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names of the authors and should be cited accordingly. The findings, interpretations, and conclusions expressed in this paper are entirely those 
of the authors. They do not necessarily represent the views of the International Bank for Reconstruction and Development/World Bank and 
its affiliated organizations, or those of the Executive Directors of the World Bank or the governments they represent.
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This paper uses a three-step Bayesian cross-entropy estima-
tion approach in an environment of noisy and scarce data 
to estimate behavioral parameters for a computable gen-
eral equilibrium model. The estimation also measures how 
labor-augmenting productivity and other structural param-
eters in the model may have shifted over time to contribute 
to the generation of historically observed changes in the 
economic arrangement. In this approach, the parameters in 
a computable general equilibrium model are treated as fixed 
but unobserved, represented as prior mean values with prior 

error mass functions. Estimation of the parameters involves 
using an information-theoretic Bayesian approach to exploit 
additional information in the form of new data from a series 
of social accounting matrices, which are assumed were mea-
sured with error. The estimation procedure is “efficient” in 
the sense that it uses all available information and makes no 
assumptions about unavailable information. As illustration, 
the methodology is applied to estimate the parameters of 
a computable general equilibrium model using alternative 
data sets for the Republic of Korea and Sub-Saharan Africa.
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INTRODUCTION 

CGE models are often criticized for weak empirical estimation of the parameters and for preserving static 
economic structures in long-term simulations. The problem is associated with the lack of reliable time-series 
data, most severe in developing countries, to support standard econometric estimation of parameters and 
shifts in structure. In particular, we have lacked a times series of social accounting matrices (SAMs) and their 
associated prices and quantities that provide the information base for these models. There are examples of 
econometric estimation of parts of the CGE model where some time series data are available—see Jorgenson 
and Yun (2013) and other work by Jorgenson and various coauthors (Jorgenson, D. W. 2011, Jorgenson, 
D. W. and M. P. Timmer 2011, Jorgenson, D. W., et al. 2012).  

This paper uses an information-theoretic cross-entropy estimation approach in an environment of 
scarce data measured with error to estimate behavioral parameters, labor augmenting productivity, and other 
parameters in the model that shift over time to generate historically observed changes in economic structure. 
With noisy and limited observations common to developing countries, the unseen parameters of a CGE 
model cannot generally be observed and measured directly. In systems and information theory, this is 
described as a stochastic inverse problem: how to use available “information” to recover these unobserved 
and uncontrolled components. Robust solution methods consistent with the underlying ill-posed noisy 
information recovery problem have been developed under Bayesian inference and decision theory (see, for 
example, Golan et al. 1996, and Judge and Mittelhammer 2012).2 In CGE model estimation, Arndt et al. 
(2002) used the cross-entropy method from information theory to estimate the trade substitution elasticities 
in a CGE model of Mozambique. Robinson et al. (2001) also utilized the cross-entropy method in data 
updating and estimation when available information was insufficient to construct a balanced new SAM.  

In this paper, we extend and refine the cross-entropy estimation method to account for different 
levels of noise and amount of information in a sequential and particular way. We start with a collection of 
SAMs with identical accounts for the Republic of Korea (Korea) for various years. Even though the 
availability of such data to support is uncommon, it is still not enough to support standard econometric 
methods. Each new data set for later years provides new information to improve the estimation of parameters 
of a CGE model, updating priors that initially were based on scattered data and theoretical properties of 
various functions in the model. The statistical results recovered from this noisy and limited informational 
environment depend on how the CGE model is formulated; the more data, the more reliable the estimates of 
structural parameters. Furthermore, are the parameters stable? That is, even within a given set of specifications 
for a CGE model, the transformation of economic structure over time may be captured in alternative ways 
by the evolution of different parameters in the model and the entropy method described here provides a 
statistical approach for making model selection in this context. When only one SAM is available, a priori 
parameters such as trade elasticities are employed so that the structure of the economy, such as trade shares, 
are replicated and as depicted by the CGE model. With more SAMs, one can improve not only the posterior 

2 Not always initially accepted, the Bayesian approach is now applied widely in decision and information theory, operations 
research, and more recently, in finance and macroeconomics, such as the recent methodology regarding dynamic stochastic general 
equilibrium (DSGE) modeling. A popular history of its development, the debates about its validity and uses, its triumphant 
applications in the great wars of the last century, and its recent uses is available in McGrayne, S. B. (2011). 
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estimates of the trade elasticities, but also check if the trade structure is changing. This may be reflected by 
rising elasticities (the economy is becoming more flexible and responsive to trade prices) or the trade shares 
are shifting due to greater competitiveness and global integration, i.e., there is a trend in the trade delta shares 
of common functions such as the Armington and CET functions. Model selection even within the same 
general specifications of the CGE model means choosing among alternative formulations about how the 
economic structure is changing or whether it is stable.  The estimation procedure is “efficient” in the sense 
that it uses all available information and makes no assumptions about unavailable information. Importantly, 
estimated parameters maintain consistency with the microeconomic foundations of the general equilibrium 
theory embodied in CGE models. 3 

We make use of the collection of available comparable SAMs for different years to estimate 
parameters and to account for equilibrium dynamics of the country’s economic flows as postulated in the 
CGE model. Since SAMs are expressed in nominal values and information about relative prices may be 
limited, we also implement a data step by using the cross-entropy method to estimate real SAMs of the same 
base year and that are consistent with available information on changes in prices before parameter estimation. 
We use scattered information on relative prices and factor accumulation quantities, where available in order 
to estimate real SAMs. With each new real SAM, a parameter estimation step checks if the posterior estimates 
of the parameters converge to new values and whether they are stable (e.g. no trends).  We consider various 
discrete prior probability distributions, specifying additive or multiplicative errors on behavioral and 
structural parameters and SAM targets to examine convergence and stability results. Since developing 
countries are undergoing fundamental economic transformations as they grow, the next step in our method 
for model selection calculates for evolution of parameters, including the elasticities, factor specific technical 
change, or shifts in value added and trade shares that may be important in the changing economic structure. 
As more estimates are made for many countries, any regularity in the estimates may further inform the pattern 
of development and structural change, following the work of Chenery and various coauthors (Chenery, H. 
B., et al. 1975, Chenery, H. B. and H. Elkington 1979, Chenery, H. B., et al. 1986).  

In the case of Korea, the CGE-SAM-cross-entropy (CGE-SAM-CE) method is applied to selected 
years in the period 1990 to 2011 to estimate economic a set of behavioral parameters: the elasticities of 
substitution between traded goods and domestic goods and between factors in production functions. We 
also explore for possible changes in the relative levels of sectoral value-added and its factor components 
through the growth of total factor productivity (TFP) and labor-augmenting productivity (LAP) in the value 
added function of each sector, as well as the evolution in economic and trade structure as reflected in trends 
of trade elasticities and trade shares over time. 

As the availability of datasets for global CGE modeling is improving thanks to the Global Trade 
Analysis Project (GTAP) at Purdue University and other activities, regional units that are aggregation of 
multiple countries and their corresponding SAMs are becoming popular in CGE modeling, but the 
availability of regional price data still lags. We therefore also look at a regional application to Sub-Saharan 

3 See Arnold Zellner’s definition of an efficient “information processing rule” in Zellner, A. (1988). 
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Africa (SSA), where data noise and constraints can be severe in order to demonstrate how the approach may 
be applied.  

As a last point, the framework permits both the recovery of behavioral (unobserved) parameters in 
the estimation model and a switch to policy simulations in the estimated CGE application mode once the 
parameters are estimated.  

The rest of the paper is organized as follows. Section II presents the methodology where we describe 
the three-step, cross-entropy approach employed in the paper for estimating the structural parameters and 
shifts in the economic arrangement. Using the CGE-SAM-CE method, Section III discusses the estimates 
and results as well as the error measures corresponding to the estimates. In the last section, we conclude and 
suggest areas for future research.  

 

METHODOLOGY 

Estimation of parameters of a CGE model is often a complex task because of incomplete, infrequent, 
inaccessible, or uncertain data, including dated or poorly constructed SAMs and auxiliary information.4  To 
simplify the estimation task, some practical procedures are commonly applied: subjective and expert 
judgments about the parameters and other assumptions; borrowing estimates from other studies; and 
sensitivity testing to refine their values and the economic reasonableness of simulation results. With 
somewhat more information, “back-casting” or “double-calibration” procedures have been employed to 
improve the validation of models; see e.g., Dawkins et al. (2001) and Okushima and Tamura (2009). 
Although Bayesian in spirit, these procedures do not assess the inherent errors or noise associated with weak 
data or with the estimates recovered in the process. To deal with noisy and limited data more directly, the 
method of cross-entropy (CE) estimation from information theory and Bayesian econometrics has recently 
been deployed to update and rebalance a SAM or to separately estimate related parameters in a CGE model 
(Robinson et al. 2001, and Arndt et al. 2002).5 It can clearly be beneficial to integrate the two tasks of SAM 
updating and CGE parameter estimation. Prior guesses of parameters are refined with new information so 
that they maximize the probability of matching the historical record of vital aggregates in a SAM while the 
entropy method minimizes a statistically measured pseudo-distance of the calibration to the unseen 
parameters.  

In this paper, we employ the cross-entropy method to integrate three steps critical to calibrating and 
validating CGE models: the SAM data preparation, the CGE parameter estimation, and the statistical 
analysis. Accordingly, we define the three-step procedure as follows: i) a data step that adjusts the historical 
nominal SAMs to real terms with a common base year taking into account that the SAMs are measured with 
errors and relative price indices are scant; ii) a parameter estimation step that calculates (filters) parameters 

4 This is often the case for developing countries, but those working on developed countries may face similar problems, in part 
because they try to carry out more complicated and data-demanding analysis. 
5 There are links between cross-entropy and empirical-likelihood estimation procedures. See Golan, A., et al. (1996) and Judge, 
G. G. and R. C. Mittelhammer (2012).  
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and structural change simultaneously within the specifications of the CGE model; and iii) an integrated 
statistical analysis to check for model precision and prediction and to test alternative ways of modeling 
historical structural change with the evolution of different parameters in the CGE model. In order to provide 
a practical approach and to ensure the consistency with economic theory in the behavioral equations, we 
follow the customary calibration process of CGE modeling. Finally, we develop a reference GAMS 
programming code that integrates the three steps of the procedure to facilitate use and further development 
of the technique by other analysts.6 The code also matches CGE variables with the SAM cells, an approach 
that in turn greatly simplifies the structure of the code. In what follows, we describe in more detail the 
different steps of the methodology and how it is applied to estimate and calibrate a CGE model.  

The data step 

As the basic source of information for a CGE model, a SAM provides the starting point for the calibration 
process. Although a time series of SAMs is still not available for most countries, intermittent estimates and 
updates are becoming more common, thanks to the efforts of national statistical agencies. At the global level, 
country SAMs are compiled and reconciled in globally consistent data sets as part of the research activities 
of GTAP and others. As more SAMs are estimated, each additional SAM provides new information to 
combine with previous SAMs to test and adjust prior assumptions about the parameters and components in 
the CGE model.   

In this data step, we exploit the fact that SAM provides a transaction (flow) matrix approach to 
national accounting (see Stone 1962, and Pyatt and Round 1985). We also draw on Robinson et al. (2001) 
who, using limited up-to-date information (such as macro aggregates), employ the cross-entropy estimation 
method to update an existing SAM. Here, we apply the methodology for the purpose of pooling and 
adjusting a set of historical SAMs when auxiliary data to directly do so are incomplete, essentially making 
use of the SAM’s necessary consistency with macroeconomic aggregates in the national accounts. 

More precisely, the first step is to adjust the nominal SAMs associated with different years by 
properly deflating them with price indices so that they are measured in the same base year prices and are 
hence comparable. The ideal way to do this is to separate the nominal magnitudes into their respective prices 
and quantities; and each cell in the SAM should be adjusted by the correct relative price index so that all 
individual cells are expressed in equivalent real terms. Where that is possible, it should clearly be employed. 
For many developing countries, however, the informational requirements will be daunting relative to the state 
of their statistical capacities (e.g. countries in Sub-Saharan Africa or newly formed countries after civil 
conflicts). Noise in the data, including the quality of price indices if available and the values of the specific 
SAM cells, will likely be very high.  

In the absence of full information about prices and quantities, each SAM still brings new information 
about the economic structure of the country, albeit in nominal values. It adds new observational data and the 

6 GAMS refers to the General Algebraic Modeling System; for more on GAMS, see www.gams.com. The GAMS code in this 
paper is available from the authors in the future when documentation is completed. 
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new evidence can be used to update the old priors about the parameters. Mindful of the data noise and 
limitations however, we implement the following practical steps: 

a. First, deflate all cells in the historical SAMs by a single overall GDP deflator so that they 
are broadly expressed in the same base year prices as a first step.  For models with regional 
aggregation of countries, this may be the only means possible if deriving weighted 
aggregation of country specific prices is not feasible. 
 

b. We assign greater weight to known data in a limited informational environment. 
Accordingly, as a second step, we apply the cross-entropy estimation method to target 
known macroeconomic aggregates in constant prices from the national accounts, which are 
generally available for most countries; and we rebalance the SAM to preserve, given priors 
on measurement error, these critical economic aggregates. This approach in effect extends 
the SAM cross-entropy estimation method to a constant price application.   

 
c. Alternatively, one could use known relative price indices (relative to the GDP deflator) to 

target the macroeconomic aggregates. The latter could conceivably be expanded 
information-wise if auxiliary data such as world prices of exports and imports for various 
commodities are also available. As mentioned, the more cells in the SAMs that can be 
deflated to the right base year prices, the better the economic representation that is reflected 
in the SAM. In any case, to ensure that the SAM adheres to known national account 
aggregates in constant prices, it should still be estimated and rebalanced appropriately.  

 
d. In the extreme case, where there are no price and real national accounts data to work with 

(e.g. in post-conflict or other very data-poor economies), the evolution of the economic 
structure reflected in the nominal SAMs still adds information to test various prior 
assumptions about the unobserved parameters. It is still better than using less information 
from a single SAM.  

 

The method used here follows the earlier approach in Robinson et al. (2001) in that standard 
additive errors and discrete probability distributions are defined at three levels of information – (1) each cell 
value in the SAM; (2) the row and column totals (total expenditures and total incomes) in the SAM (SAM 
balance condition); and (3) the macroeconomic aggregates in the SAM. The formal mathematical statement 
generally follows the earlier work and is not repeated here. In adjusting the historical SAMs to constant 
prices under limited information, we assign the smallest standard errors to the macro aggregates since they 
are known from the national accounts. The end result of the data step is a series of real SAMs that are 
consistent with the aggregates of national income accounts in constant prices. 
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The parameter estimation step 

In this section, we describe the cross-entropy method that is used to estimate the unseen parameters and 
other components of the economic framework, subject to the outputs (i.e., the real SAMs) in the data step.  

Prior and posterior probability distributions of parameter error. Our basic approach explicitly 
recognizes that the value of each parameter 𝜃𝜃𝑖𝑖 is not observed, but can be represented by its prior 𝜃𝜃𝑖𝑖0 and an 
error term 𝜀𝜀𝜃𝜃𝑖𝑖 , in additive or multiplicative way, i.e., 𝜃𝜃𝑖𝑖 = 𝜃𝜃𝑖𝑖0 + 𝜀𝜀𝜃𝜃𝑖𝑖 or ln(𝜃𝜃𝑖𝑖) = ln(𝜃𝜃𝑖𝑖0) + 𝜀𝜀𝜃𝜃𝑖𝑖 , respectively. 
Moreover, the error term has an assigned prior error probability mass distribution, such that 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 �𝜀𝜀𝜃𝜃𝑖𝑖 ∈ 𝐸𝐸𝑗𝑗,𝜀𝜀𝜃𝜃𝑖𝑖
� = 𝜋𝜋�𝜀𝜀𝑗𝑗,𝜃𝜃𝑖𝑖� ∈ [0,1], 𝜀𝜀𝜃𝜃𝑖𝑖 ∈ �𝐸𝐸1,𝜀𝜀𝜃𝜃𝑖𝑖

,𝐸𝐸2,𝜀𝜀𝜃𝜃𝑖𝑖
, … ,𝐸𝐸𝑛𝑛,𝜀𝜀𝜃𝜃𝑖𝑖

�, 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 �𝐸𝐸𝑗𝑗,𝜀𝜀𝜃𝜃𝑖𝑖
∩ 𝐸𝐸𝑘𝑘≠𝑗𝑗,𝜀𝜀𝜃𝜃𝑖𝑖

�=0 

and ∑ 𝜋𝜋�𝜀𝜀𝑗𝑗,𝜃𝜃𝑖𝑖�𝑗𝑗 =1. Then, our information-theoretic cross-entropy estimation centers on the posterior 
parameter values, 𝚯𝚯 = 𝑓𝑓(𝑭𝑭(∙) = 𝟎𝟎,𝐘𝐘,𝐕𝐕, 𝚷𝚷(𝛆𝛆| ∙)), conditioned on the specifications of the CGE model 
𝑭𝑭(… ) = 𝟎𝟎, the SAM targets, 𝐘𝐘, the SAM data, 𝑽𝑽, and the posterior error distribution 
𝚷𝚷(𝜀𝜀𝜃𝜃1 , … , 𝜀𝜀𝜃𝜃𝐼𝐼|𝒀𝒀,𝑽𝑽,𝑭𝑭(∙) = 𝟎𝟎), which is a conditional joint distribution of all the error parameters, 𝛆𝛆 =
(𝜀𝜀𝜃𝜃1 , … , 𝜀𝜀𝜃𝜃𝐼𝐼).  

Mathematical statement of the problem. Two concepts, precision and prediction, play important 
roles in the interpretation of the method. Precision refers to the behavioral and structural parameters and to 
the difference between the posterior and prior values of these parameters. Prediction refers to the sample data 
and the difference between the estimated values of the targeted (selected) SAM cells and their prior values.  

We setup the CGE-SAM-CE method as a minimization problem of an objective function (1) subject 
to equations (2) through (13) as its constraints (appendix 1 lists various notations and their definitions). 
More specifically, the objective function minimizes the sum of the Kullback-Leibler divergence of the prior 
and estimated probabilities, for all the discrete error distributions that characterize unobserved parameters 
and SAM targets. 

(1)  min
{𝒘𝒘,𝑿𝑿𝑡𝑡}

�𝛼𝛼1 ∑ ∑ ∑ 𝑤𝑤𝐵𝐵,𝑡𝑡,𝑘𝑘𝑚𝑚 ln �𝑤𝑤𝐵𝐵,𝑡𝑡,𝑘𝑘𝑚𝑚
𝑤𝑤�𝐵𝐵,𝑡𝑡,𝑘𝑘𝑚𝑚

�𝐾𝐾𝑚𝑚
𝑘𝑘𝑚𝑚=1

𝑀𝑀
𝑚𝑚=1

𝑇𝑇
𝑡𝑡=1�������������������������

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

   

+𝛼𝛼2 ∑ ∑ ∑ 𝑤𝑤𝑍𝑍,𝑡𝑡,𝑘𝑘𝑠𝑠 ln �𝑤𝑤𝑍𝑍,𝑡𝑡,𝑘𝑘𝑠𝑠
𝑤𝑤�𝑍𝑍,𝑡𝑡,𝑘𝑘𝑠𝑠

�𝐾𝐾𝑠𝑠
𝑘𝑘𝑠𝑠=1

𝑆𝑆
𝑠𝑠=1

𝑇𝑇
𝑡𝑡=1�����������������������

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

+ 𝛼𝛼3 ∑ ∑ ∑ 𝑤𝑤𝑌𝑌,𝑡𝑡,𝑘𝑘𝑛𝑛 ln �𝑤𝑤𝑌𝑌,𝑡𝑡,𝑘𝑘𝑛𝑛
𝑤𝑤�𝑌𝑌,𝑡𝑡,𝑘𝑘𝑛𝑛

�𝐾𝐾𝑛𝑛
𝑘𝑘𝑛𝑛=1

𝑁𝑁
𝑛𝑛=1

𝑇𝑇
𝑡𝑡=1�������������������������

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

�     

subject to 7 
 
The CGE block: 
(2) 𝑭𝑭(𝑿𝑿𝒕𝒕,𝒁𝒁𝑡𝑡𝑜𝑜 ,𝒁𝒁𝑡𝑡𝑢𝑢,𝑩𝑩𝒕𝒕, 𝜹𝜹𝒕𝒕) = 𝟎𝟎, ∀ 𝑡𝑡 ∈ 𝑇𝑇. 

7 The vector of posterior error probabilities (𝒘𝒘) is partitioned in three components: the behavioral parameter, the SAM target and 
the non-behavioral parameters, i.e., 𝒘𝒘 =  {𝒘𝒘𝑩𝑩,𝒘𝒘𝒀𝒀,𝒘𝒘𝒁𝒁}. 
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The calibration block: 
(3) 𝜹𝜹𝒕𝒕 = Φ(𝒁𝒁𝒕𝒕,𝑩𝑩𝒕𝒕), ∀ 𝑡𝑡 ∈ 𝑇𝑇. 
 
The behavioral parameter (precision) block: 
(4)  𝑩𝑩𝑡𝑡 = 𝑩𝑩𝑡𝑡

0 exp�𝒆𝒆𝐵𝐵,𝑡𝑡� , ∀𝑡𝑡 ∈ 𝑇𝑇.  
(5)  𝑒𝑒𝐵𝐵,𝑡𝑡,𝑚𝑚 = ∑ 𝑤𝑤𝐵𝐵,𝑡𝑡,𝑘𝑘𝑚𝑚𝜈𝜈𝐵𝐵,𝑡𝑡,𝑘𝑘𝑚𝑚

𝐾𝐾𝑚𝑚
𝑘𝑘𝑚𝑚=1 ,∀ 𝑡𝑡 ∈ 𝑇𝑇, ∀ 𝑚𝑚 ∈ 𝑀𝑀. 

(6)  ∑ 𝑤𝑤𝐵𝐵,𝑡𝑡,𝑘𝑘𝑚𝑚
𝐾𝐾𝑚𝑚
𝑘𝑘𝑚𝑚=1 = 1 ,∀ 𝑡𝑡 ∈ 𝑇𝑇, ∀ 𝑚𝑚 ∈ 𝑀𝑀.  

 
The unobserved non-behavioral parameter (precision) block: 
(7)  𝒁𝒁𝑡𝑡𝑢𝑢 = 𝒁𝒁𝑡𝑡

𝑢𝑢,0 exp�𝒆𝒆𝑍𝑍,𝑡𝑡� , ∀𝑡𝑡 ∈ 𝑇𝑇.  
(8)  𝑒𝑒𝑍𝑍,𝑡𝑡,𝑠𝑠 = ∑ 𝑤𝑤𝑍𝑍,𝑡𝑡,𝑘𝑘𝑠𝑠𝜈𝜈𝑍𝑍,𝑡𝑡,𝑘𝑘𝑠𝑠

𝐾𝐾𝑠𝑠
𝑘𝑘𝑠𝑠=1 , ∀ 𝑡𝑡 ∈ 𝑇𝑇, ∀ 𝑠𝑠 ∈ 𝑆𝑆. 

(9)  ∑ 𝑤𝑤𝑍𝑍,𝑡𝑡,𝑘𝑘𝑠𝑠
𝐾𝐾𝑠𝑠
𝑘𝑘𝑠𝑠=1 = 1, ∀ 𝑡𝑡 ∈ 𝑇𝑇, ∀ 𝑠𝑠 ∈ 𝑆𝑆.  

 
The SAMs target (prediction) block: 
(10)  𝒀𝒀𝑡𝑡 = 𝒀𝒀𝑡𝑡0 exp�𝒆𝒆𝑌𝑌,𝑡𝑡� , ∀ 𝑡𝑡 ∈ 𝑇𝑇.  
(11)  𝑽𝑽𝑡𝑡 = 𝑮𝑮(𝑿𝑿𝑡𝑡,𝒀𝒀𝑡𝑡,𝒁𝒁𝑡𝑡𝑜𝑜 ,𝒁𝒁𝑡𝑡𝑢𝑢,𝑩𝑩,𝜹𝜹), ∀ 𝑡𝑡 ∈ 𝑇𝑇. 
(12)  𝑒𝑒𝑌𝑌,𝑡𝑡,𝑛𝑛 = ∑ 𝑤𝑤𝑌𝑌,𝑡𝑡,𝑘𝑘𝑛𝑛𝑣𝑣𝑌𝑌,𝑡𝑡,𝑘𝑘𝑛𝑛

𝐾𝐾𝑛𝑛
𝑘𝑘𝑛𝑛=1 ,∀𝑡𝑡 ∈ 𝑇𝑇, ∀𝑛𝑛 ∈ 𝑁𝑁. 

(13)  ∑ 𝑤𝑤𝑌𝑌,𝑡𝑡,𝑘𝑘𝑛𝑛
𝐾𝐾𝑛𝑛
𝑘𝑘𝑛𝑛=1 = 1,∀𝑡𝑡 ∈ 𝑇𝑇, ∀𝑛𝑛 ∈ 𝑁𝑁. 

 

A brief description of each block is provided next while the definition of various symbols is found in the 
appendix 1 and appendix 2.  

The first set of constraints belongs to the standard CGE block of equations as presented in (2). This 
is the representation of the general equilibrium model, a square system of non-linear equations that satisfy 
the property of homogeneity of degree zero in prices. This 𝑭𝑭(∙) vector function depends on the CGE 
endogenous variables 𝑿𝑿𝑡𝑡, the observed exogenous variables 𝒁𝒁𝑡𝑡𝑜𝑜 , the unobserved exogenous variables 𝒁𝒁𝑡𝑡𝑢𝑢, the 
behavioral parameters 𝑩𝑩𝒕𝒕, and the calibration parameters 𝜹𝜹𝒕𝒕. 

The next constraints belong to the calibration block (3). This set of equations depends on the vector 
of exogenous variables 𝒁𝒁𝒕𝒕 and on the behavioral parameters 𝑩𝑩𝒕𝒕. Note that 𝑡𝑡0 ⊂ 𝑡𝑡, which means that this 
base period can be selected from any element of the sequence corresponding to SAM’s periods.  

The behavioral parameter block is given by equation (4) to (6). The entropy setup requires modeling 
the unobserved (behavioral) parameters 𝑩𝑩 by using prior information 𝑩𝑩0 and an error term 𝒆𝒆𝑩𝑩. In equation 
(4), the error term is entered in multiplicative form, such that 𝒆𝒆𝑩𝑩 measures some amount of error between 
the prior 𝑩𝑩0 and posterior 𝑩𝑩 information in logarithmic units. However, this can also be written in additive 
manner, i.e., 𝑩𝑩 = 𝑩𝑩𝑜𝑜 + 𝒆𝒆𝑩𝑩 , then 𝒆𝒆𝑩𝑩 will be in the same units as the behavioral parameters. Equation (5) 
models the error terms  𝑒𝑒𝐵𝐵,𝑡𝑡,𝑚𝑚 as an expected mean using error support values 𝜈𝜈𝐵𝐵,𝑘𝑘𝑚𝑚  and their respective 
endogenously estimated probability weights 𝑤𝑤𝐵𝐵,𝑡𝑡,𝑘𝑘𝑚𝑚 . For coherence, this behavioral parameter block requires 
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that these discrete error probability weights sum to one (6). The prior specified for the probability weights 
𝑤𝑤𝐵𝐵,𝑡𝑡,𝑘𝑘𝑚𝑚 in the estimation reflect the degree of information available about the distributions—how 
“informative” are the priors. 

Additionally, in this minimization problem the restrictions presented in equations (7) through (9), 
pertains to the unobserved exogenous (non-behavioral) parameters 𝒁𝒁𝑡𝑡𝑢𝑢. The vector of parameters 𝒁𝒁𝑡𝑡𝑢𝑢 depends 

on a vector of prior information 𝒁𝒁𝑡𝑡
𝑢𝑢,0 and their error terms 𝒆𝒆𝑍𝑍,𝑡𝑡, which are incorporated in multiplicative 

way as presented in (7). The unobserved exogenous parameters 𝒁𝒁𝑡𝑡𝑢𝑢 may contain parameters such as technical 
and productivity coefficients and rates. As in the two previous blocks, equation (8) also restricts the error 
terms with the expected value formula, considering specific support values and particular posterior weights, 
𝜈𝜈𝑍𝑍,𝑡𝑡,𝑘𝑘𝑠𝑠 and 𝑤𝑤𝑍𝑍,𝑡𝑡,𝑘𝑘𝑠𝑠 , respectively. The corresponding discrete error probabilities are required to sum to one, 
equation (9).  

Finally, the last set of constraints defines the SAMs target block through equations (10) to (13). 
The SAM targets are selected cells of the SAMs that serve to adjust the system for an easier convergence and 
a closer representation of the historical data. One of the main differences between Arndt, C., et al. (2002) 
and our method is that our targets are specific SAM cells (flows in constant currency units), while the model 
of 2002 was targeting a subset of the endogenous CGE variables (𝑿𝑿𝑡𝑡). Note that this method permits 
targeting specific cells of the SAM at particular periods, for instance, household savings could be a SAM 
target variable for period 𝑡𝑡1 but not for time 𝑡𝑡𝑇𝑇 , this is useful predominantly when there is information that 
indicates that some years were noisier than others. The first equation in this block, (10), models the SAM 
targets 𝒀𝒀𝑡𝑡  as function of their prior values 𝒀𝒀𝑡𝑡0and their exponential error terms 𝑒𝑒𝒆𝒆𝑌𝑌,𝑡𝑡 . Additionally, equation 
(11) is the representation of the endogenous recovery of the complete SAMs 𝑽𝑽𝑡𝑡. That is, the full posterior 
SAMs are recovered as functions of the endogenous CGE variables 𝑿𝑿𝑡𝑡, the SAM targets 𝒀𝒀𝑡𝑡 , the observed 
and unobserved exogenous variables, 𝒁𝒁𝑡𝑡𝑜𝑜 and 𝒁𝒁𝑡𝑡𝑢𝑢, respectively, the behavioral parameters 𝑩𝑩𝑡𝑡 , and the 
calibration constraints 𝜹𝜹𝑡𝑡. Equation (12) also imposes the expected mean value restriction on the error terms 
of the SAM targets using error supports 𝜈𝜈𝑌𝑌,𝑡𝑡,𝑘𝑘𝑛𝑛 and endogenously estimated posterior weights 𝑤𝑤𝑌𝑌,𝑡𝑡,𝑘𝑘𝑛𝑛 . The 
last set of constraints of this SAM target block is presented in equation (13) which again requires that the 
discrete error probability weights sum to one.  

Considering that the selection of error types and prior distributions for the SAM targets and 
unobserved parameters are fixed, then the number of possible combinations of SAM targets depends on the 
number of non-empty cells in each SAM and the number of available SAM periods. Thus, the maximum 

number of combinations is 2�𝑁𝑁𝑡𝑡1
𝑆𝑆𝑆𝑆𝑆𝑆+𝑁𝑁𝑡𝑡2

𝑆𝑆𝑆𝑆𝑆𝑆+⋯+𝑁𝑁𝑡𝑡𝑇𝑇
𝑆𝑆𝑆𝑆𝑆𝑆�, where 𝑁𝑁𝑡𝑡1

𝑆𝑆𝑆𝑆𝑆𝑆 represents the total number of non-
empty cells in the 𝑆𝑆𝑆𝑆𝑆𝑆 of period 𝑡𝑡1, and the subindex 𝑇𝑇 stands for the last period of the available SAMs. 
Furthermore, the possibility to update new SAM observations plus the error term prior distributions with 
old optimal posteriors will make this procedure a Bayesian estimation process of successive prior-to-
posterior-to prior, etc. steps.  
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An alternative way to express the objective function is using expected mean values for the error 

probabilities as in (14), with expected values defined as 𝔼𝔼𝑤𝑤𝐵𝐵,𝑡𝑡�ln�𝑤𝑤𝐵𝐵,𝑡𝑡,𝑘𝑘𝑚𝑚��=∑ 𝑤𝑤𝐵𝐵,𝑡𝑡,𝑘𝑘𝑚𝑚 ln�𝑤𝑤𝐵𝐵,𝑡𝑡,𝑘𝑘𝑚𝑚�
𝐾𝐾𝑚𝑚
𝑘𝑘𝑚𝑚=1  

and 𝔼𝔼𝑤𝑤𝐵𝐵,𝑡𝑡�ln�𝑤𝑤�𝐵𝐵,𝑡𝑡,𝑘𝑘𝑚𝑚�� = ∑ 𝑤𝑤𝐵𝐵,𝑡𝑡,𝑘𝑘𝑚𝑚 ln�𝑤𝑤�𝐵𝐵,𝑡𝑡,𝑘𝑘𝑚𝑚�
𝐾𝐾𝑚𝑚
𝑘𝑘𝑚𝑚=1 . In this formulation, 𝒘𝒘 and 𝒘𝒘�  represent the 

matrices with the posterior and prior error probability mass function values of the correspondent error 
elements. Each of the expected mean value sub-indexes expresses their own and specific probability spaces. 
Under the afore-mentioned definitions, we can explain the value of the objective function as a noise measure 
of the observed data, or more precisely, as a pseudo-distance8 of expected data noise. In this case, the bigger 
the value of the objective function, the noisier the data, and the more informative the parameters. Our 
optimization problem therefore measures and minimizes the expected pseudo-measure of error probabilities 
or data noise.  

(14)  min
{𝒘𝒘,𝑿𝑿𝑡𝑡}

�𝛼𝛼1 ∑ ∑ �𝔼𝔼𝑤𝑤𝐵𝐵,𝑡𝑡�ln�𝑤𝑤𝐵𝐵,𝑡𝑡,𝑘𝑘𝑚𝑚�� − 𝔼𝔼𝑤𝑤𝐵𝐵,𝑡𝑡�ln�𝑤𝑤�𝐵𝐵,𝑡𝑡,𝑘𝑘𝑚𝑚���
𝑀𝑀
𝑚𝑚=1

𝑇𝑇
𝑡𝑡=1  

 min
{𝒘𝒘,𝑿𝑿𝑡𝑡}

�𝛼𝛼1���𝔼𝔼𝑤𝑤𝐵𝐵,𝑡𝑡�ln�𝑤𝑤𝐵𝐵,𝑡𝑡,𝑘𝑘𝑚𝑚�� − 𝔼𝔼𝑤𝑤𝐵𝐵,𝑡𝑡�ln�𝑤𝑤�𝐵𝐵,𝑡𝑡,𝑘𝑘𝑚𝑚���
𝑀𝑀

𝑚𝑚=1

𝑇𝑇

𝑡𝑡=1

 

+𝛼𝛼2 ∑ ∑ �𝔼𝔼𝑤𝑤𝑍𝑍,𝑡𝑡�ln�𝑤𝑤𝑍𝑍,𝑡𝑡,𝑘𝑘𝑠𝑠�� − 𝔼𝔼𝑤𝑤𝑍𝑍,𝑡𝑡�ln�𝑤𝑤�𝑍𝑍,𝑡𝑡,𝑘𝑘𝑠𝑠���
𝑆𝑆
𝑠𝑠=1

𝑇𝑇
𝑡𝑡=1   

+𝛼𝛼3 ∑ ∑ �𝔼𝔼𝑤𝑤𝑌𝑌,𝑡𝑡�ln�𝑤𝑤𝑌𝑌,𝑡𝑡,𝑘𝑘𝑛𝑛�� − 𝔼𝔼𝑤𝑤𝑌𝑌,𝑡𝑡�ln�𝑤𝑤�𝑌𝑌,𝑡𝑡,𝑘𝑘𝑛𝑛���
𝑁𝑁
𝑛𝑛=1

𝑇𝑇
𝑡𝑡=1 � . 

As introduced above, equation (1) includes the precision and prediction parts; the precision part is 
represented by every term that is multiplied by 𝛼𝛼1 and 𝛼𝛼2, while 𝛼𝛼3 corresponds  to the section related with 
the “prediction” part embedded on the SAM target errors. Thus, at the optimal levels, the weights 𝛼𝛼1, 𝛼𝛼2 
and 𝛼𝛼3 partially define the noise level of this cross-entropy objective function, and the more weight on any 
of the above alpha parameters, the bigger expected marginal values of the correspondent error probabilities.  

Error specification. The typical specification of the error is either additive or multiplicative: 𝑋𝑋 =
𝑋𝑋� + 𝑒𝑒 or 𝑋𝑋 = 𝑋𝑋� exp(𝑒𝑒), where 𝑋𝑋� is the prior mean and 𝑒𝑒 is the error term with mean zero. The error is 
written as the discrete probability weighted sum of an error support set. 

(15)  𝑒𝑒 = ∑ 𝑤𝑤𝑘𝑘𝑣𝑣𝑘𝑘𝑘𝑘  ; 0 ≤ 𝑤𝑤𝑘𝑘 ≤ 1 and ∑ 𝑤𝑤𝑘𝑘𝑘𝑘 = 1 . 

The 𝑣𝑣 parameters are fixed and have the units of the item (𝑋𝑋) being estimated. They define the 
domain of possible values that 𝑋𝑋 can take and so contain information for estimation. The 𝑤𝑤’s are discrete 
probabilities, defining the probability mass function for the distribution of the error. This specification 
converts the problem of estimating errors in “natural” units into a Bayesian problem of estimating a set of 
probabilities. Instead of directly estimating the mean and variance of a random variable, we are now estimating 
a discrete probability distribution. The specified support set provides the link.  

8 See Judge, G. G. and R. C. Mittelhammer (2012, p. 107) for a more detailed discussion. 
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The number of elements in the support set, 𝑘𝑘, defines the number of probability weights (𝑤𝑤) that 
need to be estimated and will determine the parameters of the distribution of the errors that can be 
“recovered” from the data. To estimate the errors, one starts with the error support set (𝑣𝑣) and a prior on 
the probability weights (𝑤𝑤�). This prior can be “uninformative” or “informative”, depending on the choice 
of the prior probability weights (see appendix 2 for more details).  

The statistical and data validation step  

Bayesian inference offers a way to derive posterior estimation of the unseen parameters and their likelihood 
given the model, limited data, and prior judgment about their initial values and distribution. Hence, the 
Bayesian inference is not like traditional statistics, which relies on repeated observations to form a large 
sampling distribution(s). In the context of scant and noisy data circumstances, the Bayesian procedure raises 
the question regarding what the economy would look like, what values are plausible, what are not – that is, 
if the parameters (Θ) of the CGE model were to take a set of values versus another – and what plausible 
values and likelihood may be associated with each parameter. The prior values and likelihood or probability 
distributions can be postulated from theory, taken from other studies, or derived from subjective or expert 
judgment. In CGE modeling, for example, historical applications or backcasting exercises may suggest a 
plausible prior, say 2.0, for the Armington elasticity, the substitution possibility between domestic good and 
imports. The cross-entropy method checks these postulations with the observations from the historical 
SAMs in order to derive new estimates of the parameters and their likelihoods. Summarizing, on the basis of 
what we know – the model, the data, and the initial guesses and likelihoods – the method refines the 
calculation with posterior error distribution estimates, thus providing an inferred probability distribution of 
the unobserved parameters. These inferred probability distributions of the unseen parameters can be used, in 
principle, to assess other type of economic analysis that involve the use of more detailed parameter-statistics 
than the mere use of their (posterior) mean.  

Measuring uncertainty and uncertainty gains about the recovered parameters and error terms involves 
the usage of cross-entropy derived statistics. First, note that each of the elements of 𝑩𝑩, 𝒁𝒁𝑡𝑡𝑢𝑢, and SAM targeted 
cells 𝒀𝒀𝑡𝑡 can be generalized and expressed in the alternative forms: 𝜃𝜃 =  𝜃𝜃0 + 𝜀𝜀 or ln 𝜃𝜃 = ln 𝜃𝜃0 + ln 𝜀𝜀, 
where 𝜀𝜀 is the stochastic error part with probability weights 𝒘𝒘, prior weights 𝒘𝒘�  and support 𝒗𝒗. After 
minimizing our CGE-SAM-CE objective function, the recovered error terms 𝜀𝜀̂ measure how good the CGE 
system and cross-entropy priors 𝑩𝑩𝒐𝒐, 𝒁𝒁𝑡𝑡

𝑢𝑢,𝑜𝑜, and 𝒀𝒀𝑡𝑡𝑜𝑜 are capturing the (information) noise. On this regard, we 
are interested to test the behavior of the estimated error terms, 𝜀𝜀̂.  

For individual and subgroup parameter estimates, we compute model pseudo -R2 statistics – 
henceforth cross-entropy R�2 – as presented in equation (16), where 𝑆̂𝑆(𝒘𝒘) = (−∑ 𝑤𝑤𝑘𝑘 ln𝑤𝑤𝑘𝑘

𝐾𝐾
𝑘𝑘=1 )/ ln𝐾𝐾 

stands for the normalized entropy of the error terms. Since 𝑆̂𝑆(𝒘𝒘) ∈ [0,1], a value 𝑆̂𝑆(𝒘𝒘) = 0 implies no 
uncertainty while 𝑆̂𝑆(𝒘𝒘) = 1 redirects total uncertainty in the sense that 𝒘𝒘 is uniformly distributed. Thus, 
in our CGE-SAM-CE error arrangement as pointed out in appendix 2, R�2 = 0 means that the CGE-SAM-
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CE system has total uncertainty about the posterior behavior of 𝜃𝜃, while 𝑅𝑅�2 = 1 reveals that the model 

arrangement has total certainty on the posterior and prior error behavior of 𝜃𝜃. 9  

(16)  𝑅𝑅�2 = 1 − 𝑆̂𝑆(𝒘𝒘). 

Next, for model selection and data validation purposes we incorporate some goodness of fit statistics. 
In our CGE-SAM-CE model we rely on assumptions like parameters are evolving over time and structural 
transformation is present, hence, we are able to test model specifications using certain statistics in order to 
select the one that best validate the CGE-SAM-CE results on the prediction side of the estimation. First, we 
calculate an adjusted-𝑅𝑅2 10 to compare the prior and the posterior SAM cells.11 The 𝑅𝑅�𝑡𝑡2 statistics in (17) 
includes all the non-empty SAM cells inside the SAM, 𝑁𝑁𝑡𝑡𝑆𝑆𝑆𝑆𝑆𝑆 , while 𝑛𝑛𝑡𝑡𝑆𝑆𝑆𝑆𝑆𝑆 denotes the number of targeted 
SAM cells.12 Finally, we assess goodness of fit through an information-theoretic measure which imposes a 
penalty for adding/modifying SAM targets, 𝑛𝑛𝑡𝑡𝑆𝑆𝑆𝑆𝑆𝑆 , the Akaike information criterion13 (AIC) as defined in 
equation (18). 

(17)  𝑅𝑅�𝑡𝑡2 = 1 −
�∑ �𝑆𝑆𝑆𝑆𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑗𝑗−𝑆𝑆𝑆𝑆𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑗𝑗�

2
𝑗𝑗 /�𝑁𝑁𝑡𝑡

𝑆𝑆𝑆𝑆𝑆𝑆−𝑛𝑛𝑡𝑡
𝑆𝑆𝑆𝑆𝑆𝑆��

�∑ �𝑆𝑆𝑆𝑆𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑗𝑗−𝑆𝑆𝑆𝑆𝑆𝑆������𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�
2

𝑗𝑗 /�𝑁𝑁𝑡𝑡
𝑆𝑆𝑆𝑆𝑆𝑆−1��

.  

(18)  𝐴𝐴𝐴𝐴𝐴𝐴 = exp �2 𝑛𝑛𝑡𝑡
𝑆𝑆𝑆𝑆𝑆𝑆

𝑁𝑁𝑡𝑡
𝑆𝑆𝑆𝑆𝑆𝑆�

1
𝑁𝑁𝑡𝑡
𝑆𝑆𝑆𝑆𝑆𝑆 ∑ �𝑆𝑆𝑆𝑆𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑗𝑗 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑗𝑗�

2
𝑗𝑗 . 

Given that the AIC statistics measure a weighted squared difference between the data inside the SAM 
and the recovered (estimated) SAM, then the model estimation with the lowest AIC value would be preferred. 
As well, note that the addition of more targets inside the SAM is more penalized by the AIC than by the R�t2. 

In contrast, from the prediction section of the objective function in (1) we derive the statistic 𝐷𝐷(∙)𝑌𝑌 
as presented in equation (19). This Kullback-Leibler statistic measures data and model generated noise, such 
that the smaller the number, the less noise produced by our model assumptions given the information 

9 A third type of parameter statistic is 𝑆̃𝑆(𝒘𝒘) = (−∑ 𝑤𝑤𝑘𝑘 ln𝑤𝑤𝑘𝑘𝐾𝐾
𝑘𝑘=1 )/(−∑ 𝑤𝑤�𝑘𝑘 ln𝑤𝑤�𝑘𝑘𝐾𝐾

𝑘𝑘=1 ). In this case, 𝑆̃𝑆(𝒘𝒘) ∈ [0,∞+), thus, 
a value close to 1 means that the system has a proper prior selection of the parameter error distribution while something different 
than one reflects the noise inconsistencies between our initial prior and the posterior error values, i.e., we over/under predict the 
parameter error behavior.  

10 Alternatively, we might estimate a percentage change deviation from the posterior SAM cells to their prior values:  
𝑝𝑝𝑝𝑝𝑗𝑗 = �

𝑎𝑎𝑎𝑎𝑎𝑎�𝑆𝑆𝑆𝑆𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑗𝑗−𝑆𝑆𝑆𝑆𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑗𝑗�

𝑀𝑀𝑀𝑀𝑀𝑀�𝑎𝑎𝑎𝑎𝑎𝑎�𝑆𝑆𝑆𝑆𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑗𝑗�,𝑎𝑎𝑎𝑎𝑎𝑎�𝑆𝑆𝑆𝑆𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑗𝑗��
� ∗ 100, such that 𝑝𝑝𝑝𝑝 = ∑ 𝑝𝑝𝑝𝑝𝑗𝑗𝑗𝑗 . 

11 𝑆𝑆𝑆𝑆𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑗𝑗 and 𝑆𝑆𝑆𝑆𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑗𝑗 denote and consider all the non-empty SAM cells with the exception of the total expenditures 
and incomes.  
12 𝑁𝑁𝑡𝑡𝑆𝑆𝑆𝑆𝑆𝑆 and 𝑛𝑛𝑡𝑡𝑆𝑆𝑆𝑆𝑆𝑆 take into account all the non-empty SAM cells but the total expenditures and incomes. 
13 Additionally, the Bayesian information criterion might be estimated as: 

BIC = �Nt
SAM�

nt
SAM

Nt
SAM 1

Nt
SAM ∑ �SAMposterior,j − SAMprior,j�

2
j  . Note that the AIC statistic penalizes in less severe form the 

addition of targets than the BIC. 
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embedded in the data, and then the best model-data fit. Note that AIC, BIC and 𝐷𝐷(∙)𝑌𝑌 do not always point 
out in the same direction, for instance, if we have two different and hypothetical models 𝐴𝐴 and 𝐵𝐵, we might 
have a case with the lowest AIC and 𝐷𝐷(∙)𝑌𝑌 in model 𝐴𝐴, however, we might also have results that generate 
the lowest AIC in model 𝐴𝐴 and the lowest 𝐷𝐷(∙)𝑌𝑌  statistic in model 𝐵𝐵. 

(19)  𝐃𝐃(𝐰𝐰||𝐰𝐰�)𝑌𝑌 = ∑ ∑ ∑ 𝐃𝐃(𝐰𝐰||𝐰𝐰�)𝑌𝑌,𝑡𝑡,𝑛𝑛,𝑘𝑘𝑛𝑛
𝐾𝐾𝑛𝑛
𝑘𝑘𝑛𝑛=1

𝑁𝑁
𝑛𝑛=1

𝑇𝑇
𝑡𝑡=1 = ∑ ∑ ∑ 𝑤𝑤𝑌𝑌,𝑡𝑡,𝑘𝑘𝑛𝑛 ln �𝑤𝑤𝑌𝑌,𝑡𝑡,𝑘𝑘𝑛𝑛

𝑤𝑤�𝑌𝑌,𝑡𝑡,𝑘𝑘𝑛𝑛
�𝐾𝐾𝑛𝑛

𝑘𝑘𝑛𝑛=1
𝑁𝑁
𝑛𝑛=1

𝑇𝑇
𝑡𝑡=1 . 

ESTIMATION AND RESULTS  

The cross-entropy estimation method is technically compatible with any CGE model. In the implementation, 
we choose a widely used standard, the IFPRI model (Lofgren, H., et al. 2002) as recently implemented by 
Cicowiez, M. and H. Lofgren (2006). This is a static CGE model for a single open economy in the tradition 
of  Dervis, K., et al. (1982) and De Melo, J. and S. Robinson (1989).  Over the years, CGE models of this 
type have been applied to a wide range of analysis of economic policy and external shocks in developing 
countries; hence, it is a good starting point for illustrations; see a recent survey of CGE models with policy 
applications to developing countries by Devarajan, S. and S. Robinson (2013). Since the specifications of 
the standard IFPRI CGE model are well documented, we only briefly sketch its outline to emphasize the key 
unobserved parameters of behavioral relationships for estimation. figure 1 of appendix 4 depicts the general 
structure of the production and consumption sides in the model, respectively. For illustrations of the 
methodology, we select Korea as a country case and Sub-Saharan Africa as a regional application.  

SAM preparation 

Although there are good and extensive data available in the case of Korea, we do not include all of them in 
order to demonstrate parameter estimation in more limited data circumstances that are likely to prevail in 
other developing countries. Accordingly, we constructed five specific SAMs of Korea for the following years, 
1990, 1995, 2000, 2005, and 2011. We aggregate the SAMs to cover 6 sectors – agriculture, mining, 
manufacturing, utilities, construction, and services.  

As described in the data step, we generate SAM cells error distributions. We assign to the SAM total 
expenditure and total income cells an error support that covers three standard deviations of the correspondent 
prior SAM cell value. For the macro aggregates, we generate error distributions with smaller standard 
deviations that account for only 0.01 the macro aggregate prior mean value, i.e., the symmetric macro 
aggregate error supports cover a range ±0.03 the macro aggregate prior mean values. Table 1 illustrates how 
the Korean macro results deviate (in percent) from the numbers of the national accounts.  

Table 2 shows a similar application at a regional level, the case of Sub-Saharan Africa, using the regional 
SAMs for 2004, 2007, and 2011 from the GTAP database. The GTAP SAMs are already expressed in 
U.S. dollars, which is convenient for the data step since regional income accounts are available in the 
World Development Indicators at the World Bank in both current and constant price series. This means 
relevant price indices are derivable for regional GDP and for several of its components. The data step in 
this case consists of deflating the SAM values by first using the regional U.S. GDP deflator and then 
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targeting macroeconomic aggregates that are available.14 Regional accounts were available for the GDP 
components of government consumption, investment, exports, imports, as well as aggregated value added 
and disaggregated value added figures for agriculture, manufacturing, and services. The GTAP SAM for 
SSA in 2011 is a preliminary version and the deviations from the regional accounts targets are higher than 
those in the other two years.15 Even so, they still provide valuable observations to use, albeit more noisy, in 
the Bayesian entropy approach.  

 

Model definitions 

Our Bayesian method estimates all the parameters in the CGE model simultaneously relative to their initial 
or prior values, subject to the specifications of the CGE model and the information from all available SAMs. 
In table 3 we state four model specifications or cases that define the behavior of the CES-CET functions in 
the standard CGE (figure 1) and illustrate technical aspects of the procedure. Given convergence issues and 
to make comparable the results among the country/regional applications, models 1, 2 and 3 are applied for 
Korea, while models 1, 2 and 4 are designed for SSA. Whereas the model specifications are a debate in 
theoretical econometrics, DSGE, and CGE literature, in our specifications we merely look for flexible features 
of the method and their link to entropy (information) gains. In the next subsections we explicitly state the 
behavior of the CES functions.  

Elasticities 

Elasticities are critical unobserved behavioral parameters in the standard CGE model, which are usually 
defined by using the CES functions (Arrow, K. J., et al. 1961). For example, the trade elasticities express the 
substitution possibilities between domestic and foreign goods in the CET (constant elasticity of 
transformation) and CES (constant elasticity of substitution) functions. Suppressing the sector and time 
subscripts, the two functions can be written symmetrically, using the same form,  

(20)  𝑋𝑋 = 𝐴𝐴 � [∑𝛿𝛿𝑖𝑖 ∙ (λ 𝑖𝑖 ∙ 𝑥𝑥𝑖𝑖) 
𝜌𝜌]

1
𝜌𝜌 . 

In the two factor case, 𝑋𝑋  is the CES or CET composite of factor 𝑥𝑥1 and 𝑥𝑥2, 𝐴̅𝐴 the shift parameter, 
𝛿𝛿𝑖𝑖 the CES share or distribution parameter and 𝛿𝛿1 + 𝛿𝛿2 = 1, λ 𝑖𝑖 a factor augmenting or biased productivity 
parameter for 𝑥𝑥𝑖𝑖 , and ρ the exponent:  𝑋𝑋 = 𝐹𝐹(𝑥𝑥1, 𝑥𝑥2; 𝛿𝛿1, 𝛿𝛿2,𝜌𝜌,𝐴𝐴,� λ 1, λ 2). The CES substitution elasticity 
σ and CET transformation elasticity Ω are given by 𝜎𝜎 = 1 (1 − 𝜌𝜌)⁄ ;  −∞ < 𝜌𝜌 < 1 in the CES case and 
Ω = 1 (𝜌𝜌 − 1); 1 < 𝜌𝜌 < ∞⁄  in the CET case.  

14 The regional macroeconomic aggregates are available from World Bank World Development Indicators. 
15 Given bigger divergences between the 2011 GTAP SAM information and the World Bank World Development Indicators 
(WDI) macro data and to achieve an optimal convergence in the 2011 rebalanced SSA SAM procedure, we had to allow bigger 
macro target standard deviations with size of 0.05 the macro aggregate prior mean values, i.e., the symmetric macro aggregate error 
support covers a range of ±0.15 the macro aggregate prior mean value. 
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Below is the first-order condition of the CES case, which is expressed in value terms of factor input 
per unit of output: 

(21)  𝑤𝑤𝑖𝑖∙𝑥𝑥𝑖𝑖
𝑃𝑃∙𝑋𝑋

= 𝐴𝐴 �  𝜎𝜎−1 ∙ λ 𝑖𝑖
𝜎𝜎−1 ∙ 𝛿𝛿𝑖𝑖

𝜎𝜎 � 𝑃𝑃
𝑤𝑤𝑖𝑖
�
𝜎𝜎−1

 . 

where 𝑃𝑃 is the price of the composite good 𝑋𝑋  and 𝑤𝑤𝑖𝑖 is the price of the input 𝑥𝑥𝑖𝑖 . Alternatively, the value 
ratio of factor inputs for a homothetic aggregation function is the familiar: 

(22)  𝑤𝑤1∙𝑥𝑥1
𝑤𝑤2∙𝑥𝑥2

= �λ 2
λ 1
�

1−𝜎𝜎
∙
 
�𝛿𝛿1

𝛿𝛿2
�
𝜎𝜎
∙ �𝑤𝑤2
𝑤𝑤1
�
𝜎𝜎−1

 . 

If there are only two components in the CES function, an index may summarize the relative factor-
augmenting productivity, that is, 𝜆𝜆 = λ 2 λ 1⁄ . Since both the CET and CES functions exhibit constant 
returns to scale, the allocation of the composite good depends only on the relative prices of the individual 
components.  

When data problems prevent traditional econometric estimation of the elasticities, they are often 
assumed or taken from other studies as extraneous estimates. The normal CGE calibration commonly uses a 
single and most recent SAM. Accordingly, prices in the model are initialized to 1.0, and values for the 
parameters, 𝐴̅𝐴 and 𝛿𝛿𝑖𝑖 , are then derived based on the information in the SAM and the assumed values of the 
elasticities. However, if there are older historical SAMs, the priors can be improved with our approach and 
it is a mistake to discard the older historical SAMs, which contain vital information to improve extraneous 
numbers.  

Furthermore, unless the prior estimates are initially close to the values of the unobserved parameters, 
the CGE-SAM-CE method will mostly improve the priors with additional SAMs; and the revised estimates 
can deviate significantly from the initial guesses. Even a single price deflator will generally bring about 
improved estimates over the priors. It is easy to see why from the two first-order conditions that are expressed 
in value shares above, equations (21) and (22).  

In the absence of good price indices, the right-hand side clearly contains an error by a factor of 

� 𝑃𝑃
𝑤𝑤𝑖𝑖
�
𝜎𝜎−1

or �𝑤𝑤2
𝑤𝑤1
�
𝜎𝜎−1

 if nominal values of the SAMs are used in the left-hand side of the equations for the 

implicit derivation of the elasticities. Clearly, if relative price changes (between the SAMs) are stable, the 
error will be small; otherwise, they can be significant. Even so, the Bayesian method will make use of whatever 
implicit price indices are available and allows for errors and prior probability to be assigned and the posterior 
probability to be computed from the Kullback-Leibler objective function. In the SAM estimation step, we 
give more weight or certainty to known national accounts aggregates or values that are deflated by appropriate 
prices. Likewise, in the CGE calibration and estimation our method can also give more weight to a more 
recent SAM or to a particular SAM that is constructed with greater reliability. These steps will almost 
certainly improve the prior estimates.  
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Table 4 shows the results of the cross-entropy estimation for the Armington elasticities of Korea 
under models 1, 2 and 3 above mentioned while table 5 shows the respective results for Sub-Saharan Africa 
under models 1, 2 and 4. Models 1 to 4 assume that there is additional information on the macroeconomic 
aggregates, i.e., more information than only an aggregated general GDP deflator. The difference between the 
four models relies on the dynamics of the CES-CET function parameters.  

Model 1 considers constant delta-share parameters and time varying elasticities, model 2 
contemplates constant elasticities and time varying delta-share parameters for the period 1990-2011 in the 
case of Korea and 2004-2011 in the regional case of Sub-Saharan Africa. For the same periods, the Korean 
applied model 3 contemplates a) constant delta-share parameters in all the CES/CET bundles (see figure 
1), b) constant elasticities in the CES bundles of value added-factors and national output-value added-
intermediates, and c) dynamic elasticities with linear trends in the CET domestic production-domestic sales-
exports side and in the Armington CES national consumption-domestic purchases-imports hub. As the 
Korean model 3 application, the 2004-2011 range Sub-Saharan African model 4 application consist on a) 
constant delta-share parameters in all the CES/CET bundles (figure 1), with the main difference that b) the 
dynamic behavior with linear trends is for the elasticities of three bundles: the CES value added-factors, the 
CET, and to Armington CES bundles, and c) there is constant 2004-2011 behavior for the elasticity of the 
CES national consumption-domestic purchases-imports hub.  

For the dynamics of the elasticities and delta-share parameters of the CES and CET functions please 
refer to equations (25), (26) and (27). Likewise, in the Korea and Sub-Saharan African cases, table 6 and 
table 7 summarize some results for the CET functions, table 8 and table 9 present the outcomes for the value 
added-factors CES bundle and table 10 and table 11 the estimates on the national output – value added – 
intermediates CES functions.  

Additionally, note that the method is subject to the amount of parameters we want to recover 
simultaneously. By construction the prior error terms have zero mean (see appendix 2), then using the 
Kullback-Leibler objective function as in (1), the posterior error distributions tend to be as close as the prior 
ones. Thus, as we increase the number of parameters to estimate – as we increase the degrees of freedom – 
this minimal KL target produces posterior parameter error distributions that tend to have zero mean. 

The same methodology may also be applied to derive parameters of other parts of the nested CES 
production structure in the standard CGE model, e.g., between value added and intermediate inputs in the 
output of each sector or between labor and capital in the value added of each sector. The method is also 
flexible enough to add more nested structure and can be applied to more flexible behavioral specifications 
such as the translog functions. In any case, the CES formulation may be viewed as local approximation of a 
more flexible form (Perroni, C. and T. F. Rutherford 1995).  
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Structural change and productivity  

CGE models are increasingly applied to economic scenarios over a long-term horizon. With more SAMs, 
the approach provides the information basis to anticipate the economic transformation over the long-term 
in conjunction or consistent with the elasticity estimation. By economic transformation, we include both 
shifts in the economic structure and changes in productivity. A growth rate 𝑟𝑟 may be estimated for the shift 
or scale parameter in the CES and CET functions as in (23). However, the growth in 𝐴𝐴𝑡𝑡  affects all CES 
factor inputs, but one of the CES factor input may have a factor-specific productivity change which might 
incorporate dynamics as stated in (24); the growth rate of the factor augmenting productivity, 𝑔𝑔, can also be 
estimated from our cross-entropy methodology. 

(23)  𝐴𝐴𝑡𝑡 = 𝐴𝐴𝑡𝑡0(1 + 𝑟𝑟)𝑡𝑡−𝑡𝑡0 . 

(24)  𝜆𝜆𝑡𝑡 = 𝜆𝜆𝑡𝑡0(1 + 𝑔𝑔)𝑡𝑡−𝑡𝑡0 . 

Recent literature seems to suggest that technical change in advanced countries appears to be net factor or 
labor augmenting, e.g., Jorgenson, D. W. (2001), Krusell, P., et al. (1997), Carraro, C. and E. De Cian 
(2009), etc. The factor augmenting productivity change may be estimated for various CES nested level of 
the supply side. Table 12 and table 14 show the results of our estimates for TFP and the labor augmenting 
productivity in the factors and value added function under setups 1, 2 and 3 for the Korean case. Table 13 
and table 15 also show the estimates of the above mentioned TFP and labor augmenting productivity for 
the Sub-Saharan Africa analysis under models 1, 2 and 4. 

In our approach, it is also possible to consider that economic transformation will bring about less 
rigidness in the production and demand behavior of a developing country. The assumption of a constant 
elasticity in the Armington and CET functions may not hold over long-run simulations and can be relaxed. 
One way to handle this is to allow the elasticities to rise over time. If data are insufficient to estimate a 
flexible functional form, it may still be possible to incorporate changes in the elasticities if there are sufficient 
SAMs to cover several growth episodes using linear trends.  

(25)  𝝈𝝈𝒕𝒕 = 𝝈𝝈𝒕𝒕𝟎𝟎 + 𝒂𝒂 ∙ 𝒕𝒕 . 

(26)  Ω𝑡𝑡 = Ω𝑡𝑡0 + 𝑏𝑏 ∙ 𝑡𝑡 . 

Alternatively, foreign trade shares can be allowed to change to capture the effects of globalization, 
effects that are difficult to capture in a homothetic function like the CES or CET specification. A different 
approach is needed to capture rising trade shares as output expands. One option is to calibrate the change in 
the CES delta-share or distributional parameter. In our approach, a delta-share parameter corresponding to 
each year of SAM can be computed simultaneously with the other parameters and its linear and quadratic 
trend factors can be derived: 
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(27)  𝛿𝛿𝑡𝑡 = 𝛿𝛿𝑡𝑡0 + 𝑎𝑎0 ∙ 𝑡𝑡 + 𝑎𝑎1 ∙ 𝑡𝑡2. 

 𝛿𝛿𝑡𝑡 = 𝛿𝛿𝑡𝑡0 + 𝑎𝑎0 ∙ 𝑡𝑡 + 𝑎𝑎1 ∙ 𝑡𝑡2. 

Importantly, in our system approach there will be constraints in the number of parameters to be 
estimated simultaneously due to the degrees of freedom reflected in the behavioral relationships and in the 
limited amount of data. The estimates are therefore linked intrinsically. For example, the posterior estimates 
of the elasticities will tend to match their prior values if many of the other parameters are set free and/or are 
capturing much of the structural change story in the economy. The trade-offs can be exploited in the 
following ways. If there are good prior estimates of the elasticities, then the entropy method can be used to 
gain better estimates of the productivity and other parameters. If new estimates of the elasticities are 
important, then no many of the other parameters can be set free. This is illustrated with the estimated 
elasticities via the model variations on the CES and CET functions of the CGE; from table 4 through table 
11 we present model results that are consistent with what is being allowed to be estimated with respect to 
the other parameters in the CGE model.  

In addition, under models 1, 2, 3 and 4, we allow for the estimation of the labor augmenting 
productivity. In the first year, one reference sector, manufacturing in Korea and SSA region, is set to 0.6716 
and to 1.0, respectively, allowing other sectors to vary relative to it so that there are relative differences in the 
sector productivity to start with. In subsequent years, labor augmenting productivity in all sectors will vary 
relative to their initial values.  

In table 8 and table 9 the estimates of the elasticity of substitution between factors (capital and 
labor) in the value added – factors CES bundle are presented. This type of elasticity measures the percentage 
change variation in the capital-labor ratio (𝐾𝐾/𝐿𝐿) relative to a percentage change variation in the ratio of their 

prices (wL/wK), i.e., σK,L = %∆(K/L)
%∆(wL/wK) =

d�KL�/(KL)

d�wL
wK

�/(wL
wK

)
=

d�KL�

d�wL
wK

�

𝑤𝑤LL
wKK

. Under model 1, σK,L increases its 

value in the agriculture, mining, utilities, construction and services sectors, while manufacturing remains at 
the same level during the period 1990-2011. On the other side, considering the assumptions of model 2 
(dynamics on the delta-share parameters of the CES/CET functions and static elasticities of substitution), 
the delta-share index defined as the ratio of the posterior to the prior mean times one hundred shows that 
the agriculture, mining and utilities sectors experience a concave behavior in the period 1990-2011, the 
construction sector presents a convex index path. In contrast, manufacturing declines its ratio delta-share 
index while services does the opposite from 1990 to 2011.  

In the same value added – factors CES bundle, two more parameters are estimated: total factor 
productivity and labor augmenting productivity. Under model specifications 1, 2, 3 and 4 we present 
posterior and prior TFP values in table 12 and table 13. For the Korean case, in model 1 and 2, mining and 
construction present a downward slope linear behavior, whereas agriculture, manufacturing, utilities and 
services describe a positive linear trend. Our results suggest that under this setup 1, manufacturing is the 

16 Based on the World Bank CGE LINKAGE model sources. 
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sector with the biggest total factor productivity in 2011 which is consistent with our priors, while under 
setup 2, is the second lowest TFP holder. Besides, in table 14 our results show that with the exception of 
services, all the Korean sectors present a labor augmenting productivity with upward trend, being agriculture 
the one with the biggest change during the period 1990-2011 under setup 1. However, the LAP coefficients 
behave different for manufacturing, mining and services under setup 2. LAP for mining and manufacturing 
present downward sloping trends whereas services an upward path.  

 

Model selection and parameter assessment 

In a context of ambiguous results we would like to differentiate the model setups, and the CGE-SAM-CE 
procedure automatically fits this task. First, for data validation, we make use of equations (17) and (18) to 
estimate the adjusted 𝑅𝑅2 and the AIC statistics under models 1, 2 and 3. The Korean aggregated adjusted 
𝑅𝑅2 and the AIC of table 16 indicate that between 1990 and 2011, case 1 works better to explain and validate 
the SAMs’ information, while in table 17, the SSA regional results imply that model 2 explain and validate 
better the CGE model and data for the period 2004-2011.  

For the specific case of Korea, the Kullback-Leibler (KL) statistic in (19) shows that among setups 
1 and 2, there is a bigger reduction of data noise in results of model 1 during the period 1990-2011. 
Nonetheless, model 1 has bigger Kullback-Leibler statistic in 1995 for the prediction side than model 2; this 
implies that the standard CGE fits better in 1995 under the assumptions of dynamic delta-shares and fixed 
elasticities.  

On the other side, the parameter evaluation in the CGE-SAM-CE setup is elaborated through the 
cross-entropy 𝑅𝑅�2 statistic as in (16). In this regard, where correspondent, in tables of appendix 3 we show 
that generally under models 1 and 2 our prior parameter error Gaussian assumptions deviates from the total 
degree of ignorance assumption17 in systematic way, i.e., cross-entropy 𝑅𝑅�2 values of at least 0.30. There are 
also cases where the method identifies recovered parameters with more data noise and/or with bigger gain 
of information, for instance, in table 12, 13, 14 and table 15 we have examples that TFP growth rates and 
labor augmenting productivity coefficients have bigger cross-entropy 𝑅𝑅�2 values �𝑅𝑅�2 ≥ 0.30�, i.e., bigger 
difference between the ignorance (uniform) distribution and the posterior-recovered one.  

As previously commented, the method is subject to the amount of parameters we want to estimate 
simultaneously: the more parameters the more flexible estimation and the less likelihood to recover a posterior 
distribution far from the prior. In model 3 for the Korean analysis we specify a setup that is an imperfect 
mirror of model 1, where the difference relies on fixed elasticities during the period 1990-2011 of the 
Armington and CET functions instead of the dynamic behavior with linear trend of the elasticity, i.e., model 
3 means less parameters to estimate than model 1. Given model 3 rigidness, we observe in table 4 that the 
posterior mean of the CES Armington elasticity moves from a prior of 2.80 to an inelastic value of 0.10. 

17 See the description of the uninformative prior from appendix 2. 
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Another result of the smaller flexibility of model 3 is observed in table 10, where the elasticity for 
manufacturing in the CES national output, value added and intermediates function changes from a prior of 
1.5 to a posterior of 0.79 in 1990 and 0.10 in 2011. Finally, for the same Korean example, on prediction 
side, table 16 also shows that model 3 gets worse scores (statistics) than model 1 and 2, meaning that model 
3 is less reliable in terms of data validation.  

Same conclusions can be derived when we compare model 1 and 2 with model 4 for Sub-Saharan 
Africa analysis. 

 

CONCLUSIONS AND FUTURE RESEARCH 

In this paper, we define a formal Bayesian approach to estimate parameters of a CGE model under noisy and 
limited data environment. The cross-entropy estimation method described in the paper is potentially 
applicable to all calibrated CGE models and their SAM database.  

Inferring information about parameters and elements of a country or regional CGE model could be 
problematic because of incomplete, infrequent, inaccessible, or uncertain data such as dated or poorly 
constructed SAMs and auxiliary information. To estimate behavioral parameters and structural change in 
CGE models, we implement a three-step cross-entropy estimation method. The data step adjusts the 
historical SAMs of Korea and Sub-Saharan Africa to a common base year taking into account that the SAMs 
are measured with errors and relative price indices are scant. 18 Next, a parameter estimation step calculates 
(filters) parameters and structural change simultaneously within the specifications of the country/regional 
CGE model postulates. The last step provides some statistics that are useful to measure noise and information 
gains – possibly because of structural change and/or because of model specification – in recovered parameters 
as well as statistics that differentiate models through data validation measures.  

The approach can be easily used to estimate how economic transformation will bring about structural 
change and less rigidness in the production and demand behavior of a developing country. There are, of 
course, trade-offs in the number of parameters to be estimated simultaneously due to the degrees of freedom 
and data constraints. As illustrations, we estimated the Armington and CET elasticities for Korea and Sub-
Saharan Africa that were consistent with the case where labor augmenting productivity captured 
compositional changes in the sector value-added and indirectly, its effects on the final demand vectors. There 
are other possibilities, such as allowing for trade elasticities and trade shares to evolve in order to capture the 
effects of globalization and increasing trade. 

We have a few suggestions for future research. One is to employ peripheral estimates of historical 
producitivty change and trade patterns in order to improve the estimates of the evolution of value added and 
trade elasticities. Second, a research focus on the combination of our current ex-post analysis method with 
ex-ante (prediction) techniques. Lastly, the approach seems ideal for regional or global CGE modeling where 

18 The selected base year was 2005.  
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SAM and other auxliary data are still very limited; hence we hope to extend the estimation of parameters to 
various regional aggregations of multiple countries and outside Sub-Saharan Africa, which are increasingly 
becoming available for global CGE modeling.  
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APPENDIX 1. CGE-SAM-CE MODEL NOTATION  

𝑘𝑘: subindex to represent the supports (outcomes).  

𝑚𝑚: subindex that characterizes the behavioral parameter on the 𝑩𝑩 matrix; 𝑚𝑚 ∈ {0,1,2, … ,𝑀𝑀:𝑀𝑀 ∈ ℕ0}.  

𝑛𝑛: subindex to symbolize a SAM target on the 𝒀𝒀 matrix; 𝑛𝑛 ∈ {0,1,2, … ,𝑁𝑁:𝑁𝑁 ∈ ℕ0}  

𝑛𝑛𝑡𝑡𝑆𝑆𝑆𝑆𝑆𝑆 : represents the number of selected SAM targets at period 𝑡𝑡.  

𝑠𝑠: subindex that denotes an unobserved parameter on the 𝒁𝒁 matrix; 𝑠𝑠 ∈ {0,1,2, … , 𝑆𝑆: 𝑆𝑆 ∈ ℕ0}.  

As consequence, 𝑘𝑘𝑚𝑚, 𝑘𝑘𝑛𝑛, and 𝑘𝑘𝑠𝑠 are compound index that indicate outcomes of the 𝑚𝑚𝑡𝑡ℎ  behavioral 
parameter, the 𝑛𝑛𝑡𝑡ℎ SAM target, and the 𝑠𝑠𝑡𝑡ℎ unobserved parameter, respectively; 𝑘𝑘𝑚𝑚, 𝑘𝑘𝑛𝑛, 𝑘𝑘𝑠𝑠 ∈
{2,3, … ,𝐾𝐾:𝐾𝐾 ∈ ℕ>1}  ∀𝑚𝑚,𝑛𝑛, 𝑠𝑠.   

𝑡𝑡: index to denote through 𝑡𝑡 such that 𝑡𝑡 ∈ {𝑡𝑡1, … , 𝑡𝑡𝑇𝑇:𝑇𝑇 ∈ ℕ>1}.  

𝛅𝛅: vector to denote the calibrated parameters.  

𝜱𝜱 : vector of the CGE calibration procedure.  

𝑩𝑩 : an 𝑀𝑀-dimensional vector of behavioral parameters such as the Armington and CET elasticities.  

𝑭𝑭: an (𝐼𝐼 ∗ 𝑇𝑇)-dimensional vector valued function.  

𝑮𝑮:  a (𝐿𝐿 ∗ 𝑇𝑇)-dimensional vector valued function.  

𝑽𝑽: a (𝐿𝐿 ∗ 𝐿𝐿 ∗ 𝑇𝑇)-array representation of the SAMs.  

𝑿𝑿𝒕𝒕:  an 𝐼𝐼-dimensional vector of endogenous CGE variables such as prices and quantities.  

𝒀𝒀: this symbolizes a �𝑛𝑛𝑡𝑡1
𝑆𝑆𝑆𝑆𝑆𝑆 + 𝑛𝑛𝑡𝑡2

𝑆𝑆𝑆𝑆𝑆𝑆 + ⋯+ 𝑛𝑛𝑡𝑡𝑇𝑇
𝑆𝑆𝑆𝑆𝑆𝑆�-dimensional vector of SAM targets.  

𝒁𝒁: a (𝑆𝑆 + 𝑅𝑅)-dimensional vector of exogenous parameters such as endowments and tax rates; 𝒁𝒁 is partitioned 
in two components: 𝒁𝒁 = {𝒁𝒁𝑡𝑡𝑜𝑜 ,𝒁𝒁𝑡𝑡𝑢𝑢}, such that, the first element, 𝒁𝒁𝑡𝑡𝑜𝑜 is an 𝑅𝑅-dimensional vector of observed 
exogenous parameters, which may consist of historical data elements such as tax rates, endowments, prices, 
government spending rates, household consumption or saving rates, etc. The second element, 𝒁𝒁𝑡𝑡𝑢𝑢 symbolizes 
an 𝑆𝑆-dimensional vector of unobserved parameters, which may contain labor augmenting productivity 
coefficients, growth rates of CES/CET scale-shifter parameters, implicit or unobserved tax or subsidy rates, 
and other items that are not available from the historical information.  

𝑒𝑒: symbol to denote the error terms; 𝑒𝑒 ∈ ℝ.  

𝒗𝒗: indicates the vector of error outcomes (error support elements); each element of this vector belongs to the 
real numbers, i.e., 𝑣𝑣𝑖𝑖 ∈ ℝ.  

𝒘𝒘 and 𝒘𝒘� : vectors of posterior and prior probabilities of specific outcome’s vector 𝒗𝒗, respectively;  𝑤𝑤,𝑤𝑤� ∈
[0,1]. 
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APPENDIX 2. DESCRIPTION OF THE PRIORS  

Uninformative prior. An uninformative prior provides information only about the bounds between 
which the errors must be located. In Bayesian estimation and information theory, the most uninformative 
prior is the uniform distribution, which has maximum entropy. We will specify a discrete prior probability 
mass function that approximates the continuous uniform distribution between known upper and lower 
bounds. Assume that the upper and lower bounds on 𝑣𝑣 are given by plus or minus 3s, where “s” is a specified 

constant. For the continuous uniform distribution between these bounds, the variance is: 𝜎𝜎2= 
�3𝑠𝑠−(−3𝑠𝑠)�2

12
 

= 3𝑠𝑠2.  

Specifying an evenly-spaced, 7-element support set (k = 7), : 𝑣𝑣1 =  −3𝑠𝑠 , 𝑣𝑣2 = −2𝑠𝑠, 𝑣𝑣3 = −𝑠𝑠, 

𝑣𝑣4 = 0, 𝑣𝑣5 = +𝑠𝑠, 𝑣𝑣6 = +2𝑠𝑠, 𝑣𝑣7 = +3𝑠𝑠, with identical (uniform) prior probability weights 𝑤𝑤�𝑘𝑘 = 1
7
, then 

the variance of 𝑒𝑒 is 𝜎𝜎2 = ∑ 𝑤𝑤�𝑘𝑘𝑣𝑣𝑘𝑘2𝑘𝑘  =𝑠𝑠2

7
(18 + 8 + 2)=4𝑠𝑠2. A discrete uniform prior with 7-element 

support set is a conservative uninformative prior, with a prior variance of 4𝑠𝑠2. Adding more elements to the 
support set would more closely approximate the continuous uniform distribution, reducing the prior variance 
toward the limit of 3𝑠𝑠2. Note that the estimated posterior distribution will be essentially unconstrained.  

Informative 2-parameter prior. Start with a prior on both the mean and standard deviation of a 
symmetric, two-parameter error distribution. The prior mean on the error is zero by construction and the 
prior standard deviation of 𝑒𝑒 is specified as the prior on the standard error of measurement of the item. 
Specify an evenly- spaced support set with 𝑠𝑠 = 𝜎𝜎 so that the bounds are now ±3𝜎𝜎. Then, 𝑣𝑣1 = −3𝜎𝜎, 𝑣𝑣2 =
0, 𝑣𝑣3 = +3𝜎𝜎 with probability priors 𝑤𝑤1 = 1

18
, 𝑤𝑤2 = 16

18
, 𝑤𝑤3 = 1

18
, thus, the mean, 𝔼𝔼[𝑒𝑒] = ∑ 𝑤𝑤�𝑘𝑘𝑣𝑣𝐾𝐾𝑘𝑘 =

0, and the variance, 𝑣𝑣𝑣𝑣𝑣𝑣[𝑒𝑒] = ∑ 𝑤𝑤�𝑘𝑘𝑣𝑣𝑘𝑘2𝑘𝑘 = 𝜎𝜎2. The discrete distribution specification is symmetric, 𝑤𝑤1 =
𝑤𝑤3 = 1

18
. Estimation of a posterior distribution in this case can retrieve information about essentially two 

moments of the error distribution, since the 3-element prior only allows two degrees of freedom in estimation 
(since the probability weights must sum to one). One can specify a more informative prior using a larger 
support set.  

Informative 4-parameter prior. To recover more information about the error distribution the prior 
must include more moments—for example: mean, variance, skewness, and kurtosis. Assume a normal 
distribution with a prior for the mean and variance so that prior skewness is zero and kurtosis is a function 
of σ. 𝔼𝔼[𝑒𝑒] = ∑ 𝑤𝑤�𝑘𝑘𝑣𝑣𝐾𝐾𝑘𝑘 = 0, 𝑣𝑣𝑣𝑣𝑣𝑣[𝑒𝑒] = ∑ 𝑤𝑤�𝑘𝑘𝑣𝑣𝑘𝑘2𝑘𝑘 = 𝜎𝜎2, 𝔼𝔼[𝑒𝑒3] = ∑ 𝑤𝑤�𝑘𝑘𝑣𝑣𝑘𝑘3𝑘𝑘 = 0, 𝔼𝔼[𝑒𝑒4] = ∑ 𝑤𝑤�𝑘𝑘𝑣𝑣𝑘𝑘4𝑘𝑘 =
3𝜎𝜎2. This prior discrete distribution is obtained specifying an evenly-spaced 5-element support set: 𝑣𝑣1 =
 −3𝜎𝜎 , 𝑣𝑣2 = −1.5𝜎𝜎, 𝑣𝑣3 = 0, 𝑣𝑣4 = +1.5𝜎𝜎, 𝑣𝑣5 = +3𝜎𝜎. In this case, the prior values on the probability 

weights are 𝑤𝑤�1 = 𝑤𝑤�5 = 1
162

, 𝑤𝑤�2 = 𝑤𝑤�4 = 16
81

, 𝑤𝑤�3 = 48
81

, which can be calculated from the known prior 

moments and the assumption of adding up as seen in the system of equations represented in (28). As with 
the other priors, the estimated posterior distribution is unconstrained.  
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⎥
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1
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0
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𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
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𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
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APPENDIX 3. TABLES  

Table 1. Percent Deviations of Cross-Entropy Estimates Versus Control Values of National Accounts, The Case of the Republic of Korea 
Based on different (SAM) years, in constant 2005 prices. 
  1990 1995 2000 2005 2011 
Personal consumption -1.807 -2.849 -0.173 0.135 0.601 

Government -0.395 -0.551 -0.071 0.028 0.118 

Investment -0.772 -2.101 -0.065 0.078 0.228 

Exports 0.057 0.048 0.053 0.007 0.005 

Agriculture value added 0.049 0.043 0.022 -0.015 -0.036 

Mining value added 0.031 0.038 0.027 0.001 -0.024 

Manufacturing value added 0.052 0.058 0.027 -0.017 -0.041 

Utilities value added 0.042 0.035 0.032 0.001 -0.038 

Construction value added 0.024 0.004 0.011 -0.009 -0.028 

Value added for all activities 2.597 2.987 0.330 -0.226 -1.397 

Source: Authors' calculations. 
 

Table 2. Percent Deviations of Cross-Entropy Estimates Versus Control Values of National Accounts, The Case of SSA region 
Based on different (SAM) years, in constant 2005 prices. 
  2004 2007 2011 
Government 0.018 -0.014 -2.192 

Investment 0.001 -0.086 -10.315 

Exports 0.715 0.674 -14.999 

Imports -0.563 -0.908 -11.215 

Agriculture value added 0.044 -0.083 -6.952 

Manufacturing value added 0.082 0.013 -0.443 

Services value added 0.234 -0.119 -9.493 

Value added for all activities -0.544 0.103 -6.064 

Source: Authors' calculations 
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Table 3. Model structure on the CES-CET functions 
function/model Model 1 Model 2 Model 3  

(only for Korea, Rep.)  
Model 4 

(only for SSA region) 
CES: value added 
and factors bundle. 

-dynamic TFP parameter with 
compound growth rate. 
-dynamic labor augmenting 
productivity coefficient with 
compound growth rate.  
-fixed delta-share parameter. 
-dynamic elasticity with linear 
trend. 

-dynamic TFP parameter with 
compound growth rate. 
-dynamic labor augmenting 
productivity coefficient with 
compound growth rate.  
-dynamic delta-share 
parameter with linear and 
quadratic trend coefficients. 
-fixed elasticity. 

-dynamic TFP parameter with 
compound growth rate. 
-dynamic labor augmenting 
productivity coefficient with 
compound growth rate.  
-fixed delta-share parameter. 
-fixed elasticity. 

-dynamic TFP parameter with 
compound growth rate. 
-dynamic labor augmenting 
productivity coefficient with 
compound growth rate.  
-fixed delta-share parameter. 
-dynamic elasticity with linear 
trend. 

CES: national 
output, value added 
and intermediates 
bundle. 

-dynamic scale parameter with 
compound growth rate. 
-fixed delta-share parameter. 
-dynamic elasticity with linear 
trend. 

-dynamic scale parameter with 
compound growth rate. 
-dynamic delta-share 
parameter with linear and 
quadratic trend coefficients. 
-fixed elasticity. 

-dynamic scale parameter with 
compound growth rate. 
-fixed delta-share parameter. 
-fixed elasticity. 

-dynamic scale parameter with 
compound growth rate. 
-fixed delta-share parameter. 
-fixed elasticity. 

CET: domestic 
production, 
domestic sales and 
exports bundle 

-dynamic scale parameter with 
compound growth rate. 
-fixed delta-share parameter. 
-dynamic elasticity with linear 
trend. 

-dynamic scale parameter with 
compound growth rate. 
-dynamic delta-share 
parameter with linear and 
quadratic trend coefficients. 
-fixed elasticity. 

-dynamic scale parameter with 
compound growth rate. 
-fixed delta-share parameter. 
-dynamic elasticity with linear 
trend. 

-dynamic scale parameter with 
compound growth rate. 
-fixed delta-share parameter. 
-dynamic elasticity with linear 
trend. 

CES: National 
consumption, 
domestic purchases 
and imports bundle 
(Armington). 

-dynamic scale parameter with 
compound growth rate. 
-fixed delta-share parameter. 
-dynamic elasticity with linear 
trend. 

-dynamic scale parameter with 
compound growth rate. 
-dynamic delta-share 
parameter with linear and 
quadratic trend coefficients. 
-fixed elasticity. 

-dynamic scale parameter with 
compound growth rate. 
-fixed delta-share parameter. 
-dynamic elasticity with linear 
trend. 

-dynamic scale parameter with 
compound growth rate. 
-fixed delta-share parameter. 
-dynamic elasticity with linear 
trend. 
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Table 4. Armington elasticity, using SAMs with limited additional price data, the Republic of Korea 
Model 1. Constant delta-share parameter and time-varying elasticity across period 1990-2011. 

CES 
Armington 
Elasticity 

Elasticity Prior 
Posterior Mean 

Elasticity 
Posterior Mean 

Elasticity 
Posterior Mean 

Elasticity 
Posterior Mean 

Elasticity 
Posterior Mean 

Elasticity 
Imports Delta-Share 

Index: 
100*(Posterior/Prior) 

sector/period 1990-2011 1990 1995 2000 2005 2011 1990-2011 
Agriculture 2.20 2.01* 2.11* 2.21 2.31 2.41 94.50 

Mining 2.80 0.85 1.33* 1.81* 2.28* 2.76* 132.95 

Manufacturing 2.20 1.43 1.23 1.03 0.84 0.64 58.99 

Utilities 2.80 2.50 2.66 2.82 2.98 3.14 77.38 

Construction 1.90 1.62 1.76 1.90 2.04 2.18 23.24 

Services 1.90 1.83 1.88 1.94 1.99 2.05 93.60 

Model 2. Constant elasticity and time-varying delta-share parameters across period 1990-2011. 

Imports Delta-
Share 

Delta-Share 
Prior 

Delta-Share 
Index: 

100*(Posterior
/Prior) 

Delta-Share 
Index: 

100*(Posterior
/Prior) 

Delta-Share 
Index: 

100*(Posterior
/Prior) 

Delta-Share 
Index: 

100*(Posterior
/Prior) 

Delta-Share 
Index: 

100*(Posterior
/Prior) 

Posterior Mean CES 
Armington Elasticity 
(prior in parentheses) 

sector/period 1990-2011 1990 1995 2000 2005 2011 1990-2011 
Agriculture 0.30 98.94 97.18 99.11 104.72 114.80 2.16 (2.20) 

Mining 0.61 98.94 103.85 109.48 115.83 123.04 2.98 (2.80) 

Manufacturing 0.23 75.38 103.51 123.33 134.80 136.18 1.69 (2.20) 

Utilities 0.09 104.65 102.09 99.19 95.94 92.28 2.86 (2.80) 

Construction 1.93E-04 68.93 117.02 133.62 118.56 65.32 1.82 (1.90) 

Services 0.13 98.06 105.27 107.91 105.97 98.48 1.88 (1.90) 

Model 3. Constant elasticity for Armington and CET functions and time-varying delta-share parameters across period 1990-2011. 
CES 

Armington 
Elasticity 

Elasticity Prior 
Posterior Mean 

Elasticity 
Posterior Mean 

Elasticity 
Posterior Mean 

Elasticity 
Posterior Mean 

Elasticity 
Posterior Mean 

Elasticity 
Imports Delta-Share 

Index: 
100*(Posterior/Prior) 

sector/period 1990-2011 1990 1995 2000 2005 2011 1990-2011 
Agriculture 2.20 2.13 2.13 2.13 2.13 2.13 98.16 

Mining 2.80 0.10*** 0.10*** 0.10*** 0.10*** 0.10*** 164.59 

Manufacturing 2.20 2.62 2.62 2.62 2.62 2.62 115.44 

Utilities 2.80 2.81 2.81 2.81 2.81 2.81 100.47 

Construction 1.90 1.90 1.90 1.90 1.90 1.90 100.03 

Services 1.90 1.87 1.87 1.87 1.87 1.87 97.18 

Source: Authors' calculations. 
† Posteriors are estimated using a Gaussian prior error distribution with five elements in its support. 
‡ All the posteriors get cross-entropy-𝑅𝑅�2, greater than 0.30; see statistic definition in (16). 
* Posteriors with cross-entropy-𝑅𝑅�2 greater than 0.40. 
*** Posteriors with cross-entropy-𝑅𝑅�2 greater than 0.75. 
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Table 5. Armington elasticity, using SAMs with limited additional price data, SSA region 

Model 1. Constant delta-share parameter and time-varying elasticity across period 2004-2011. 

CES Armington 
Elasticity 

Elasticity Prior 
(average) 

Posterior Mean 
Elasticity 

Posterior Mean 
Elasticity 

Posterior Mean 
Elasticity 

Imports Delta-Share Index: 
100*(Posterior/Prior) 

sector/period 2004-2011 2004 2007 2011 2004-2011 
Agriculture 1.95 1.82 1.99 2.16 97.85 

Mining 1.95 1.76 1.95 2.15 99.84 

Manufacturing 2.25 2.07 2.27 2.47 99.31 

Utilities 2.05 1.87 2.06 2.25 95.50 

Construction 1.95 1.80 1.98 2.16 95.19 

Services 1.95 1.83 1.99 2.14 98.86 

Model 2. Constant elasticity and time-varying delta-share parameters across period 2004-2011. 

Imports Delta-
Share 

Delta-Share Prior 
Delta-Share Index: 

100*(Posterior/Prior) 
Delta-Share Index: 

100*(Posterior/Prior) 
Delta-Share Index: 

100*(Posterior/Prior) 

Posterior Mean CES 
Armington Elasticity (prior 

in parentheses) 

sector/period 2004-2011 2004 2007 2011 2004-2011 
Agriculture 0.17 101.44 89.27 107.45 1.87(1.85) 

Mining 0.48 100.15 94.05 102.84 1.94(1.85) 

Manufacturing 0.42 100.64 106.82 117.65 2.23(2.15) 

Utilities 0.20 102.85 101.91 100.59 2.00(1.95) 

Construction 0.13 90.92 119.41 106.46 1.75(1.85) 

Services 0.19 98.67 111.45 106.61 1.83(1.85) 

Model 4. Constant elasticity for national output-VA-intermediate CES functions and time-varying delta-share parameters across period 2004-2011. 

CES Armington 
Elasticity 

Elasticity Prior 
(average) 

Posterior Mean 
Elasticity 

Posterior Mean 
Elasticity 

Posterior Mean 
Elasticity 

Imports Delta-Share Index: 
100*(Posterior/Prior) 

sector/period 2004-2011 2004 2007 2011 2004-2011 
Agriculture 1.95 1.83 1.99 2.15 98.76 

Mining 1.95 1.76 1.96 2.15 99.85 

Manufacturing 2.25 2.55 2.69 2.83 102.91 

Utilities 2.05 1.86 2.05 2.24 94.64 

Construction 1.95 1.81 1.98 2.16 96.00 

Services 1.95 1.89 2.01 2.13 102.65 

Source: Authors' calculations. 
† Posteriors are estimated using a Gaussian prior error distribution with five elements in its support. 
‡ All the posteriors get cross-entropy-𝑅𝑅�2, greater than 0.30; see statistic definition in (16). 
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Table 6. CET elasticity, using SAMs with limited additional price data, the Republic of Korea  
Model 1. Constant delta-share parameter and time-varying elasticity across period 1990-2011. 

CET Elasticity Elasticity Prior 
Posterior Mean 

Elasticity 
Posterior Mean 

Elasticity 
Posterior Mean 

Elasticity 
Posterior Mean 

Elasticity 
Posterior Mean 

Elasticity 
Exports Delta-Share 

Index: 
100*(Posterior/Prior) 

sector/period 1990-2011 1990 1995 2000 2005 2011 1990-2011 
Agriculture 3.78 3.38 3.57 3.77 3.96 4.15 102.96 

Mining 0.89 0.83 0.86 0.88 0.91 0.93 100.44 

Manufacturing 0.39 0.56 0.47 0.38 0.29 0.21* 99.19 

Utilities 1.10 0.98 1.06 1.14 1.22 1.30 100.29 

Construction 1.10 1.05 1.07 1.09 1.12 1.14 100.08 

Services 1.10 1.04 1.09 1.15 1.20 1.25 100.99 

Model 2. Constant elasticity and time-varying delta-share parameters across period 1990-2011. 

Exports Delta-
Share 

Delta-Share 
Prior 

Delta-Share 
Index: 

100*(Posterior
/Prior) 

Delta-Share 
Index: 

100*(Posterior
/Prior) 

Delta-Share 
Index: 

100*(Posterior
/Prior) 

Delta-Share 
Index: 

100*(Posterior
/Prior) 

Delta-Share 
Index: 

100*(Posterior
/Prior) 

Posterior Mean CET 
Elasticity (prior in 

parentheses) 

sector/period 1990-2011 1990 1995 2000 2005 2011 1990-2011 
Agriculture 0.70 100.19 100.81 100.64 99.68 98.71 3.75 (3.78) 

Mining 0.98 100.19 100.29 100.18 99.86 99.09 0.87 (0.89) 

Manufacturing 0.999 100.01 100.06* 100.06* 100.01 99.91* 0.38 (0.39) 

Utilities 0.99 99.88 100.01 100.09 100.11 100.20 1.14 (1.1) 

Construction 0.997 99.94 100.01 100.04 100.03 99.99 1.14 (1.1) 

Services 0.93 100.10 99.90 99.76 99.69 99.27 1.09 (1.1) 

Model 3. Constant elasticity for Armington and CET functions and time-varying delta-share parameters across period 1990-2011. 

CET Elasticity Elasticity Prior 
Posterior Mean 

Elasticity 
Posterior Mean 

Elasticity 
Posterior Mean 

Elasticity 
Posterior Mean 

Elasticity 
Posterior Mean 

Elasticity 
Exports Delta-Share 

Index: 
100*(Posterior/Prior) 

sector/period 1990-2011 1990 1995 2000 2005 2011 1990-2011 
Agriculture 3.78 4.20 4.20 4.20 4.20 4.20 97.41 

Mining 0.89 0.79 0.79 0.79 0.79 0.79 100.72 

Manufacturing 0.39 0.48 0.48 0.48 0.48 0.48 99.69 

Utilities 1.10 1.07 1.07 1.07 1.07 1.07 100.09 

Construction 1.10 1.04 1.04 1.04 1.04 1.04 100.09 

Services 1.10 1.10 1.10 1.10 1.10 1.10 100.06 

Source: Authors' calculations. 
† Posteriors are estimated using a Gaussian prior error distribution with five elements in its support. 
‡ All the posteriors get cross-entropy-𝑅𝑅�2, greater than 0.30; see statistic definition in (16). 
* Posteriors with cross-entropy-𝑅𝑅�2 greater than 0.40. 
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Table 7. CET elasticity, using SAMs with limited additional price data, SSA region 

Model 1. Constant delta-share parameter and time-varying elasticity across period 2004-2011. 

CET Elasticity 
Elasticity Prior 

(average) 
Posterior Mean 

Elasticity 
Posterior Mean 

Elasticity 
Posterior Mean 

Elasticity 
Exports Delta-Share Index: 

100*(Posterior/Prior) 

sector/period 2004-2011 2004 2007 2011 2004-2011 
Agriculture 2.25 2.11 2.30 2.48 100.45 

Mining 2.45 2.26 2.46 2.66 97.57 

Manufacturing 2.85 2.71 2.88 3.05 100.31 

Utilities 2.45 2.22 2.42 2.62 101.60 

Construction 2.25 2.23 2.38 2.52 99.28 

Services 2.35 2.46 2.58 2.71 97.58 

Model 2. Constant elasticity and time-varying delta-share parameters across period 2004-2011. 

Exports Delta-Share Delta-Share Prior 
Delta-Share Index: 

100*(Posterior/Prior) 
Delta-Share Index: 

100*(Posterior/Prior) 
Delta-Share Index: 

100*(Posterior/Prior) 

Posterior Mean CET 
Elasticity (prior in 

parentheses) 

sector/period 2004-2011 2004 2007 2011 2004-2011 
Agriculture 0.71 101.38 100.11 89.10 2.04(2.15) 

Mining 0.29 103.30 103.24 85.85 2.48(2.35) 

Manufacturing 0.66 100.81 92.81 87.19 2.65(2.75) 

Utilities 0.75 99.51 100.36 100.10 2.39(2.35) 

Construction 0.92 101.67 98.98 97.69 1.97(2.15) 

Services 0.78 100.08 98.35 95.43 2.24(2.25) 

Model 4. Constant elasticity for national output-VA-intermediate CES functions and time-varying delta-share parameters across period 2004-2011. 

CET Elasticity 
Elasticity Prior 

(average) 
Posterior Mean 

Elasticity 
Posterior Mean 

Elasticity 
Posterior Mean 

Elasticity 
Exports Delta-Share Index: 

100*(Posterior/Prior) 

sector/period 2004-2011 2004 2007 2011 2004-2011 
Agriculture 2.25 2.09 2.28 2.47 100.79 

Mining 2.45 2.29 2.47 2.66 98.24 

Manufacturing 2.85 2.82 2.97 3.12 99.41 

Utilities 2.45 2.08 2.31 2.55 103.41 

Construction 2.25 2.23 2.38 2.53 99.28 

Services 2.35 2.37 2.46 2.55 98.54 

Source: Authors' calculations. 
† Posteriors are estimated using a Gaussian prior error distribution with five elements in its support. 
‡ All the posteriors get cross-entropy-𝑅𝑅�2, greater than 0.30; see statistic definition in (16). 
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Table 8. Value added-factors elasticity, using SAMs with limited additional price data, the Republic of Korea  
Model 1. Constant delta-share parameter and time-varying elasticity across period 1990-2011. 

CES VA-
Factors 

Elasticity 

Elasticity Prior 
Posterior Mean 

Elasticity 
Posterior Mean 

Elasticity 
Posterior Mean 

Elasticity 
Posterior Mean 

Elasticity 
Posterior Mean 

Elasticity 

Capital Delta-Share 
Index: 

100*(Posterior/Prior) 

sector/period 1990-2011 1990 1995 2000 2005 2011 1990-2011 
Agriculture 0.56 0.34 0.41 0.49 0.56 0.64 144.32 

Mining 1.12 0.89 1.00 1.11 1.22 1.33 135.05 

Manufacturing 1.26 1.05 1.05 1.05 1.05 1.05 102.12 

Utilities 1.26 1.08 1.15 1.22 1.29 1.36 117.22 

Construction 1.40 0.84 1.05 1.26 1.47 1.68 82.08 

Services 1.26 1.02 1.14 1.26 1.38 1.51 105.18 

Model 2. Constant elasticity and time-varying delta-share parameters across period 1990-2011. 

Capital Delta-
Share 

Delta-Share 
Prior 

Delta-Share 
Index: 

100*(Posterior
/Prior) 

Delta-Share 
Index: 

100*(Posterior
/Prior) 

Delta-Share 
Index: 

100*(Posterior
/Prior) 

Delta-Share 
Index: 

100*(Posterior
/Prior) 

Delta-Share 
Index: 

100*(Posterior
/Prior) 

Posterior Mean VA-
Factors Elasticity 

(prior in parentheses) 

sector/period 1990-2011 1990 1995 2000 2005 2011 1990-2011 
Agriculture 0.57 93.42 111.22 119.74 118.93 106.86 0.50 (0.56) 

Mining 0.39 95.97 113.73 124.58 128.48 124.00 1.16 (1.12) 

Manufacturing 0.490 100.76 90.23 80.97 73.00 66.59 1.17 (1.26) 

Utilities 0.51 100.87 113.72 116.02 107.73 86.65 1.25 (1.26) 

Construction 0.567 100.07 89.85 83.65 81.48 84.18 1.45 (1.40) 

Services 0.46 98.44 99.32 101.42 104.76 109.59 1.30 (1.26) 

Model 3. Constant elasticity for Armington and CET functions and time-varying delta-share parameters across period 1990-2011. 

CES VA-
Factors 

Elasticity 
Elasticity Prior 

Posterior Mean 
Elasticity 

Posterior Mean 
Elasticity 

Posterior Mean 
Elasticity 

Posterior Mean 
Elasticity 

Posterior Mean 
Elasticity 

Capital Delta-Share 
Index: 

100*(Posterior/Prior) 

sector/period 1990-2011 1990 1995 2000 2005 2011 1990-2011 
Agriculture 0.56 0.60 0.54 0.47 0.41 0.35 112.06 

Mining 1.12 0.76 0.87 0.98 1.08 1.19 173.57 

Manufacturing 1.26 1.09 1.18 1.27 1.35 1.44 101.62 

Utilities 1.26 0.95 1.03 1.10 1.18 1.26 133.25 

Construction 1.40 0.71* 0.95 1.20 1.45 1.69 75.81 

Services 1.26 1.13 1.20 1.28 1.35 1.43 102.16 

Source: Authors' calculations. 
† Posteriors are estimated using a Gaussian prior error distribution with five elements in its support. 
‡ All the posteriors get cross-entropy-𝑅𝑅�2, greater than 0.30; see statistic definition in (16). 
* Posteriors with cross-entropy-𝑅𝑅�2 greater than 0.40. 
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Table 9. Value added-factors elasticity, using SAMs with limited additional price data, SSA region 

Model 1. Constant delta-share parameter and time-varying elasticity across period 2004-2011. 

CES VA-Factors 
Elasticity 

Elasticity Prior 
(average) 

Posterior Mean 
Elasticity 

Posterior Mean 
Elasticity 

Posterior Mean 
Elasticity 

Capital Delta-Share Index: 
100*(Posterior/Prior) 

sector/period 2004-2011 2004 2007 2011 2004-2011 
Agriculture 0.85 0.80 0.74 0.68 156.75 

Mining 0.95 0.86 0.91 0.97 100.83 

Manufacturing 0.95 0.89 0.79 0.69 125.78 

Utilities 0.75 0.66 0.65 0.63 120.10 

Construction 0.75 0.69 0.63 0.57 169.37 

Services 1.15 1.06 1.15 1.24 102.61 

Model 2. Constant elasticity and time-varying delta-share parameters across period 2004-2011. 

Capital Delta-Share Delta-Share Prior 
Delta-Share Index: 

100*(Posterior/Prior) 
Delta-Share Index: 

100*(Posterior/Prior) 
Delta-Share Index: 

100*(Posterior/Prior) 
Posterior Mean VA-Factors 

Elasticity (prior in 
parentheses) 

sector/period 2004-2011 2004 2007 2011 2004-2011 
Agriculture 0.06 63.30 72.50 146.69 0.71(0.75) 

Mining 0.87 101.28 99.43 99.22 0.87(0.85) 

Manufacturing 0.27 93.45 119.50 126.38 0.84(0.85) 

Utilities 0.08 91.68 97.81 116.35 0.64(0.65) 

Construction 0.03 105.90 64.57 148.68 0.65(0.65) 

Services 0.50 104.66 101.14 85.01 1.07(1.05) 

Model 4. Constant elasticity for national output-VA-intermediate CES functions and time-varying delta-share parameters across period 2004-2011. 

CES VA-Factors 
Elasticity 

Elasticity Prior 
(average) 

Posterior Mean 
Elasticity 

Posterior Mean 
Elasticity 

Posterior Mean 
Elasticity 

Capital Delta-Share Index: 
100*(Posterior/Prior) 

sector/period 2004-2011 2004 2007 2011 2004-2011 
Agriculture 0.85 0.78 0.73 0.67 134.24 

Mining 0.95 0.87 0.92 0.97 101.40 

Manufacturing 0.95 0.89 0.84 0.78 125.04 

Utilities 0.75 0.67 0.65 0.63 123.29 

Construction 0.75 0.69 0.64 0.58 174.49 

Services 1.15 1.07 1.15 1.22 106.82 

Source: Authors' calculations. 
† Posteriors are estimated using a Gaussian prior error distribution with five elements in its support. 
‡ All the posteriors get cross-entropy-𝑅𝑅�2, greater than 0.30; see statistic definition in (16). 
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Table 10. National output-value added-intermediates elasticity, using SAMs with limited additional price data, the Republic of Korea  
Model 1. Constant delta-share parameter and time-varying elasticity across period 1990-2011. 
CES National 
Output-Value 

Added-
Intermediates 

 

Elasticity Prior 
Posterior Mean 

Elasticity 
Posterior Mean 

Elasticity 
Posterior Mean 

Elasticity 
Posterior Mean 

Elasticity 
Posterior Mean 

Elasticity 

Intermediates Delta-
Share Index: 

100*(Posterior/Prior) 

sector/period 1990-2011 1990 1995 2000 2005 2011 1990-2011 
Agriculture 1.50 1.23 1.35 1.47 1.59 1.71 100.29 

Mining 1.50 1.26 1.38 1.50 1.62 1.73 100.47 

Manufacturing 1.50 1.52 1.51 1.51 1.50 1.50 99.70 

Utilities 1.50 1.29 1.40 1.51 1.62 1.72 102.81 

Construction 1.50 1.38 1.43 1.49 1.55 1.61 100.96 

Services 1.50 1.45 1.50 1.54 1.59 1.64 98.93 

Model 2. Constant elasticity and time-varying delta-share parameters across period 1990-2011. 

Intermediates 
Delta-Share 

Delta-Share 
Prior 

Delta-Share 
Index: 

100*(Posterior
/Prior) 

Delta-Share 
Index: 

100*(Posterior
/Prior) 

Delta-Share 
Index: 

100*(Posterior
/Prior) 

Delta-Share 
Index: 

100*(Posterior
/Prior) 

Delta-Share 
Index: 

100*(Posterior
/Prior) 

Posterior Mean 
National Output-Value 

Added-Intermediates 
Elasticity (prior in 

parentheses) 
sector/period 1990-2011 1990 1995 2000 2005 2011 1990-2011 
Agriculture 0.51 100.02 102.28 107.88 116.84 129.84 1.47 (1.50) 

Mining 0.51 100.00 100.42 102.33 105.73 110.93 1.50 (1.50) 

Manufacturing 0.76 102.43 97.76 94.90 93.86 95.01 1.38 (1.50) 

Utilities 0.61 99.49 96.74 99.10 106.58 120.26 1.54 (1.50) 

Construction 0.56 99.80 97.47 96.85 97.94 101.11 1.53 (1.50) 

Services 0.38 99.78 101.80 104.82 108.87 114.14 1.49 (1.50) 

Model 3. Constant elasticity for Armington and CET functions and time-varying delta-share parameters across period 1990-2011. 

CES National 
Output-Value 

Added-
Intermediates 

 

Elasticity Prior 
Posterior Mean 

Elasticity 
Posterior Mean 

Elasticity 
Posterior Mean 

Elasticity 
Posterior Mean 

Elasticity 
Posterior Mean 

Elasticity 

Intermediates Delta-
Share Index: 

100*(Posterior/Prior) 

sector/period 1990-2011 1990 1995 2000 2005 2011 1990-2011 
Agriculture 1.50 1.17 1.26 1.34 1.42 1.51 100.36 

Mining 1.50 1.21 1.28 1.35 1.43 1.50 100.61 

Manufacturing 1.50 0.79* 0.62* 0.45* 0.27** 0.10*** 118.27 

Utilities 1.50 1.59 1.65 1.72 1.79 1.85 99.01 

Construction 1.50 1.15 1.30 1.46 1.61 1.76 103.24 

Services 1.50 1.55 1.55 1.55 1.54 1.54 101.02 

Source: Authors' calculations. 
† Posteriors are estimated using a Gaussian prior error distribution with five elements in its support. 
‡ All the posteriors get cross-entropy-𝑅𝑅�2, greater than 0.30; see statistic definition in (16). 
* Posteriors with cross-entropy-𝑅𝑅�2 greater than 0.40. 
** Posteriors with cross-entropy-𝑅𝑅�2 greater than 0.50. 
*** Posteriors with cross-entropy-𝑅𝑅�2 greater than 0.75. 
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Table 11. National output-value added-intermediates elasticity, using SAMs with limited additional price data, SSA region 

Model 1. Constant delta-share parameter and time-varying elasticity across period 2004-2011. 

CES National 
Output-Value 

Added-
Intermediates 

Elasticity Prior 
(average) 

Posterior Mean 
Elasticity 

Posterior Mean 
Elasticity 

Posterior Mean 
Elasticity 

Intermediates Delta-Share 
Index: 100*(Posterior/Prior) 

sector/period 2004-2011 2004 2007 2011 2004-2011 
Agriculture 0.95 0.74 0.94 1.14 89.64 

Mining 1.05 0.94 1.08 1.21 98.56 

Manufacturing 1.05 0.77 0.62* 0.47 105.54 

Utilities 0.85 0.69 0.86 1.03 100.33 

Construction 1.15 0.97 1.16 1.35 101.44 

Services 1.25 1.06 1.23 1.41 99.08 

Model 2. Constant elasticity and time-varying delta-share parameters across period 2004-2011. 

Intermediates 
Delta-Share 

Delta-Share Prior 
Delta-Share Index: 

100*(Posterior/Prior) 
Delta-Share Index: 

100*(Posterior/Prior) 
Delta-Share Index: 

100*(Posterior/Prior) 

Posterior Mean National 
Output-Value Added-
Intermediates Elasticity 
(prior in parentheses) 

sector/period 2004-2011 2004 2007 2011 2004-2011 
Agriculture 0.27 106.99 95.36 90.64 0.94(0.85) 

Mining 0.21 104.50 125.41 82.17 0.99(0.95) 

Manufacturing 0.82 100.24 100.35 94.43 0.94(0.95) 

Utilities 0.52 99.56 105.59 94.87 0.84(0.75) 

Construction 0.62 100.59 110.62 111.06 1.02(1.05) 

Services 0.45 101.48 94.30 83.48 1.32(1.15) 

Model 4. Constant elasticity for national output-VA-intermediate CES functions and time-varying delta-share parameters across period 2004-2011. 
CES National 
Output-Value 

Added-
Intermediates 

Elasticity Prior 
Posterior Mean 

Elasticity 
Posterior Mean 

Elasticity 
Posterior Mean 

Elasticity 
Intermediates Delta-Share 

Index: 100*(Posterior/Prior) 

sector/period 2004-2011 2004 2007 2011 2004-2011 
Agriculture 0.85 0.93 0.93 0.93 106.67 

Mining 0.95 1.04 1.04 1.04 109.02 

Manufacturing 0.95 1.12 1.12 1.12 95.62 

Utilities 0.75 0.86 0.86 0.86 99.50 

Construction 1.05 1.17 1.17 1.17 98.06 

Services 1.15 1.39 1.39 1.39 101.94 

Source: Authors' calculations. 
† Posteriors are estimated using a Gaussian prior error distribution with five elements in its support. 
‡ All the posteriors get cross-entropy-𝑅𝑅�2, greater than 0.30; see statistic definition in (16). 
* Posteriors with cross-entropy-𝑅𝑅�2 greater than 0.40. 
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Table 12. Total factor productivity, the Republic of Korea  
Model 1. Constant delta-share parameter and time-varying elasticity across period 1990-2011. 

Total Factor 
Productivity 

(TFP) 

Posterior Mean 
TFP 

Posterior Mean 
TFP 

Posterior Mean 
TFP 

Posterior Mean 
TFP 

Posterior Mean 
TFP 

Posterior TFP 
annual compound 
growth rate (in %) 

sector/period 1990 1995 2000 2005 2011 1990-2011 
Agriculture 0.45 0.49 0.53 0.58 0.64 1.73* 

Mining 1.22 1.15 1.07 1.01 0.93 -1.31** 

Manufacturing 0.33 0.46 0.62 0.85 1.24 6.47** 

Utilities 0.54 0.60 0.68 0.76 0.86 2.26** 

Construction 1.10 1.08 1.05 1.02 1.00 -0.48** 

Services 0.49 0.52 0.54 0.56 0.59 0.82* 

Model 2. Constant elasticity and time-varying delta-share parameters across period 1990-2011. 

Total Factor 
Productivity 

(TFP) 

Posterior Mean 
TFP 

Posterior Mean 
TFP 

Posterior Mean 
TFP 

Posterior Mean 
TFP 

Posterior Mean 
TFP 

Posterior TFP 
annual compound 
growth rate (in %) 

sector/period 1990 1995 2000 2005 2011 1990-2011 
Agriculture 0.31 0.31 0.36 0.43 0.52 3.55** 

Mining 1.37 1.31 1.21 1.11 1.02 -1.66** 

Manufacturing 0.33 0.33 0.40 0.47 0.56 3.55* 

Utilities 0.60 0.59 0.65 0.71 0.78 1.85** 

Construction 1.14 1.12 1.09 1.06 1.04 -0.51** 

Services 0.55 0.53 0.56 0.59 0.62 1.10** 

Model 3. Constant elasticity for Armington and CET functions and time-varying delta-share parameters across period 1990-2011. 

Total Factor 
Productivity 

(TFP) 

Posterior Mean 
TFP 

Posterior Mean 
TFP 

Posterior Mean 
TFP 

Posterior Mean 
TFP 

Posterior Mean 
TFP 

Posterior TFP 
annual compound 
growth rate (in %) 

sector/period 1990 1995 2000 2005 2011 1990-2011 
Agriculture 0.34 0.42 0.50 0.61 0.77 3.97** 

Mining 1.31 1.36 1.41 1.47 1.53* 0.73** 

Manufacturing 0.33 0.31 0.29* 0.27* 0.24* -1.51 

Utilities 0.50 0.60 0.72 0.86 1.07 3.71* 

Construction 1.13 1.11 1.09 1.07 1.05 -0.38** 

Services 0.52 0.55 0.58 0.61 0.65 1.12** 

Prior Mean for Model 1, 2 and 3. 

Total Factor 
Productivity 

(TFP) 

Prior TFP Prior TFP Prior TFP Prior TFP Prior TFP 
Prior TFP annual 
compound growth 

rate (in %) 

sector/period 1990 1995 2000 2005 2011 1990-2011 
Agriculture 0.31 0.43 0.48 0.52 0.64 3.57 

Mining 1.35 1.25 1.01 1.12 1.02 -1.35 

Manufacturing 0.33 0.50 0.72 0.95 1.15 6.07 

Utilities 0.60 0.60 0.53 0.69 1.01 2.50 

Construction 1.08 1.11 0.98 1.01 0.97 -0.52 

Services 0.51 0.61 0.60 0.61 0.66 1.26 

Source: Authors' calculations. 
† Posteriors are estimated using a Gaussian prior error distribution with five elements in its support. 
‡ All the posteriors get cross-entropy-𝑅𝑅�2, greater than 0.30; see statistic definition in (16). 
* Posteriors with cross-entropy-𝑅𝑅�2 greater than 0.40. 
** Posteriors with cross-entropy-𝑅𝑅�2 greater than 0.50. 
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Table 13. Total factor productivity, SSA region 

Model 1. Constant delta-share parameter and time-varying elasticity across period 2004-2011. 

Total Factor 
Productivity (TFP) 

Posterior Mean TFP Posterior Mean TFP Posterior Mean TFP Posterior TFP annual 
compound growth rate (in 

%) sector/period 2004 2007 2011 2004-2011 
Agriculture 0.004 0.005 0.005 1.41 

Mining 0.237 0.156 0.089 -13.00** 

Manufacturing 0.014 0.012 0.011 -2.66* 

Utilities 0.011 0.013 0.016 5.76** 

Construction 0.006 0.007 0.011 9.83* 

Services 0.024 0.023 0.021 -1.72** 

Model 2. Constant elasticity and time-varying delta-share parameters across period 2004-2011. 
Total Factor 

Productivity (TFP) 
Posterior Mean TFP Posterior Mean TFP Posterior Mean TFP Posterior TFP annual 

compound growth rate (in 
%) sector/period 2004 2007 2011 2004-2011 

Agriculture 0.004 0.004 0.004 0.18 

Mining 0.237 0.155 0.088 -13.21** 

Manufacturing 0.010 0.012 0.016 6.48** 

Utilities 0.010 0.012 0.015 6.03** 

Construction 0.005 0.007 0.011 11.59** 

Services 0.025 0.023 0.022 -1.65** 

Model 4. Constant elasticity for national output-VA-intermediate CES functions and time-varying delta-share parameters across period 2004-2011. 
Total Factor 

Productivity (TFP) 
Posterior Mean TFP Posterior Mean TFP Posterior Mean TFP Posterior TFP annual 

compound growth rate (in 
%) sector/period 2004 2007 2011 2004-2011 

Agriculture 0.004 0.005 0.005 2.55* 

Mining 0.238 0.155 0.088 -13.32** 

Manufacturing 0.013 0.014 0.014 0.63 

Utilities 0.011 0.013 0.016 5.49** 

Construction 0.006 0.007 0.010 9.22* 

Services 0.024 0.022 0.020 -2.03* 

Prior Mean for Model 1, 2 and 4. 

Total Factor 
Productivity (TFP) 

Prior TFP Prior TFP Prior TFP Prior TFP annual compound 
growth rate (in %) 

sector/period 2004 2007 2011 2004-2011 
Agriculture 0.004 0.005 0.006 5.08 

Mining 0.230 0.123 0.087 -12.90 

Manufacturing 0.011 0.017 0.019 8.42 

Utilities 0.009 0.015 0.016 7.33 

Construction 0.005 0.008 0.013 15.90 

Services 0.022 0.028 0.020 -1.47 

Source: Authors' calculations. 
† Posteriors are estimated using a Gaussian prior error distribution with five elements in its support. 
‡ All the posteriors get cross-entropy-𝑅𝑅�2, greater than 0.30; see statistic definition in (16). 
* Posteriors with cross-entropy-𝑅𝑅�2 greater than 0.40. 
** Posteriors with cross-entropy-𝑅𝑅�2 greater than 0.50. 
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Table 14. Labor augmenting productivity, the Republic of Korea  
Model 1. Constant delta-share parameter and time-varying elasticity across period 1990-2011. 

Labor 
Augmenting  
Productivity 

(LAP) 

Prior LAP 
Posterior 

Mean LAP 
Posterior 

Mean LAP 
Posterior 

Mean LAP 
Posterior 

Mean LAP 
Posterior 

Mean LAP 

Prior LAP annual 
compound growth 

rate (in %) 

LAP annual compound 
growth rate index: 

100*(Posterior/Prior) 

sector/period 1990-2011 1990 1995 2000 2005 2011 1990-2011 1990-2011 
Agriculture 0.69 0.21* 0.30 0.44 0.63** 0.97 10.00 75.25** 

Mining 0.80 0.71** 0.74** 0.77** 0.80** 0.84** 10.00 7.77 

Manufacturing 0.67 0.67** 0.68** 0.68** 0.69** 0.70** 10.00 2.01 

Utilities 0.80 0.78** 0.79** 0.81** 0.83** 0.85** 10.00 4.35 

Construction 0.80 0.71** 0.77** 0.84** 0.91** 1.01* 10.00 16.87 

Services 0.80 0.82** 0.78** 0.73** 0.69** 0.65* 10.00 -11.06 

Model 2. Constant elasticity and time-varying delta-share parameters across period 1990-2011. 

Labor 
Augmenting  
Productivity 

(LAP) 

Prior LAP 
Posterior 

Mean LAP 
Posterior 

Mean LAP 
Posterior 

Mean LAP 
Posterior 

Mean LAP 
Posterior 

Mean LAP 

Prior LAP annual 
compound growth 

rate (in %) 

LAP annual compound 
growth rate index: 

100*(Posterior/Prior) 

sector/period 1990-2011 1990 1995 2000 2005 2011 1990-2011 1990-2011 
Agriculture 0.69 0.65** 0.69** 0.73** 0.77** 0.82* 10.00 11.19 

Mining 0.80 0.87** 0.83** 0.79** 0.75** 0.71** 10.00 -9.34 

Manufacturing 0.67 0.67** 0.62** 0.57** 0.53* 0.48* 10.00 -15.98 

Utilities 0.80 0.83** 0.83** 0.83** 0.83** 0.84** 10.00 0.65 

Construction 0.80 0.75** 0.79** 0.83** 0.87** 0.93** 10.00 10.46 

Services 0.80 0.74** 0.77** 0.80** 0.83** 0.87** 10.00 7.72 

Model 3. Constant elasticity for Armington and CET functions and time-varying delta-share parameters across period 1990-2011. 

Labor 
Augmenting  
Productivity 

(LAP) 

Prior LAP 
Posterior 

Mean LAP 
Posterior 

Mean LAP 
Posterior 

Mean LAP 
Posterior 

Mean LAP 
Posterior 

Mean LAP 

Prior LAP annual 
compound growth 

rate (in %) 

LAP annual compound 
growth rate index: 

100*(Posterior/Prior) 

sector/period 1990-2011 1990 1995 2000 2005 2011 1990-2011 1990-2011 
Agriculture 0.69 0.53 0.62 0.74 0.87 1.06 10.00 33.43 

Mining 0.80 0.39 0.52 0.70 0.93 1.32 10.00 59.87* 

Manufacturing 0.67 0.67 0.64 0.61 0.59 0.56 10.00 -8.55 

Utilities 0.80 0.70 0.76 0.82 0.88 0.96 10.00 15.05 

Construction 0.80 0.65 0.75 0.86 0.99 1.17 10.00 28.03 

Services 0.80 0.76 0.78 0.79 0.81 0.83 10.00 4.00 

Source: Authors' calculations. 
† Posteriors are estimated using a prior error distribution with three elements in its support. 
‡ All the posteriors get cross-entropy-𝑅𝑅�2, greater than 0.30; see statistic definition in (16). 
* Posteriors with cross-entropy-𝑅𝑅�2 greater than 0.40. 
** Posteriors with cross-entropy-𝑅𝑅�2 greater than 0.50. 
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Table 15. Labor augmenting productivity, SSA region 

Model 1. Constant delta-share parameter and time-varying elasticity across period 2004-2011. 

Labor 
Augmenting  
Productivity 
(LAP) 

Prior LAP Posterior Mean 
LAP 

Posterior Mean 
LAP 

Posterior Mean 
LAP 

Prior LAP annual 
compound growth 
rate (in %) 

LAP annual 
compound growth 
rate index: 100* 
(Posterior/Prior) 

sector/period 2004-2011 2004 2007 2011 2004-2011 2004-2011 
Agriculture 1.0 1.11** 1.03** 0.92** 10.0 -2.71* 

Mining 1.0 0.83* 0.97** 1.19* 10.0 5.31* 

Manufacturin
 

1.0 1.00** 1.00** 1.00** 10.0 0.04 

Utilities 1.0 0.92** 1.01** 1.14** 10.0 3.07 

Construction 1.0 0.96** 1.03** 1.11** 10.0 2.06 

Services 1.0 0.96** 0.97** 0.99** 10.0 0.32 

Model 2. Constant elasticity and time-varying delta-share parameters across period 2004-2011. 

Labor 
Augmenting  
Productivity 
(LAP) 

Prior LAP Posterior Mean 
LAP 

Posterior Mean 
LAP 

Posterior Mean 
LAP 

Prior LAP annual 
compound growth 
rate (in %) 

LAP annual 
compound growth 
rate index: 100* 
(Posterior/Prior) 

sector/period 2004-2011 2004 2007 2011 2004-2011 2004-2011 
Agriculture 1.0 0.91** 0.91** 0.89** 10.0 -0.32 

Mining 1.0 0.86** 0.98** 1.17** 10.0 4.48* 

Manufacturin
 

1.0 1.00** 1.02** 1.05** 10.0 0.74 

Utilities 1.0 0.85** 0.96** 1.12** 10.0 4.02* 

Construction 1.0 0.87** 0.97** 1.11** 10.0 3.61 

Services 1.0 0.96** 0.99** 1.02** 10.0 0.83 

Model 4. Constant elasticity for national output-VA-intermediate CES functions and time-varying delta-share parameters across period 2004-2011. 

Labor 
Augmenting  
Productivity 

(LAP) 

Prior LAP Posterior Mean 
LAP 

Posterior Mean 
LAP 

Posterior Mean 
LAP 

Prior LAP annual 
compound growth 

rate (in %) 

LAP annual 
compound growth 
rate index: 100* 

(Posterior/Prior) 

sector/period 2004-2011 2004 2007 2011 2004-2011 2004-2011 
Agriculture 1.0 1.04** 1.03** 1.02** 10.0 -0.25 

Mining 1.0 0.83* 0.96** 1.18** 10.0 5.25* 

Manufacturin
 

1.0 1.00** 1.00** 1.00** 10.0 -0.06 

Utilities 1.0 0.93** 1.01** 1.13** 10.0 2.76 

Construction 1.0 0.97** 1.02** 1.11** 10.0 1.95 

Services 1.0 1.12** 0.90** 0.68 10.0 -6.81** 

Source: Authors' calculations. 
† Posteriors are estimated using a prior error distribution with three elements in its support. 
‡ All the posteriors get cross-entropy-𝑅𝑅�2, greater than 0.30; see statistic definition in (16). 
* Posteriors with cross-entropy-𝑅𝑅�2 greater than 0.40. 
** Posteriors with cross-entropy-𝑅𝑅�2 greater than 0.50. 
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Table 16. Goodness of fit statistics, using SAMs with limited additional price data, the Republic of Korea  
Model 1. Constant delta-share parameter and time-varying elasticity across period 1990-2011. 

 1990 1995 2000 2005 2011 1990-2011 
adjusted 𝑹𝑹𝟐𝟐 for prediction side 1.00 0.9936 0.9964 0.9925 0.9941 0.9938 

Akaike Information Criteria for 
prediction side 

0.00 110.23 109.12 378.29 572.83 234.09 

Kullback-Leibler divergence statistic for 
prediction side 

0.00 1.58 0.69 0.56 0.40 3.23 

Kullback-Leibler divergence statistic for 
prediction & precision sides 

8.68 9.39 8.04 7.96 8.44 42.51 

Model 2. Constant elasticity and time-varying delta-share parameters across period 1990-2011. 

 1990 1995 2000 2005 2011 1990-2011 
adjusted 𝑹𝑹𝟐𝟐 for prediction side 1.00 0.9963 0.9765 0.9725 0.9617 0.9690 

Akaike Information Criteria for 
prediction side 

0.00 64.52 720.85 1385.64 3701.00 1174.40 

Kullback-Leibler divergence statistic for 
prediction side 

0.00 0.81 1.49 0.81 1.63 4.74 

Kullback-Leibler divergence statistic for 
prediction & precision sides 

8.10 9.87 11.19 10.63 12.45 52.24 

Model 3. Constant elasticity for Armington and CET functions and time-varying delta-share parameters across period 1990-2011. 

 1990 1995 2000 2005 2011 1990-2011 
adjusted 𝑹𝑹𝟐𝟐 for prediction side 1.00 0.9955 0.9667 0.9278 0.8484 0.8977 

 
Akaike Information Criteria for 
prediction side 

0.00 77.21 1020.34 3636.98 14656.29 3878.16 

 Kullback-Leibler divergence statistic for 
prediction side 

0.00 2.06 6.03 7.67 12.80 28.56 

 Kullback-Leibler divergence statistic for 
prediction & precision sides 

9.54 11.64 16.00 18.24 24.63 80.05 

 Source: Authors' calculations. 
† Posteriors for the prediction side are estimated using a prior error distribution with three elements in its support. 
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Table 17. Goodness of fit statistics, using SAMs with limited additional price data, SSA region  
Model 1. Constant delta-share parameter and time-varying elasticity across period 2004-2011. 

 2004 2007 2011 2004-2011 
adjusted 𝑹𝑹𝟐𝟐 for prediction side 1.0 0.993 0.982 0.991 

 
Akaike Information Criteria for 
prediction side 

0.0 1.7E-04 4.6E-04 2.1E-04 

 Kullback-Leibler divergence statistic for 
prediction side 

0.0 0.39 0.35 0.74 

 Kullback-Leibler divergence statistic for 
prediction & precision sides 

5.61 6.27 6.91 18.80 

 Model 2. Constant elasticity and time-varying delta-share parameters across period 2004-2011. 
 2004 2007 2011 2004-2011 

adjusted 𝑹𝑹𝟐𝟐 for prediction side 1.0 0.999 0.978 0.992 

 
Akaike Information Criteria for 
prediction side 

0.0 2.0E-05 5.7E-04 2.0E-04 

 Kullback-Leibler divergence statistic for 
prediction side 

0.0 0.21 0.35 0.56 

 Kullback-Leibler divergence statistic for 
prediction & precision sides 

2.54 3.39 4.59 10.53 

 Model 4. Constant elasticity for national output-VA-intermediate CES functions and time-varying delta-share parameters across period 2004-2011. 
 2004 2007 2011 2004-2011 

adjusted 𝑹𝑹𝟐𝟐 for prediction side 1.0 0.997 0.989 0.995 

 
Akaike Information Criteria for 
prediction side 

0.0 7.5E-05 2.7E-04 1.2E-04 

 Kullback-Leibler divergence statistic for 
prediction side 

0.0 0.31 1.39 1.70 

 Kullback-Leibler divergence statistic for 
prediction & precision sides 

5.94 6.25 7.80 19.99 

 Source: Authors' calculations. 
† Posteriors for the prediction side are estimated using a prior error distribution with three elements in its support. 
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APPENDIX 4. FIGURES  

Figure 1. CGE structure: production & consumption  
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