil consumption
dynamics over the past twenty-five years. Each of these variables -- with the exception of the
price of palm oil, for which the demand elasticity is assumed to be negative -- has increased:
Indonesia’s population grew by 42% between 1985 and 2010; per capita incomes more than
doubled in real terms; and the urban population grew at 7.5% per annum – faster even than
the rate of urbanization in China (6.3%) or India (4.3%) (World Bank 2010). While Indonesia
typifies population and income growth trends across Asia, Indonesia is an outlier in terms of palm oil consumption growth. Total Indonesian palm oil consumption grew ten-fold between 1985 and 2010, from five hundred thousand to five million tons (USDA 2011). In per capita terms, no other country has experienced similarly large increases in palm oil consumption.

The following sections describe the potential contribution of population, income, urbanization, and prices to higher palm oil consumption in Indonesia. The second half of the paper explains how higher Indonesia palm oil consumption was the result of historical policies and programs that promoted palm oil over coconut oil in terms of both supply and demand.

Population effects

Population growth accounts for between 5% and 33% of Indonesia’s palm oil consumption growth between 1985 and 2010. Total consumption growth can be expressed in terms of population growth and per capita consumption growth as follows:

\[
T_2 - T_1 = P_2C_2 - P_1C_1 = C_1(P_2 - P_1) + P_1(C_2 - C_1) + (P_2 - P_1)(C_2 - C_1)
\]

where \(T\) is total consumption; \(P\) is population; \(C\) is per capita consumption; and the subscripts 1 and 2 denote time periods 1985 and 2010, respectively. Thus, the difference in total consumption between 1985 and 2010 is the sum of: a term that depends only on population growth, \((P_2 - P_1)\); a term that depends only on per capita consumption growth \((C_2-C_1)\); and a term that depends on the interaction between population growth and consumption growth.
Graphically, the shaded areas in figure 1 show the magnitudes of these three terms. The smaller light gray rectangle, accounting for 5% of total consumption growth, represents consumption growth that is uniquely due to population growth, holding per capita consumption constant at the 1985 level. The dark gray rectangle, accounting for 28% of total consumption growth, represents the interaction of income growth and higher per capita consumption. The large, light gray rectangle, accounting for 67% of total consumption growth, represents consumption growth that is separate from population growth. At Indonesia’s 1985 population level, total consumption at today’s palm oil consumption level of 21 kg/capita would be 290 million tonnes, rather than the actual figure of 420 million tonnes. Population growth and per capita consumption growth are both important to demand, but per capita growth has been the more important factor and is also more uncertain when it comes to future trends.
Figure 1. Population's contribution to higher Indonesian palm oil consumption.

The total shaded area represents Indonesia’s increase in palm oil consumption between 1985 and 2010. Interior rectangles show the contribution of population growth (large light gray rectangle); population growth * per capita consumption growth (dark gray rectangle) and per capita consumption growth (small light gray rectangle). Data sources: (USDA 2011) (World Bank 2010)

Income effects

An obvious explanation for a surge in per capita Indonesian palm oil consumption is income growth: as incomes rise, Indonesians have more money to spend on food. Income elasticities of consumption are particularly high when people start out poor because the poor spend a larger fraction of their incomes on food (Timmer et al 1983) (USDA 2010). In 1992, the
World Bank estimated Indonesian vegetable oil income elasticities within a range of 0.6 – 0.8 (World Bank 1992). Indonesia’s income elasticity of palm oil consumption for 2007, estimated across six income classes using national household survey data, is 0.4 (Badan Pusat Statistik (BPS) 2009). This coefficient suggests that Indonesia’s income elasticity of consumption for vegetable oils is falling over time, as expected.¹

Income growth explains less than a fifth, of Indonesia’s higher per capita palm oil consumption. Despite strong economic performance – Indonesian real incomes have more than doubled in the past 25 years, from $476 per capita to $1124 (World Bank 2010) — explaining all of Indonesia’s higher per capita palm oil consumption based on higher incomes alone would require an improbable income elasticity of 4.2. A high, but more reasonable income elasticity estimate of 0.8 still explains only 19% of Indonesia’s observed increase in per capita palm oil consumption for food (see table 1). An income elasticity of 0.4 applied across Indonesia explains a jump in palm oil consumption of 1.7 kg per capita, or about 10% of the observed per capita consumption growth.

Table 1 Income elasticities and higher per capita palm oil consumption, 1985 – 2010.

<table>
<thead>
<tr>
<th>Income elasticity assumption</th>
<th>Comments</th>
<th>Predicted increase in Indonesian per capita palm oil consumption, 1985 – 2010 (kg)²</th>
<th>% of observed increase</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.4</td>
<td>Derived from 2002 Susenas³</td>
<td>1.7</td>
<td>10</td>
</tr>
<tr>
<td>0.8</td>
<td>High estimate</td>
<td>3.4</td>
<td>19</td>
</tr>
<tr>
<td>4.2</td>
<td>Max required to uniquely explain observed increase</td>
<td>17.6</td>
<td>100</td>
</tr>
</tbody>
</table>

¹ By contrast, the income elasticity of demand for Indonesia’s main staple, rice is approximately 0.1, and may soon be negative (Timmer et al 2010).

²Author’s calculations based on a simple regression framework
In the future, as Indonesian incomes continue to rise, palm oil consumption for food will level off. Patterns of palm oil consumption by income class reveal some ‘topping out’ at the highest income levels, particularly among rural consumers (Indonesian Palm Oil Board 2008); however, an important caveat is that the Susenas surveys do not account for palm oil consumed outside the home that is incorporated into prepared foods as part of the overall palm oil consumption figures. Urban consumers show less evidence in the Susenas data of reaching a maximum level of consumption. In 2007, the median rural consumer in Indonesia used 0.14 L/week of cooking oil, 67% of the maximum rural value of 0.21. Thus, as incomes grow, there is significant room for expansion towards this suggested ceiling.

Urbanization effects

Indonesia’s urban population grew rapidly in the past quarter century, faster even than China’s. While China and India saw urban population growth rates of 6.3% per annum and 4.4% per annum, respectively, between 1985 and 2010, Indonesia’s urban population grew by 7.5% (World Bank 2010). Indonesia’s household survey for 2002 shows slightly higher palm oil consumption in urban areas (Indonesian Palm Oil Commission (IOPC) 2004) (Indonesian Palm Oil Commission (IOPC) 2006). Holding incomes constant, a paired t-test shows urban Indonesians consumed significantly more cooking oil, on average, than rural Indonesians in the same income bracket ($p = 0.01$). However, the mean difference was only 0.01 kg / capita /
week or 5% of average consumption. In 2007, a similar survey reveals no significant difference between rural and urban palm oil consumption, conditional on income. Thus, there is some evidence for convergence in consumption patterns between rural and urban consumers; however, since the Susenas surveys do not account for palm oil consumed outside the home that is incorporated into prepared foods as part of the overall palm oil consumption figures, the urban-rural difference in cooking oil consumption is likely larger than the data suggest. Urbanization may contribute to diets that are heavier in cooking oil as workers and their families substitute towards fast-food type fried meals that they purchase on the street.

Whether the difference in palm oil consumption between urban and rural Indonesians is zero or as large 20%, the direct impact of urbanization on palm oil consumption is small. Assuming that urban Indonesians consume 20% more palm oil than rural Indonesians implies that as urbanization jumped from 26% to 53% in Indonesia between 1985 and 2010, migration accounted for only a 0.24 kg/capita consumption increase on average for the country out of a total increase of 18 kg/capita, holding incomes constant. This small effect is not the ‘missing factor’ that explains Indonesia’s extraordinary growth in palm oil consumption.

2 Difference for the median income group was 0.03 kg/cap/week; with only 9 income classes, it is not known whether the data are normally distributed.
3 These street foods include fried rice (nasi goreng), fried noodles (mie goreng), fried chicken (ayam goreng), etc.
4 Analysis assumes migrants consumed the average amount of palm oil in 2010.
Own-price effects

Combined, demographic factors explain less than a quarter of Indonesia’s growth in palm oil demand between 1985 and 2010. Lower palm oil prices also are not a powerful explanatory variable. International palm oil prices fell an average of 1.3% per year between 1985 and 2005, or 13% in real terms,\(^5\) due to falling input costs and higher yields relative to demand growth (Global Financial Data 2011). Domestic cooking oil prices fell less steeply. In Jakarta, the price per bottle of cooking oil fell at an inflation adjusted rate of 0.7% per year between 1985 and 2005, a more moderate decline that reflects government efforts to stabilize cooking oil prices through export taxes and other price policies (Badan Pusat Statistik (BPS) 2006). Both price series are tremendously volatile. In the more recent period between 2005 and 2010, international palm oil prices went back up, gaining 14% annually in real terms, from $422\(^6\) per ton in 2005 to $798 in 2010 (World Bank 2011). Some fraction of this price increase was transmitted to domestic Indonesian cooking oil prices.

Older estimates put the own-price elasticity of vegetable oil demand in Indonesia at -1.3 to -0.26, with poorer consumers and rural consumers responding the most to price changes (Monteverde 1987). Price elasticities for vegetable oil are probably lower (in absolute value) in Indonesia today than they were in the 1980s because incomes have risen\(^7\). Own-price elasticities for any individual vegetable oil, including palm oil, are theoretically higher than

\(^5\) World Bank Indonesian GDP deflator

\(^6\) 2005 dollars

\(^7\) Poorer and urban consumers spend more of their incomes on cooking oil so a price decline (increase) makes them relatively wealthier (poorer), amplifying the price change’s effect.
the own-price elasticity for vegetable oil as a category since individual vegetable oils substitute easily with one another.

Regardless of whether the own-price elasticity of demand is approximated as -0.3 or -1.3, falling international prices explain less than 10% of Indonesia’s extraordinary per capita palm oil consumption growth. And, in fact, prices have not fallen consistently. A price elasticity of -0.3 explains 2% of the observed increase in per capita consumption and a price elasticity of -1.3 explains 9%. Using domestic cooking oil prices rather than international palm oil prices for the period 1985 – 2005 generates similar results: the overall increase in Indonesian consumption during this period was less, but the price changes within Indonesia were also more moderate due to government consumption subsidies and trade barriers. Domestic Indonesian cooking oil’s downward price trend explains between 2% and 8% of per capita palm oil consumption growth during this period.

Substitution effects

The impact of cross-price effects (changes in the prices of substitute commodities) on Indonesian palm oil consumption is difficult to ascertain, because national price statistics report ‘cooking oil’ prices rather than prices for unique oils such as coconut oil or palm oil. What is clear is that substitution has been the primary cause of higher per capita palm oil consumption in Indonesia. Palm oil’s ascendance in Indonesian diets, as illustrated in figure 2, is equally a story of coconut oil’s decline: as coconut oil consumption has declined, palm oil consumption has increased. In 1965, the vast majority (98%) of Indonesian cooking oil
came from coconut with only a tiny amount (2%) coming from palm oil. In 1985 over half (54%) of cooking oil still came from coconut. Today, the situation is reversed: 94% of cooking oil comes from palm oil, with only 3% coming from coconut. The change in forty years has been dramatic.

Figure 2. Palm oil has displaced coconut oil for cooking in Indonesia. The solid line shows palm oil’s share of the domestic cooking oil market growing, from 2% in 1965 to 94% in 2010. Coconut oil’s share of total vegetable oil consumption declined from 98% to 3% over the same time period. Source: (USDA 2011)

The sizeable fraction of consumption growth that remains to be explained after accounting for higher incomes, urbanization, and falling prices is explained by substitution between coconut oil and palm oil. The impact of substitution on higher per capita palm oil consumption is
approximated by multiplying the change in palm oil’s share of total vegetable oil consumption by the current level of vegetable oil consumption. This calculation is the difference between the current level of per capita palm oil consumption and the quantity that would be demanded if Indonesians consumed palm oil and other vegetable oils in the same proportions as they did historically. The shift towards palm oil, away from coconut oil, accounts for an impressive 70% of observed per capita palm oil consumption growth in Indonesia (see table 2) and more than half of total demand growth.

Table 2. Results of a partial equilibrium model explaining per capita palm oil consumption growth in Indonesia, 1985 - 2010.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Attributed increase in palm oil consumption (kg/cap)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Palm oil price</td>
<td>0.6</td>
</tr>
<tr>
<td>Urbanization</td>
<td>1.0</td>
</tr>
<tr>
<td>Income growth</td>
<td>3.4</td>
</tr>
<tr>
<td>Substitution</td>
<td>12.4</td>
</tr>
<tr>
<td>Total observed increase, 1985-2010</td>
<td>17.6</td>
</tr>
</tbody>
</table>

What drove this substitution trend? Internationally, the relative prices of coconut and palm oil varied considerably during the 1970’s and 1980’s but did not trend strongly in a single direction, suggesting perhaps a weak role for international markets in the substitution process. In contrast to peanut oil and soybean oil that have become marginally more expensive relative to palm oil over time, with relative prices growing at 0.2% per year on average between 1985 and 2010 (Global Financial Data 2011), coconut oil has become slightly cheaper in
international markets relative to palm oil, with the international price falling relative to palm oil at an average rate of 0.1% per year. Thus, changes in international prices do not easily explain Indonesia’s vegetable oil substitution process.

The conversion from coconut oil to palm oil in Indonesian diets – and in Indonesian agricultural landscapes – can be explained by a set of political and economic factors including: local production trends, international trading patterns, innovations in crude palm oil (CPO) processing capacity, and a concerted national policy effort to change dietary preferences and promote palm oil. This dietary conversion went hand in hand with changes in who was farming cooking oil commodities and which types of land.

POLICY AND TECHNOLOGY: A TALE OF TWO PALMS

Cooking oil is one of Indonesia’s nine ‘essential’ food commodities of which the government obligates itself to ensure sufficient supplies. As a result, government policy controls significant aspects of cooking oil production, marketing, and price formation in Indonesia. Together, policy and market forces dramatically transformed Indonesia’s cooking oil landscape: from the late 1960’s through the 1970’s, Indonesia exported some palm oil and was essentially self-sufficient in coconut oil, increasing its coconut oil production on par with domestic consumption (see figure 3). Indonesians began consuming palm oil in the late 1970’s and early 1980’s; eventually, palm oil displaced coconut oil demand. By the mid
1980s, Indonesia was exporting coconut oil into the world market. Meanwhile, palm oil production grew exponentially in Indonesia, permanently surpassing coconut oil production in 1982. Five years later, in 1987, palm oil consumption permanently surpassed coconut oil consumption. Figure 3 details the rise of palm oil production and consumption, relative to coconut oil, over time. Table 3 summarizes this transition in terms of three distinct phases and the different policies that were active during each phase. Several political and technological developments were crucial in allowing palm oil to outcompete coconut oil as Indonesia’s staple cooking oil.

Figure 3. Palm oil versus coconut oil production and consumption in Indonesia.
Palm oil, in black, has increased dramatically in terms of both production (dotted line) and consumption (solid line). Coconut oil, in gray, has seen level production (dotted line) and slightly declining consumption (solid line). Palm oil consumption permanently surpassed coconut oil consumption in 1987. Source: (USDA 2011)
Table 3 Summary of Indonesia's vegetable oil transition.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Production trends</td>
<td>Self-sufficiency in coconut oil production (no coconut oil exports). Slightly less crude palm oil production, all of which was exported.</td>
<td>Palm oil production expands.</td>
<td>Indonesia becomes world's largest palm oil producer</td>
</tr>
<tr>
<td>Consumption trends</td>
<td>Only coconut oil</td>
<td>Becoming equal shares</td>
<td>Becoming mostly palm oil</td>
</tr>
</tbody>
</table>

Early period, before 1974

Throughout the 1960’s and 1970’s, Indonesia produced enough palm oil to meet about 80% of its domestic cooking oil needs. Most of this production was exported in the form of crude palm oil (CPO). The lack of palm oil processing or imports for domestic consumption during this period is surprising in light of Indonesia’s current appetite for palm oil and doubly surprising in light of the high price that coconut oil, if exported, would have fetched on the world market.

Part of the explanation for Indonesia’s vegetable oil consumption patterns during this period was the organization of Indonesia’s copra processing industry. Coconut oil consumption can
take two forms: Fresh nuts can be processed using minimal technology on the farm to produce klentik oil; or, copra (dried coconut meats) can be processed at an industrial facility. Klentik production is less efficient but was expanded because copra-processing factories on the island of Java enjoyed a monopsony that effectively depressed farm-gate coconut prices. Approximately equal shares of coconut production went to direct local consumption (either as fresh coconut or klentik oil) and to copra production with the share of copra production rising over time (Gwyer, & Avontroodt 1974) (p.84, Table 5). The low prices offered by copra processors discouraged farmers from selling downstream to export markets and encouraged local processing and consumption.

Coconut production was distributed across Indonesia’s outlying islands on small farms averaging 1.5 Ha in size (Gwyer, & Avontroodt 1974). These farms were minimally productive: coconut production rose just enough to keep up with domestic consumption. During Repelita 1 (1969 – 1974), Indonesia’s first economic development plan, Indonesia’s government, with assistance from international donors, underwent an unsuccessful effort to boost coconut production (World Bank 1985). The plan seems to have failed for several reasons: coconut farmers were remote and hard to reach; new coconut trees that did make it into the ground were often planted in unsuitable terrain; and the project had serious management problems (World Bank 1985).

Despite coconut farms’ remoteness and their minimal productivity, coconut farming remained attractive to farmers because it was flexible in the face of drought or price shocks. Unlike oil palm fruit, coconuts can be consumed on-farm in response to low market prices. In addition,
coconut farmers often multicrop with estate crops such as cocoa, clove, and coffee that have complementary labor (and sunlight) requirements, a diversification strategy that serves to minimize risk.

Palm oil, meanwhile, grew on large government-owned plantations and was exported rather than consumed domestically. Exported palm oil took the form of crude palm oil rather than refined, edible oil. Indonesia had minimal refining capacity: In 1974 there were four fractionation plants in Indonesia that could separate liquid palm olein (used for cooking oil) from solid palm stearin, possibly two of which were in operation. One factory had a capacity of 9,000 tons of crude palm oil per year. These processing plants faced both management and economic problems that kept them from being successful. Of the small amount (28,000 tons) of palm oil that did not go to export, 15,000 tons went to solid baking fats and margarine while the remainder went to soap (Gwyer, & Avontroodt 1974). In 1968, Indonesia’s government nationalized private estates in an attempt to capture a larger share of export earnings. At the time, palm oil made up about 5% of total agricultural export earnings (Food and Agriculture Organization (FAO) 2011).

Indonesia’s vegetable oil system - marginally productive coconut oil for domestic consumption, crude palm oil for export – was destabilized in 1973. At this time, a domestic drought, coupled with a global soybean shortage that sent international coconut prices soaring, caused Indonesia’s domestic cooking oil price to spike. In an archipelago with porous borders, strict export controls were ineffective at keeping domestic prices low. High domestic cooking oil prices increased the profitability of domestic palm oil fractionation.
Exporting coconut oil while consuming palm oil domestically generated greater foreign exchange savings.

Struggling to fill the domestic consumption gap for cooking oil, keep prices low, and avoid importing coconut oil from the Philippines, Indonesia’s government looked to palm oil production. Palm oil was a prominent component of Indonesia’s second planning period (Repelita II), from 1974 – 1979, which focused on agricultural development, infrastructure, and development in Indonesia’s outlying islands. Thirty-five percent of the funds for this development program came from foreign international sources, including the World Bank and the Asian Development Bank.

Middle period, 1974 - 1985

The period from 1974 to 1985 saw a transformation in Indonesian diets as palm oil gained acceptance as cooking oil – a change from the early 1970s, when Indonesia’s palm oil exports had been un-refined and unsuitable for cooking (palm oil was used domestically for some soap and a tiny amount of margarine / solid fat consumption). As price increases for coconut oil made palm oil refining economically more attractive, taste became the salient barrier: Indonesians were not accustomed to eating palm oil. Indonesia’s plantation ministry advocated locally grown palm oil as a substitute for coconut oil (Chaudhuri 1994). Simultaneously, aggressive production policies produced steady palm oil output growth on new plantations, keeping prices low. A concerted ministry-sponsored palm oil marketing effort, coupled with favorable economics, eventually succeeded, by the mid 1980s, in
bringing domestic palm oil consumption on par with coconut oil consumption while retaining
Indonesia’s role as a significant palm oil exporter.

As domestic coconut oil demand grew in the 1970s, the government looked to palm oil as a
substitute in order to keep cooking oil prices low. Other vegetable oil candidates were not as
promising: palm kernel oil (PKO) shares more properties with coconut oil than palm oil does,
but PKO production quantities are smaller than those of palm oil and production costs are
higher. Peanut oil, which (unlike palm oil in the 1970s) already supplied a small amount of
cooking oil, had similar problems of scale. Rice-bran oil struggled not only with scale, but
also with rancidity and transportation challenges.

Palm oil, too, was not an easy consumption substitute for coconut oil. In order to achieve a
significant market share, palm oil had to overcome issues of taste, colour, fractionation, and
refining. At first, manufacturers blended palm oil with coconut oil or flavored the palm oil to
make it more palatable (Piggott et al 2010). Palm oil had to be refined from red to pale
yellow and deodorized to make it less different from coconut oil. Fractionation was also
critical because without fractionation, palm oil’s semi-solid nature could remind consumers of
pork fat – not an attractive quality in a predominantly Muslim society. Refining was a
relatively expensive process; nevertheless both private and state-owned factories received
new investments. By 1981, Indonesia had approximately 1 million tons of fractionation
capacity of which half was utilized (World Bank 1985). Even after being refined and
deodorized, palm oil’s yellow colour stood out. A government-funded marketing campaign
originated the name ‘kencana’, Javanese for ‘golden,’ to make palm oil seem more familiar
and appealing to consumers. In addition, palm-based cooking oil was marketed to industrial
krupuk (cassava chips) manufacturers who were more sensitive to price and less sensitive to
appearances. Palm oil’s frying properties proved to be tremendous in this regard, and palm oil
came to be considered of higher quality than locally-distributed coconut oil.

By 1981, Indonesia’s 1.1 million ton domestic cooking oil market comprised a combination of
palm oil (39%), coconut oil (50%) and palm kernel oil (PKO) (11%). Some analysts at the
time believed that coconut oil’s market share could not decline further due to the high demand
for fresh coconuts and the high lauric acid content of coconut oil which, analysts believed,
was necessary for cooking (World Bank 1985). In fact, the cross-elasticity between coconut
and palm oil appeared to stay high with increasing substitution, defying expectations.

Indonesia undertook large and sustained investments in tree crops during Repelita 3 (1979 –
1984), planting approximately 178 thousand new hectares of coconut and 121 thousand
hectares of new oil palm, again with World Bank assistance (World Bank 1985). Overall
agricultural investment was large, sustained, dominated by foreign capital, and focused on
tree crops more than food crops (World Bank 1992).

Palm oil production flourished during this period while coconut oil production stagnated.
Possibly, the absence of good cash-crop alternatives to oil palm kept smallholders producing
oil palm fruit, even at a relatively low farm gate price. In contrast, coconut producers had
cocoa, coffee, and the option of home consumption. Overall, the marginal production costs of
large palm oil estates were lower than the marginal production costs of smallholder coconut
farms. Indonesian palm oil production received a massive boost from the nucleus estate scheme (NES) that began in 1977. NES had both a production objective - to boost output and facilitate technological transfer - as well as the broader political-economic objectives of developing land and settling transmigrants in Indonesia’s outlying islands (Booth 1988). Plantations under this scheme tended to be large: although there was a ban on foreign land ownership and a legal limit on land holdings by Indonesians, estates could obtain permission to use land that they did not ‘own’ (World Bank 1985). The scheme did promote some smallholder development: Indonesia’s first smallholder palm oil plantations were established in 1978 under the NES; and, land titles for smallholders could be granted at the discretion of the state-owned plantation company (PTP) (World Bank 1985) (p. 16). Still, by 1982 smallholders produced only 0.3 percent of total palm oil production (World Bank 1989). In terms of land, palm oil plantations were 2% smallholder-owned, 28% private, and 70% government-owned (World Bank 1985).

Coconut oil production did not benefit from a similar organizational transformation. Local smallholders, who undertook only minimal new plantings, continued to dominate production, accounting for 98 percent of planted area in 1982 (World Bank 1989). Between 1980 and 1985, the average age of coconut trees increased and production remained stable. In contrast to oil palm, there were few new farms and new transmigrant farmers. Coconut production saw some benefit from higher yielding hybrid seeds starting in 1979 (Piggott et al 2010), but overall coconut production benefited less than oil palm from government support and continued to operate at higher cost.
As a whole, palm oil exports nearly doubled through the late 1970s to four hundred thousand tons before the government intervened in an effort to lower domestic prices and ensure domestic availability of cooking oil, a key staple. Various types of export restraints were used at different points in time, ranging from export taxes to export bans (World Bank 1985). In general during this period, processors received monthly allocations of crude palm oil to purchase from producers, who were required to sell at a fixed price. Then, palm oil was distributed through a system of exclusive (and profitable) distribution rights. Locally powerful distribution monopolies with special privileges from the government further established palm oil as the dominant cooking oil (Peter Timmer, personal communication).

In 1978, the first year that the government regulated edible oil exports, 36% of total palm oil production was explicitly allocated to the domestic market and the rest could be exported (World Bank 1985). The following year, in 1979, government policy allocated 60% of palm oil production to domestic use at below market prices (Piggott et al 2010). By 1981, government requirements forced almost all palm oil onto the domestic market. Exports of crude and refined palm oil remained restricted in 1983 to prevent price increases (Piggott et al 2010). In 1984, Indonesia suffered $369 million dollars in forgone export earnings due to restrictions on palm oil exports (World Bank 1992). These export restrictions represented a large implicit subsidy to domestic refiners at the expense of mostly state-owned plantations and at the expense of smallholder farmers who produced the oil palm fruit.

Efforts to lower coconut oil prices depressed local production but failed to keep prices low for consumers. In 1976, Bulog, the national logistics agency, imported copra and sold it at a loss
to decrease domestic prices (Piggott et al 2010). A shortfall of this approach was that coconut processors (the majority of whom, by volume, were located on Java) had substantial market power. Copra sold for $140 at the farmgate price compared with a $298 copra equivalent price for cooking oil (World Bank 1985). Farm gate taxes on copra served to further discourage coconut production.

Current period, 1985 – present

Between 1985 and 2010, palm oil came to dominate Indonesian vegetable oil production and consumption. In recent years, government interventions in cooking oil markets have been fewer, yet palm oil remains the chosen cooking oil for Indonesian consumers.

Tax structures in the late 1980s continued to favor domestic palm oil consumption. Palm oil faced a 10% export tax in 1989 (Piggott et al 2010), plus quotas that forced palm oil onto the domestic market at below-export prices (Piggott et al 2010). In July 1997, with palm oil prices steady, the export tax rates were reduced, but the massive depreciation of the rupiah against the U.S. dollar in late 1997 triggered explosive increases in the prices of cooking oil and other basic commodities. In response, between November 1998 and March 1998, the government tried and discarded several policies in quick succession: an informal quota; selective export quotas; tariff rate quotas based on domestic sales; a three-month ban on palm oil and olein; a broader temporary ban including crude palm oil, stearin and palm kernel oil; and then an indefinite ban on CPO. These policies were variously plagued by smuggling, reduced foreign exchange earnings, inefficiencies, and allegations of unfairness. Export taxes for coconut oil were introduced to thwart smugglers who were circumventing the palm oil
export ban by disguising palm oil as coconut oil (Marks et al 1998). Finally, as part of an agreement with the IMF, the government decided remove the export bans and to rely instead on taxes not to exceed 20 percent. Initially, the ban was replaced by export taxes at high rates, but these taxes were reduced over the course of the year, as the rupiah strengthened. Export taxes for crude palm oil in May 2104 were 12%, with increasing pressure to lower tax rates to incentivize value-added and to keep Indonesia’s products globally competitive.

Indonesia’s domestic processing capacity grew, although it remained highly concentrated. In 1989, a single conglomerate controlled 45% of the licensed capacity for fractionation and refining (World Bank 1989). Malaysia had subsidized palm oil refineries as part of its industrial strategy, stunting Indonesia’s domestic capabilities. Indonesia had only a small handful of processing factories in 1974, even fewer of which were in operation. By 1981, Indonesia’s CPO processing capacity had grown to one million tons; by 1997 it was 2.4 million tons; and by 2006, processing capacity had risen to more than 29 million tons (Gwyer, & Avontroodt 1974) (Indonesian Palm Oil Board 2008) (World Bank 1985).

Despite unfavorable export policies during this period, palm oil production surged. The palm oil plantings undertaken starting in 1984 as part of Repelita 4 were ‘the most ambitious ever attempted for these crops in the world’ (World Bank 1985). At the end of the campaign, Indonesia boasted 18% of world production of 5.5. million tons with a low-age distribution of trees (World Bank 1992). As the trees matured, yields increased. Including smallholders,

8 Capacity figures for 1997 and 2006 represent actual CPO use and are therefore minimum estimates of installed capacity.
however, remained challenging. Private estates that replaced government PTPs in the transmigration program had even less interest in smallholder welfare. Recent evidence suggests that contract farming on nucleus-estate schemes is dominated by households with greater asset endowments and is unlikely to benefit poor smallholders (Cahyadi 2013).

The dramatic change in the composition of domestic vegetable oil production and consumption that took hold in the 1980s persists today. Substitution towards palm oil has even reached Indonesia’s outlying islands where home-produced klentic oil used to be the dominant oil. In the Ujung Padang area of South Sulawesi, palm oil’s market share went from zero in 1986 to 60% in 1996. In the 1970s, this area had approximately 20 factories making coconut oil from fresh coconuts or copra; in 1996 there were only six factories, of which three produced refined cooking oil and three produced crude coconut oil. Coconut cooking oil factories on Indonesia’s outlying islands, as on Java, struggled to improve quality and keep prices competitive as the world prices for their raw materials (coconuts, copra, and crude coconut oil) increased and as palm export taxes kept domestic palm oil prices low.

Future consumption growth

That so much of Indonesia’s historical palm oil consumption growth has come from substitution away from other oils suggests that Indonesia’s future palm oil consumption will grow more slowly. Over 90% of Indonesian vegetable oil now comes from palm oil, leaving very little coconut oil (or other oil) to be replaced in Indonesian diets. Going forward, any increase in palm oil consumption will come from higher overall vegetable oil consumption.

9 Used for food
rather than substitution. Substitution among vegetable oils accounted for half of Indonesia’s
growth in palm oil consumption between 1985 and 2010. In the future, palm oil consumption
growth will therefore be less than half as large given (1) the lack of further substitution
possibilities and (2) declining consumption elasticities for vegetable oil (3) lower rates of
population and income growth.

As population growth slows, as income growth slows, and as the income elasticity of palm oil
consumption falls, overall vegetable oil consumption will grow more slowly. Lower
vegetable oil consumption growth implies lower palm oil consumption growth. Table 4
shows annualized rates of palm oil consumption growth between 1985 and 2010 along with
simulated growth rates between 2010 and 2035 under both a baseline and a high-growth
scenario. In the baseline model, Indonesian palm oil consumption, which grew 9.4% p.a., on
average, over the past twenty-five years, is likely to grow by 2.9% p.a. between 2010 and
2035. This estimate assumes constant prices, no urbanization effect, constant vegetable oil
shares (no further substitution towards palm oil), and population and income growth
predictions in line with USDA (2010) estimates. The high-growth model simulates higher
income growth (4.5% p.a.), higher population growth (1.07%), and falling real palm oil prices
(-2.0% p.a.). Under this scenario, palm oil consumption grows at 3.8% p.a., a stronger
growth rate but still far from the 9.4% annual growth rate that Indonesia experienced between
1985 and 2010.

Even at slower rates of growth relative to the past 25 years, Indonesia’s total palm oil
consumption in 2035 will be at least double that of 2010. Some of this increased consumption
will be met through yield increases, for example through replacing existing oil palm trees with
higher-yielding clones as plantations are replanted (typically every 25 years). Still, a doubling
of palm oil demand over 25 years suggests that pressure to convert currently forested land into
palm oil production will continue to be substantial throughout Indonesia.

At the global scale, cooking oil consumption patterns in China and India -- vastly different
from Indonesia’s trends – are critical to the palm oil industry. China had just 5% of its
cooking oil from palm oil in 1985 and today still has only one fifth of its cooking oil from
palm oil. India is the world’s largest palm oil consuming country despite the fact that only
44% of its vegetable oil consumption is from palm. An increase in this share increase due to
changes in trade policy or other factors would substantially affect global palm oil demand. In
addition, non-food uses for palm oil have the potential to upend the current structure of oil
markets. The potential demand for palm-based biodiesel, at a favorable price, is practically
infinite: palm-based biofuels, in the case where diesel prices or government mandates provide
adequate production incentives, would lead to a different qualitative conclusion about the
future of palm oil demand. Palm oil has demonstrated its viability relative to coconut oil over
the past twenty-five years; in the next twenty-five years, will palm oil prove to be more viable
than crude oil? Whereas food consumption policies have been critical to palm oil markets in
the past, energy policies may define palm oil demand – and patterns of agricultural
development -- in the future.

CONCLUSION
Indonesia’s conversion from coconut oil to palm oil - in both diets and production emphasis - has had far reaching consequences. During the 1970s and 1980s, smallholders produced the majority of coconuts whereas oil palm grew on large plantations with much higher yields per hectare. The displacement of coconut oil by palm oil in Indonesian diets and in Indonesian agricultural landscapes has boosted agricultural productivity. Indonesia is now the world’s largest palm oil producer with oil palm companies contributing approximately 3 dollars to Indonesia’s economy for every dollar of profit (Hunt 2010). Indonesia’s ongoing challenge is to balance economic growth and efficiency with agricultural policies that benefit smallholders and the poor. As the palm oil industry grows and globalizes, other countries can learn from Indonesia’s experience how to harness the nutritional and economic benefits of this industry while minimizing the social costs.
<table>
<thead>
<tr>
<th>Variable estimates</th>
<th>Value, 2010</th>
<th>Compound annual growth, 1985 - 2010</th>
<th>Value, 2035 Baseline<sup>b</sup></th>
<th>Compound annual growth, 2010-2035, Baseline<sup>b</sup></th>
<th>Value, 2035 High Estimate</th>
<th>Compound annual growth, 2010-2035, High Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population (millions)<sup>a</sup></td>
<td>230</td>
<td>1.40%</td>
<td>285</td>
<td>0.87%</td>
<td>300</td>
<td>1.07%</td>
</tr>
<tr>
<td>Income per capita (yr 2000 USD)<sup>a</sup></td>
<td>1124</td>
<td>3.50%</td>
<td>3085</td>
<td>4.12%</td>
<td>3380</td>
<td>4.5</td>
</tr>
<tr>
<td>Palm oil price (real USD)<sup>c</sup></td>
<td>486.12</td>
<td>-2.00%</td>
<td>486</td>
<td>0%</td>
<td>293</td>
<td>-2%</td>
</tr>
<tr>
<td>Urbanization rate<sup>d</sup></td>
<td>52.60%</td>
<td>2.80%</td>
<td>52.6</td>
<td>0%</td>
<td>52.6</td>
<td>0%</td>
</tr>
<tr>
<td>Fraction of vegetable oil from palm<sup>e</sup></td>
<td>94.19</td>
<td>3.70%</td>
<td>94.19</td>
<td>0%</td>
<td>94.19</td>
<td>0%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter estimates</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Income elasticity</td>
<td>0.8</td>
<td>-</td>
<td>0.5</td>
<td>-</td>
<td>0.6</td>
<td>-</td>
</tr>
<tr>
<td>Price elasticity</td>
<td>-0.5</td>
<td>-</td>
<td>n.a.</td>
<td>-</td>
<td>-0.5</td>
<td>-</td>
</tr>
<tr>
<td>Urban differential</td>
<td>1.2</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Simulation results</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Palm oil consumption (kg per capita)</td>
<td>20.66</td>
<td>7.90%</td>
<td>34.4</td>
<td>2.06%</td>
<td>40.3</td>
<td>2.71</td>
</tr>
<tr>
<td>Palm oil consumption (total tonnes, thousands)</td>
<td>4750</td>
<td>9.40%</td>
<td>9804</td>
<td>2.94%</td>
<td>12090</td>
<td>3.81%</td>
</tr>
</tbody>
</table>

^aPopulation and income growth estimates are informed by (USDA ERS, 2010).
^bBaseline projection assumes constant prices, no urban consumption differential, no substitution between oils, and an income elasticity of 0.5.
^c(Global Financial Data 2011)
^d(World Bank 2010)
^e(USDA 2011)
Acknowledgements:

The author gratefully acknowledges Walter P. Falcon and Roz Naylor for invaluable discussions, Zahnur Rofii’ah for research assistance, the Center for International Forestry Research and Stanford University for administrative and financial support, and two anonymous reviewers for their feedback on the manuscript.

References

