Population growth and economic development, aggravated by climate change, will increase pressure on energy and water resources. Integrated planning can make the most of these two essential and scarce resources. Thirsty Energy, a World Bank initiative, helps countries address these issues and ensure sustainable development of both resources.

Thirsty Energy: Understanding the Linkages between Energy and Water

Why is this issue important?

Water and energy are equally vital and inextricably linked, and integrated planning is needed to maximize both

Both water and energy are essential for economic activity and to sustain life. And both are scarce. Some 780 million of the world's people lack access to improved water, while 2.5 billion, more than a third of the world's population, do not have basic sanitation. Another third (2.8 billion people) lives in areas of high water stress (WWAP 2012). On the energy side, more than 1.3 billion people around the world have no access to electricity, and 1.2 billion have unreliable access (IEA 2012).

Population growth and economic development, aggravated by climate change, will increase pressure on energy and water resources. Integrated planning can make the most of these two essential and scarce resources. Energy (mainly electricity) is needed to pump, treat, transport, and desalinate water. Conversely, significant amounts of water are needed in almost all energy generation processes. Water is used to generate electricity in hydropower plants, of course, but many people are unaware that almost all thermal power plants (coal, nuclear, solar-thermal, geothermal, biomass, and natural gas combined-cycle) require large amounts of water, especially for cooling purposes. Water is also needed to extract, process, and generate fuels.

This note focuses on the water needs of the power sector.

Do power plants need all that much water?

Thermal power plants need water for cooling, but efficient plants and the right cooling system save water

Largely because of their cooling needs, thermoelectric power plants account for about 40 percent of the freshwater withdrawn each year in the United States and Europe—as much as the agriculture sector (USGS 2005; Rubbelke and Vogege 2011).

About 80 percent of the world’s electricity is generated in thermal power plants (IEA 2013). Most thermal power plants heat water to produce steam to drive the turbines to produce electricity.1 The water is heated using various energy sources (coal, oil, natural gas, uranium, solar energy, biomass, geothermal energy) depending on the type of power plant, but the principle is the same. After passing through the turbine, the steam is cooled, usually with water drawn from a river, lake, or ocean and condensed to start the cycle again (figure 1).

Because most of the water needed in thermal power plants is used for cooling,2 the amount of water withdrawn and consumed by

1 Open-cycle power plants (mainly used as peak power plants) do not use the steam cycle to turn turbines and thus do not require water for cooling.

2 The other processes for which water is required include the steam cycle, ash handling, and flue-gas desulfurization, among others. Although these processes consume relatively little water, their effluents contain pollutants and should be treated before being returned to the water source. From a plant-level economic standpoint, therefore, such processes can incur very significant costs related to wastewater treatment.

Anna Delgado is a technical specialist in water and energy in the World Bank's Global Water Practice.

Diego J. Rodriguez is a senior economist in the Global Water Practice.

Antonia A. Sohns is a water and energy analyst in the Global Water Practice.
“Largely because of their cooling needs, thermoelectric power plants account for about 40 percent of the freshwater withdrawn each year in the United States and Europe—as much as the agriculture sector.”

The power plant depends chiefly on the type of cooling system used (Rodriguez and others 2013).

Once-through cooling, the simplest and cheapest system, requires large amounts of water but consumes a small fraction of it. The water is withdrawn from the water source and run once through the power plant (hence the name) to cool steam. The water is then discharged back into the source a few degrees warmer, which can cause thermal pollution. The withdrawal of large quantities of water can be harmful to fish and other aquatic organisms. Once-through cooling systems are more susceptible than others to drought or extreme heat (van Vliet and others 2012).

- **Closed-loop systems** are characterized by cooling towers that often are mistaken for nuclear power plants. Closed-loop systems withdraw much less water but consume most of it through evaporation. These cooling systems are more complex and expensive than once-through systems, but since they withdraw less water, they have fewer environmental effects and are less susceptible to drought.
- **Dry cooling systems** use air instead of water to cool steam. Their high cost and negative impact on plant efficiency limit their use.
- **Hybrid cooling systems** combine wet and dry cooling approaches.
“The system employed by the power plant affects power plant efficiency, capital and operating costs, water consumption, water withdrawal, and environmental impacts. Tradeoffs must be evaluated case by case, taking into consideration regional and ambient conditions and existing regulations.”

The system employed by the power plant affects power plant efficiency, capital and operating costs, water consumption, water withdrawal, and environmental impacts. Figure 2 illustrates the tradeoffs between various systems. Those tradeoffs must be evaluated case by case, taking into consideration regional and ambient conditions and existing regulations.

Among plants with the same type of cooling system, the amount of cooling water withdrawn and consumed is determined largely by the plants’ efficiency (Delgado 2012). Figure 3 illustrates the correlation between power plants’ water use and their efficiency (“heat rate”).

Because a new solar thermal power plant equipped with a given cooling system is still less efficient today than a new coal power plant equipped with the same system, it will require more water. However, it will require significantly less water than an old and inefficient coal power plant. This is because as power plants

Figure 2. Tradeoffs between different types of cooling systems

<table>
<thead>
<tr>
<th>main types of cooling systems</th>
<th>use</th>
<th>water withdrawal</th>
<th>water consumption</th>
<th>efficiency</th>
<th>cost</th>
<th>environmental impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>once through</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>small</td>
</tr>
<tr>
<td>cooling towers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$$$</td>
<td>medium</td>
</tr>
<tr>
<td>dry cooling</td>
<td>air</td>
<td>0</td>
<td>0</td>
<td>$$$ high</td>
<td>none</td>
<td>none</td>
</tr>
</tbody>
</table>

Source: Authors.

Figure 3. Correlation between water use and efficiency in thermal power plants

Source: Delgado 2012.

PC = pulverized coal; FGD = flue-gas desulfurization; CCS = carbon capture and storage; NGCC = natural gas combined cycle; IGCC = integrated gasification combined cycle.
“To compare power plants in terms of their water needs without specifying the type of cooling system they use and their efficiency is very misleading, but this has not stopped the media from reporting, for example, that coal power plants require more water than nuclear plants and less than solar thermal plants.”

What are the challenges?

Water–energy risks will grow over time, but the impacts are already being felt

The private energy sector has already recognized the inherent tension between energy and water resources. In 2012, General Electric’s director of global strategy and planning stated that water scarcity could rule out expansion of coal power plants in China and India (Pearson 2012). A 2013 report on the water risks facing the private sector found that, of the companies surveyed, 82 percent of energy and 73 percent of power utility companies believe that water presents a substantial risk to business operations. Moreover, 59
In a world of severe energy shortages and increasing water variability, hydropower dams and their multipurpose water infrastructure will play an expanding role in providing clean energy and in allocating scarce water resources.

What are our options?

The interdependencies of water and energy must be better understood and translated into policies and plans

There are ways to reduce the water requirements of the power sector—among them fostering the use of alternative cooling systems such as dry cooling (Maulbetsch 2004); expanding the role of wind and solar PV energy, which require little or no water for their operation; using alternative water sources for cooling, such as municipal waste water (U.S. Department of Energy 2009); exploring the use of multipurpose dams; improving power plant efficiency; and reusing waste heat (for example, to heat buildings or homes).

At a regional level, there is much to be gained by bringing together two sectors that traditionally have been planned and managed separately, understanding the trade-offs they present, and seeking integrated and efficient solutions consistent with sustainable development.

To make informed decisions and avoid irreversible consequences, it will be crucial to improve our understanding of water and energy interdependencies. In January 2014 the World Bank launched the Thirsty Energy initiative, the aim of which is to help countries address their water and energy challenges by:

- Identifying synergies and quantifying trade-offs between energy development and water use
- Piloting cross-sectoral planning to ensure sustainability of energy and water investments
- Designing assessment tools and management frameworks to help governments coordinate decision-making and to mainstream water requirements into energy planning.

More information on the initiative can be found at: www.worldbank.org/thirstyenergy.

References

The authors thank Rikard Liden, senior hydropower specialist in the World Bank Group, for his contributions to the hydropower section.
Tracking Progress Toward Providing Sustainable Energy for All in East Asia and the Pacific

Get Connected to Live Wire

The Live Wire series of online knowledge notes is an initiative of the World Bank Group’s Energy and Extractives Global Practice, reflecting the emphasis on knowledge management and solutions-oriented knowledge that is emerging from the ongoing change process within the Bank Group.

Each Live Wire delivers, in 3–6 attractive, highly readable pages, knowledge that is immediately relevant to front-line practitioners.

Live Wires take a variety of forms:

- **Topic briefs** offer technical knowledge on key issues in energy and extractives
- **Case studies** highlight lessons from experiences in implementation
- **Global trends** provide analytical overviews of key energy and extractives data
- **Bank views** portray the Bank Group’s activities in the energy and extractives sectors
- **Private eyes** present a private sector perspective on topical issues in the field

Each Live Wire will be peer-reviewed by seasoned practitioners in the Bank. Once a year, the Energy and Extractives Global Practice takes stock of all notes that appeared, reviewing their quality and identifying priority areas to be covered in the following year’s pipeline.

Please visit our Live Wire web page for updates:
http://www.worldbank.org/energy/livewire
Contribute to Live Wire

Do you have something to say? Say it in Live Wire!

Those working on the front lines of energy and extractives development in emerging economies have a wealth of technical knowledge and case experience to share with their colleagues but seldom have the time to write for publication.

Live Wire offers prospective authors a support system to make sharing your knowledge as easy as possible:

- Trained writers among our staff will be assigned upon request to draft Live Wire stories with staff active in operations.
- A professional series editor ensures that the writing is punchy and accessible.
- A professional graphic designer assures that the final product looks great—a feather in your cap!

Live Wire aims to raise the profile of operational staff wherever they are based; those with hands-on knowledge to share. That’s your payoff! It’s a chance to model good “knowledge citizenship” and participate in the ongoing change process at the Bank, where knowledge management is becoming everybody’s business.

Tracking Progress Toward Providing Sustainable Energy for All in Eastern Europe and Central Asia

Why is this important?
Tracking regional trends is critical to monitoring the progress of the Sustainable Energy for All initiative.

In declaring 2012 the “International Year of Sustainable Energy for All,” the UN General Assembly established three global objectives to be accomplished by 2030: to ensure universal access to modern energy services, improve the global energy mix, and to double the global rate of improvement in energy efficiency relative to the period 1990–2010 (SE4ALL 2012).

The World Bank and the International Energy Agency led a consortium of states, organizations, and experts to develop a measurable set of indicators to track progress toward the SE4ALL objectives. The Global Tracking Framework (GTF) was developed as a global and comparative tool to measure progress toward SE4ALL.

The GTF is based on two core indicators:

1. The universal access goal will be achieved when every person on the planet has access to modern energy services provided through electricity, clean cooking fuels, clean heating fuels, and liquefied petroleum gas (www.sustainableenergyforall.org).

2. The energy intensity indicator, calculated per capita and as a percentage of the population with access to nonsolid fuels. These data are collected using household surveys and reported in the World Bank’s Global Electrification Database and the World Health Organization’s Household Energy Database.

The SE4ALL objectives are global, with individual countries setting their respective starting points and comparative advantages as well as on the percentage of the population with access to nonsolid fuels. The UN General Assembly’s New Urban Agenda and UN Sustainable Development Goals also support the SE4ALL objectives.

Let’s Say It’s a Success!

This note uses data from the GTF to provide a regional and global perspective on progress toward SE4ALL. A country’s performance on the GTF is measured against its sector and country peer group and can be visualized through a scorecard for the energy-related CO2 emissions by country.

Figure 1. Energy-related CO2 emissions by country

Notes:
IEA 2012a.

This note uses data from the GTF to provide a regional and global perspective on progress toward SE4ALL. A country’s performance on the GTF is measured against its sector and country peer group and can be visualized through a scorecard for the energy-related CO2 emissions by country.

Figure 1. Energy-related CO2 emissions by country

Notes:
IEA 2012a.

A KNOWLEDGE NOTE SERIES FOR THE ENERGY PRACTICE

Tracking Progress Toward Providing Sustainable Energy for All in Eastern Europe and Central Asia

Why is this important?
Tracking regional trends is critical to monitoring the progress of the Sustainable Energy for All initiative.

In declaring 2012 the “International Year of Sustainable Energy for All,” the UN General Assembly established three global objectives to be accomplished by 2030: to ensure universal access to modern energy services, improve the global energy mix, and to double the global rate of improvement in energy efficiency relative to the period 1990–2010 (SE4ALL 2012).

The World Bank and the International Energy Agency led a consortium of states, organizations, and experts to develop a measurable set of indicators to track progress toward the SE4ALL objectives. The Global Tracking Framework (GTF) was developed as a global and comparative tool to measure progress toward SE4ALL.

The GTF is based on two core indicators:

1. The universal access goal will be achieved when every person on the planet has access to modern energy services provided through electricity, clean cooking fuels, clean heating fuels, and liquefied petroleum gas (www.sustainableenergyforall.org).

2. The energy intensity indicator, calculated per capita and as a percentage of the population with access to nonsolid fuels. These data are collected using household surveys and reported in the World Bank’s Global Electrification Database and the World Health Organization’s Household Energy Database.

The SE4ALL objectives are global, with individual countries setting their respective starting points and comparative advantages as well as on the percentage of the population with access to nonsolid fuels. The UN General Assembly’s New Urban Agenda and UN Sustainable Development Goals also support the SE4ALL objectives.

Let’s Say It’s a Success!

This note uses data from the GTF to provide a regional and global perspective on progress toward SE4ALL. A country’s performance on the GTF is measured against its sector and country peer group and can be visualized through a scorecard for the energy-related CO2 emissions by country.

Figure 1. Energy-related CO2 emissions by country

Notes:
IEA 2012a.

This note uses data from the GTF to provide a regional and global perspective on progress toward SE4ALL. A country’s performance on the GTF is measured against its sector and country peer group and can be visualized through a scorecard for the energy-related CO2 emissions by country.

Figure 1. Energy-related CO2 emissions by country

Notes:
IEA 2012a.