THE ECONOMICS OF CONSANGUINEOUS MARRIAGES

Quy-Toan Do, Sriya Iyer, and Shareen Joshi*

Abstract—This paper provides an economic rationale for the practice of consanguineous marriages observed in parts of the developing world. In a model of incomplete marriage markets, dowries are viewed as ex ante ante transfers made from the bride’s family to the groom’s family when the promise of ex post gifts and bequests is not credible. Consanguineous unions join families between whom ex ante pledges are enforceable ex post. The model predicts a negative relationship between consanguinity and dowries and higher bequests in consanguineous unions. An empirical analysis based on data from Bangladesh delivers results consistent with the model.

I. Introduction

Consanguineous marriage, or marriage between close biological relatives who are not siblings, is a social institution that is, or has been, common throughout human history (Bittles, 1994; Bittles, Coble, & Rao, 1993; Hussain & Bittles, 2000). Although in the Western world, consanguineous marriages constitute less than 1% of total marriages, this practice has had widespread popularity in North Africa, the Middle East, and South Asia (Maian & Mushtaq, 1994; Bittles, 2001).1 Scientific research in clinical genetics documents a negative effect of inbreeding on the health and mortality of human populations and the incidence of disorders and disease among the offspring of consanguineous unions (Banerjee & Roy, 2002). To economists, therefore, this contemporary incidence of consanguineous marriage and its persistence in some societies is puzzling.

It is in this setting that this paper makes its contribution: to argue that consanguinity is a rational response to a marriage market failure rather than simply a consequence of culture, religion, or preferences. The starting points of our analysis are the following two stylized facts commonly observed in large parts of South Asia and elsewhere: first, marriage celebrations are often associated with significant dowries, or transfers of assets from the bride’s family to the groom’s family, and second, enforcement mechanisms for informal contracts are stronger within kinship networks than outside such networks. The crux of our model is that a marriage is a contract in which two families make a long-term commitment to support their offspring through gifts, bequests, and so forth. These also enhance the value of the match and, consequently, the social status of each family. However, once links have formed and are costly to sever, each family may now prefer to invest in alternative opportunities while free-riding on the other family’s investments. To overcome this time inconsistency, early transfers between families are viewed as an ex ante alternative when ex post investment commitments are not credible. In South Asia, where marriage is characterized by patrilocal exogamy, we postulate the commitment problem to be on the bride’s side so that these early monetary transfers correspond to dowries. To this aspect, we add two features. First, the extent to which agents are time inconsistent depends negatively on how closely related the partners are. Between cousins, ex ante commitments are more credible arguably because informal contracts are easier to enforce within the extended family. Second, dowries are costly since they imply borrowing on the credit market in order to make payments at the time of marriage. Consequently, our model predicts that consanguinity and dowries substitute as instruments to overcome or mitigate the time-inconsistency problem.

Our data test the central idea that consanguinity may be a relatively cheaper way for families to deal with the problem of dowry costs in rural marriage markets. We use data on 4,364 households from the 1996 Matlab Health and Socioeconomic Survey conducted in 141 villages in Bangladesh. We find that women in consanguineous unions are, on average, 6% to 7% less likely to bring a dowry at marriage, after controlling for other attributes at the time of marriage. Consequently, our model predicts that consanguinity and dowries substitute as instruments to overcome or mitigate the time-inconsistency problem.

Received for publication June 1, 2009. Revision accepted for publication January 12, 2012.

* Do: World Bank; Iyer: University of Cambridge; Joshi: Georgetown University.

We thank Gary Becker, Alan Bittles, Francis Bloch, Michael Bordo, Jishnu Das, Partha Dasgupta, Timothy Guinnane, Geoffrey Harcourt, Hanan Jacoby, Suamitra Jha, Lakshmi Iyer, Matthew Mason, Mushfiq Mobarak, David Newbery, Hashem Pesaran, Biju Rao, Hamid Sabourian, Azusa Sato, Paul Schultz, and Chander Velu for helpful comments and discussions. All remaining errors are ours. The findings, interpretations, and conclusions expressed in this paper are entirely our own. They do not necessarily reflect the view of the World Bank, its executive directors, or the countries they represent.

1 In Iraq, for example, 46.4% of marriages are between first or second cousins (Hamamy, Zulhair, & Al-Hakkak, 1989). In India, consanguineous marriages constitute 16% of all marriages, but this varies from 6% in the north to 36% in the south (IIPS & ORC Macro International, 1995; Banerjee & Roy, 2002). The highest level of inbreeding has been recorded in the South Indian city of Pondicherry, in which 54.9% of marriages were consanguineous, corresponding to a mean coefficient of inbreeding of 0.0449, considered very high by the standards of other populations (Bittles, 2001). Among immigrant populations in the United Kingdom, those of Pakistani origin display a preponderance of consanguineous marriage, estimated to be as high as 50% to 60% of all marriages in this community (Modell, 1991).

2 These findings are entirely consistent with earlier observations made by sociologists and demographers (Centerwall & Centerwall, 1966; Reddy, 1993).
countries like France, Germany, the Netherlands, and the United Kingdom, is now likely to be of the order of 1% to 3% or more. Consanguineous marriage is particularly popular in Islamic societies and among the poor and less educated populations in the Middle East and South Asia (Hussain, 1999; Bittles, 2001).

There is also evidence that different kinds of consanguineous unions are favored by different subpopulations. For example, while Hindu women in South India typically marry their maternal uncles, Muslim populations favor first-cousin marriages (Dronamaraju & Khan, 1963; Centerwall & Centerwall, 1966; Reddy, 1993; Iyer, 2002).

The acceptability of consanguineous unions differs across religions. In Europe, Protestant denominations permit first-cousin marriage. In contrast, the Roman Catholic church requires permission from a diocese to allow them. Judaism permits consanguineous marriage in certain situations, for example, uncle-niece unions. Consanguinity is also permitted in Islam. According to the institutional requirements of Islam in the Koran, and the Sunnah, “a Muslim man is prohibited from marrying his mother or grandmother; his daughter or granddaughter, his sister whether full, consanguineous or uterine, his niece or great niece, and his aunt or great aunt, paternal or maternal” (Azim, 1997). However, the Sunnah depict that the Prophet Mohammad married his daughter Fatima to Ali, his paternal first cousin; this has led researchers to argue that for Muslims, first-cousin marriage follows the Sunnah (Bittles, 2001; Hussain, 1999).

III. The Economics of Consanguineous Marriages

The model we present belongs to the class of agency models of marriage. Families are viewed as agents that invest in a joint project: the marriage of their offspring. However, the institution of marriage is characterized by two features: (a) dissolution (divorce) is costly, and (b) marriage contracts are incomplete. The combination of these two features undermines the credibility of some ex ante commitments on the part of the families. For example, in Jacoby and Mansuri (2010), the marriage contract is incomplete because the groom cannot commit ex ante not to be violent toward his wife. Once the marriage takes place, he has incentives to engage in violent behavior to, among other things, extract rents from his in-laws (Bloch & Rao, 2002). The institution of *watta-satta*, or exchange marriages, then emerges to alleviate this market failure; when grooms cannot commit ex ante not to be violent toward their bride-to-be, marrying the groom’s sister to the bride-to-be’s brother provides a credible retaliation threat that makes the initial nonviolence claim incentive compatible. In the same class of models, Botticini and Siow (2003) argue that in patrilocal societies, daughters cannot commit to manage parental assets with the same care as their male siblings do once they get married. This implies that parental transfers will optimally take the form of dowries for daughters and bequests for sons.
In our model, altruistic parents make transfers to their children once they are married, and this also enhances the value of the match. At the time of marriage, however, they are unable to contract on such future transfers, and as marriages are costly to dissolve, ex ante commitments are no longer credible. In a patrilineal society, where a bride migrates to the home of her husband after marriage, the incentive to renge is likely to be particularly strong for the bride’s parents, since they may prefer to direct their transfers to co-resident sons. As in Botticini and Siow (2003), dowries (or bride-prices) then become the second-best solution to this time-inconsistency problem. Social distance between the families of the bride and the groom can significantly influence the terms of the marriage contract. On the one hand, we assume that ceteris paribus social distance enhances the outcomes of marriage: families can diversify genes, hedge risks, smooth consumption, or simply integrate their social networks (Rosenzweig & Stark, 1989; La Ferrara, 2003). On the other hand, shorter social distance acts as social capital by making ex ante contracting between families easier: close relatives have more (verifiable) information about each other, are more likely to exert effort in economic activities, are less likely to engage in opportunistic behavior, and are likely to show higher levels of trust, cooperation, and altruism to both their natal and marital families (Putnam, 2000).

We now proceed to a formal description of the forces at play. Proofs are left to the appendix.

A. Model Setup

Individuals are assimilated to their families and labeled \(m \in M \) and \(f \in F \) for male and female, respectively. A pair \((m,f)\) \(\in M \times F \) is characterized by wealth levels \(\{w_m,w_f\} \) and social distance \(d_{mf} \in [0,1] \). More specifically, families are points on the surface of a cylinder of radius \(\frac{1}{2} \). Each family is thus characterized by its cylindrical coordinates \((w,\alpha)\) where height \(w \in \left[\frac{1}{2},h \right] \) measures wealth with \(0 < h \leq h \), and social distance between two individuals \(m \) and \(f \) is defined by the difference in azimuths \(d_{mf} = \frac{1}{2}|\alpha_m - \alpha_f| \), and thus takes values in \([0,1]\). To abstract from marriage market squeeze issues (see Rao, 1993; Anderson, 2007b), we assume brides and grooms to be uniformly distributed over the cylinder.

Timing and the institution of marriage. The economy consists of two periods. At \(T=0 \), couples \((m,f)\) form, and marriages are celebrated with ex ante transfers \(D_m \) made from the bride’s to the groom’s family (a dowry) or \(D_f \), made from the groom’s to the bride’s (a bride-price), or both. At that time, parents also commit to make ex post transfers \(z_f \) and \(z_m \) to the married couple at future date \(T=1 \). These transfers can be thought of as parental gifts or bequests. However, parents cannot fully commit to these transfers and are subject to the following limited-liability condition: for \(k \in \{m,f\} \),

\[
z_k \leq (1 - d_{mf}) w_k
\]

Equation (1) puts a limit on how credible it is for parents to pledge more than a given fraction of their wealth for their offspring. That fraction is assumed to be decreasing with social distance, capturing the idea that social distance is negatively associated with families’ abilities to write binding contracts with each other.

In addition, family transfers cannot exceed their net worth, which translates into a budget constraint on ex ante transfers: for \(k \in \{m,f\} \),

\[
D_k \leq w_k,
\]

as well as ex post transfers;

\[
z_k \leq w_k - D_k + D_{-k},
\]

where \(-k\) refers to \(k\)’s in-laws.

Finally, we make two additional assumptions: (a) marriage is always preferred to remaining single, and (b) once celebrated, marriage is indissoluble. These two assumptions are certainly not innocuous. However, in the context of South Asia, social pressure for a woman to get married and the stigma associated with divorce are arguably quite strong. We therefore believe these assumptions to be reasonable first-order approximations.

Marital technology. At \(T=1 \), once brides and grooms have celebrated their marriage, they receive transfers \(t_m \) and \(t_f \) from their parents. These transfers enter a marital production function:

\[
Y(t_m,t_f|w_m,w_f,d_{mf}) = A(w_m,w_f,d_{mf}) \times (t_m + t_f).
\]

The marital production function has constant returns to scale \(A(w_m,w_f,d_{mf}) \). The coefficient of returns \(A(.) \) is assumed to be continuously differentiable and increasing in \(w_m \) and \(w_f \) with nonnegative cross-partial derivatives (Becker, 1981), and increasing concave in social distance \(d_{mf} \). Furthermore, we assume that for every \((m,f) \in M \times F\), and for \(k \in \{m,f\} \),

\[
\frac{\partial^2 A(w_m,w_f,d_{mf})}{\partial w_k \partial d_{mf}} (w_m + w_f) + \frac{\partial A(w_m,w_f,d_{mf})}{\partial d} > 0.
\]

(4)

The positive dependence of \(A(.) \) on parental wealth captures the fact that in addition to monetary transfers, parents transmit social status to their children and share their networks. Second, \(A(.) \) is also assumed to be positively correlated with social distance: when spouses are not related, they can diversify genes, hedge risks, integrate their social networks, and so forth. Furthermore, with the additional assumption made with equation (4), the marital production function \(Y(w_m,w_f,d_{mf}) \) is supermodular.

Finally, agents have access to a storage technology with returns normalized to 1. This storage technology proxies for investment and consumption opportunities available to parents outside their offspring’s marital production.
Parental preferences. At the heart of the model is the asymmetry between the bride’s parents and the groom’s. We thus assume that while the groom’s parents internalize the full marital product, so that

\[U_m\left(t_m, t_f, D_m, D_f|w_m, w_f, d_{mf}\right) = Y\left(t_m, t_f|w_m, w_f, d_{mf}\right) + w_m + D_f - D_m - t_m, \] (5)

the bride’s side discounts marital output by a factor \(\theta < 1\):

\[U_f\left(t_m, t_f, D_m, D_f|w_m, w_f, d_{mf}\right) = \theta Y\left(t_m, t_f|w_m, w_f, d_{mf}\right) + w_f + D_m - D_f - t_f. \] (6)

This discrepancy can be interpreted as coming from virilocality, an institution exogenously given to the model. If the bride leaves her parents to live with her in-laws (which is empirically the case in our setting), her parents might not capture the full marital product of the couple. Botticini and Siow (1993) rely on similar asymmetry arguments to construct a theory of dowry and inheritance. To make the analysis relevant, we further assume that for every possible couple \((m, f) \in M \times F\),

\[\theta A\left(w_m, w_f, d_{mf}\right) < 1 < A\left(w_m, w_f, d_{mf}\right). \] (7)

We henceforth define \(\tilde{\theta} = \frac{1}{A(h, h, 1)}\), the supremum of all possible values of \(\theta\) that satisfy equation (7) and restrict the analysis to \(\tilde{\theta} < \theta\).

Equilibrium concept. As stated earlier, we restrict ourselves to cases in which every individual finds a match. Then a profile \((m, f)_{m \in M, f \in F}\) with associated payments

\[\{(D_m, D_f), (z_m, z_f), (t_m, t_f)\}_{m \in M, f \in F} \]

is an equilibrium if it satisfies the following conditions:

1. Feasibility:

\[D_k \leq w_k, \]

\[z_k \leq w_k + D_{-k} - D_k, \] (8)

where \(k \in \{m, f\}\) and \(-k\) refers to \(k\)’s in-laws

2. Limited commitment:

\[z_k \leq (1 - d_{mf}) w_k \] (9)

3. Incentive compatibility:

\[t_k \in \arg\max_t U_k\left(t, t_{-k}|w_m, w_f, d_{mf}\right), \] (10)

subject to

\[z_k \leq t_k \leq w_k + D_{-k} - D_k \] (12)

4. Gale-Shapley stability: there does not exist two couples \((m, f)\) and \((m', f')\) and payments \(((\tilde{D}_m, \tilde{D}_f), (\tilde{z}_m, \tilde{z}_f), (\tilde{t}_m, \tilde{t}_f))\) that satisfy, equations (8) to (11), and

\[U_m\left(\tilde{t}_m, \tilde{t}_f|w_m, w_f, d_{mf}\right) \geq U_m\left(t_m, t_f|w_m, w_f, d_{mf}\right), \] (13)

\[U_f\left(\tilde{t}_m, \tilde{t}_f|w_m, w_f, d_{mf}\right) \geq U_f\left(t_m, t_f|w_m, w_f, d_{mf}\right) \] (14)

with one inequality holding strictly.

B. Equilibrium Characterization

First, condition (11) implies that the groom’s family has the incentives to invest in their child’s marriage, while the storage technology is a more attractive option to the bride’s family once marriage has been celebrated. Thus, the use of dowries allows the bride’s family to overcome this time inconsistency. Their incentives to do so hinge on the willingness to secure a wealthier groom.

Proposition 1: Marriage market equilibrium with no credit constraints. If \(A(h, h, 1) < 2A(h, h, 0)\), there exists a marital discount factor \(\theta < \tilde{\theta}\), such that for every \(\theta \in (0, \tilde{\theta})\), a profile \((m, f)_{m \in M, f \in F}\) characterized by

- positive assortative matching:

\[w_m = w_f, \]

and

\[d_{mf} = 1 \]

- payments equal to

\[(t_m, t_f) = (z_m, z_f) \]

and

\[(D_m, D_f) = (0, w_f) \quad \text{and} \quad (z_m, z_f) = (w_m + w_f, 0) \]

is an equilibrium.

Supermodularity is driving positive assortative matching. However, stability requires a high enough discount factor \(\theta\) so that brides are willing to invest in the marital production function. In this setting, dowries are perfect substitutes for social ties. Couples can be socially distant and lower the costs of consanguinity; they then overcome the commitment problem by pledging payments upfront in the form of dowries.

C. Equilibrium with Credit Constraints

We now assume that raising funds to pay for dowries is costly. When family \(k\) transfers \(D_k\) to family \(-k\), \(-k\) receives only a fraction \(1 - \gamma\), the rest being lost. With costly payments,
dowries are no longer perfect substitutes of social proximity, which implies a trade-off between social distance and the cost of funds.

Proposition 2: Marriage market equilibrium with credit constraints. If \(A(h, h, 1) < 2A(h, h, 0) \), there exists \(\hat{y} < 1 \) and \(\theta < \theta \) such that for any parameter configurations such that \(\gamma < \hat{y} \) and \(\theta \in (\hat{\theta}, \theta) \), a match profile characterized by

- **positive assortative matching**
 \[w_m = w_f, \]
 and
 \[d_{mf} = d_{mf}^*, \]
 where \(d_{mf}^* \) satisfies
 \[\frac{\partial}{\partial d} A(w_m, w_f, d_{mf}^*) (w_m + w_f - \gamma d_{mf}^* w_f) = A(w_m, w_f, d_{mf}^*) \gamma w_f \quad (15) \]

- **payments equal to**
 \[(t_m, t_f) = (z_m, z_f) \]
 and
 \[(D_m, D_f) = (0, d_{mf}^* w_f) \quad \text{and} \quad (z_m, z_f) = (w_m + (1 - \gamma) d_{mf}^* w_f, (1 - d_{mf}^*) w_f) \]
 is an equilibrium.

The left hand side of equation (15) measures the marginal cost of consanguinity; by construction, marrying farther away has a direct and positive effect on payoffs because families can diversify their pools of genes, hedge risks across families (Rosenzweig & Stark, 1989), or merge social networks for better access to credit or labor markets (La Ferrara, 2003). On the other hand, the right-hand side of equation (15) measures the agency cost. Increasing distance between spouses increases the agency problem, requiring a larger dowry to be paid. This implies a larger transaction cost, which trans-...
payment of dowries comes at too high a cost. Thus, our model predicts that dowry and consanguinity are substitutes:

- **Prediction 1**: Dowry levels are lower in consanguineous marriages.

Symmetrically, if ex ante payments are lower in consanguineous marriages, we should expect larger ex post transfers.

- **Prediction 2**: Bequests or gifts to daughters are larger when they marry close kin.

How well consanguinity substitutes for dowries depends in part on the cost of dowry transfers. If credit constraints are stringent, one might expect the consanguinity option to be more attractive.

- **Prediction 3**: Consanguinity is more prevalent in environments with more severe credit constraints.

We concluded our analysis with an investigation of the relationship between consanguinity and wealth. Since higher spousal wealth implies that more is at stake, consanguinity comes at a higher cost:

- **Prediction 4**: Consanguineous unions are less prevalent among wealthier unions.

Prediction 4 depends on assumptions about the marital production function. It has, for example, been argued that consanguinity provides a means to consolidate and maintain family assets and resources (Goody, 1973; Agarwal, 1994; Bittles, 2001). Cross-cousin marriages, wherein an individual marries a mother’s brother’s (or father’s sister’s) offspring, are able to unite individuals in different patriline both in the same bloodline, ensuring a consolidation of resources. This suggests that even at higher levels of wealth, marriage contract incompleteness may come at too high a cost, so that consanguineous marriages are preferred. Consanguinity might yet be driven by multiple other factors. A first alternative explanation for consanguinity is that it is the outcome of personal preference that is mediated by the influence of religion or cultural practice. As discussed in section II, much of the literature from sociology and biological anthropology is predicated on this assumption about consanguinity. The argument here is that because consanguinity is a practice that has enjoyed much support historically in certain populations, it continues to be popular among these communities to the present day. A second explanation for consanguinity is that it may be a favored form of marriage simply because it can significantly reduce the costs of searching for a suitable partner. The central idea is that since the bride and groom are generally known to each other prior to marriage, consanguineous marriages do not require families to screen each other in order to assess the quality of the upcoming match. In many rural societies, this process can take considerable time as well as resources (Sander, 1995). Moreover, parents in consanguineous unions know their future selves-in-law and their families, reducing the uncertainty about the compatibility of spouses and families. While all these alternative stories have some appeal in explaining the prevalence of consanguinity, they do not speak to the relationship of consanguinity, bequests, and dowries, which is central to this paper. We next move to the empirical section to empirically test the predictions of our model.

IV. Empirical Evidence from Bangladesh

The data used in the analysis are drawn from the 1996 Matlab Health and Socioeconomic Survey (MHSS). We supplement these data with those on climate data on annual rainfall levels in the Matlab area for the period 1950 to 1996. The 1996 MHSS contains information on 4,364 households spread over 2,687 *baris*, or clusters, in 141 villages. Matlab is an Upazila (subdistrict) of Chandpur district, which is about 50 miles south of Dhaka, the capital of Bangladesh. Eighty-five percent or more of the people in Matlab are Muslims, and the others are Hindus. Although it is geographically close to Dhaka, the area has been relatively isolated and inaccessible to communication and transportation. The society is predominantly an agricultural society, although 30% of the population reports being landless. Despite a growing emphasis on education and increasing contact with urban areas, the society remains relatively traditional and religiously conservative (Fauveau, 1994).

For the purpose of understanding the incidence of consanguineous marriage in the MHSS data, we rely on the section of the survey that asked men and women retrospective information about their marriage histories. Information on first marriages only was considered. Our working sample consists of 4,087 married women and 3,585 married men, once we require complete information on age and education, marriage (including age at marriage, relationships to their spouses, and payments of dowry), parental characteristics, parental assets, inheritances and inherited assets, and household demographics. Descriptive summary statistics of the variables of interest are provided in table 1. A quick glance

5 The framework of our model also allows thinking of consanguineous marriages as allowing the enforcement of insurance contracts between families when an insurance motive is driving marriage (Rosenzweig & Stark, 1989).

6 This survey is a collaborative effort of RAND, the Harvard School of Public Health, the University of Pennsylvania, the University of Colorado at Boulder, Brown University, Mitra and Associates, and the International Centre for Diarrhoeal Disease Research, Bangladesh.

7 The University of Delaware Air and Temperature Precipitation Data are provided by the NOAA-CIRES Climate Diagnostics Center, Boulder, Colorado, USA.

8 About 15% of men and about 7% of women reported that they have had more than one marriage. This gender difference is driven by the fact that while divorced and widowed men typically remarry, most women in these same circumstances do not (Joshi, 2004).
A. Consanguinity and Dowries

Prediction 1 of the model can be tested by examining the simple correlations between the payment of dowries and first-cousin marriages. We look at the conditional correlation between dowry payment and consanguinity by correlating the dummy variable Dowry with the various measures of consanguinity that were considered previously. The results are presented in the first three columns of table 2. They indicate that compared to women who marry non-relatives, women who marry their first cousins 5% to 6% points less likely to bring a dowry, and this effect is robust to controlling for individual characteristics (age, years of schooling, religion, and birth order), family characteristics (mother and father were alive at the time of marriage, number of brothers and sisters at the time of marriage, and father’s landholdings), and rainfall at the time that a woman was of marriageable age. Consid-
ering that in this population, about 35% of all women report the payment of a dowry at the time of marriage, this is a sub-
stantial and important difference. The results are similar if we expand the definition of consanguinity to include marriages between second cousins and other types of marriages between relatives. Marriage to other kin as well as marriages to nonkin within a village are also associated with a 3.5 percentage point lower likelihood of dowry payment. The relationship between dowry and social distance is strongest in the case of cousins. This is consistent with our theory: dowries are predicted to become more likely as social distance between the families of a bride and groom increases.

In an additional test, we use the logarithm of the dowry values as a dependent variable and obtain similar results for marriages at different social distances (table 2, columns 4–6). After controlling for individual, household characteristics, and year of marriage fixed effects, the results show 6.9%, 12.2%, 7.7% lower dowry values when the two spouses are first cousins, a relative other than first cousin, and nonrela-
tive in the same village, respectively. The coefficients are significant at the 5% level for two of the three variables, presum-ably because the sample of dowry values is larger for these variables.

*Since age at marriage and year of marriage are often not remembered with great precision, we define fixed effects over five-year windows.
The relationship between dowry and consanguinity over time can be observed in figure 1. Dowries in Matlab have been increasing as the practice of first-cousin consanguineous marriages has been falling. Our model tells a story consistent with the observed trends: in a setting where improvements in transportation and communication allow individuals to search over greater geographic distances for matches at larger social distances, the problem of ex ante commitment becomes greater, calling for the payment of higher levels of dowry in marriages between individuals who are outside the family network.

B. Consanguinity and Bequests

At the heart of our model is an intertemporal shift of transfers: a bride who marries into a socially distant family must bring a dowry at the time of marriage because an ex ante commitment by her natal family to pay future gifts and bequests is not credible. Her natal family will have incentives to free-ride on the investments of the groom’s parents and direct their own investments elsewhere. In a consanguineous or socially close union, however, the bonds of trust are likely to be stronger, and interests of the bride and groom’s families are less likely to diverge. In this instance, we expect lower dowries and higher marriage transfers and bequests after marriage (prediction 2). To test this prediction, we examine the relationship between inheritance or gifts and social distance within marriages. We define inheritance as a binary variable that takes

Table 2: Dowry and Consanguinity: Partial Correlations

<table>
<thead>
<tr>
<th></th>
<th>Paid Dowry</th>
<th></th>
<th>Log Dowry Value</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
</tr>
<tr>
<td></td>
<td>(5)</td>
<td>(6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Married cousin</td>
<td>−0.0506</td>
<td>0.0513</td>
<td>−0.0632</td>
<td>0.0454</td>
</tr>
<tr>
<td></td>
<td>(0.0205)**</td>
<td>(0.0206)**</td>
<td>(0.0208)**</td>
<td>(0.0439)**</td>
</tr>
<tr>
<td></td>
<td>−0.0510</td>
<td>−0.0542</td>
<td>0.0451</td>
<td>−0.0572</td>
</tr>
<tr>
<td></td>
<td>(0.0232)**</td>
<td>(0.0234)**</td>
<td>(0.0498)**</td>
<td>(0.0502)**</td>
</tr>
<tr>
<td>Married relative</td>
<td>−0.0476</td>
<td>−0.0536</td>
<td>−0.1226</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.0182)**</td>
<td>(0.0183)**</td>
<td>(0.0183)**</td>
<td></td>
</tr>
<tr>
<td>Married nonrelative</td>
<td>−0.0347</td>
<td>−0.0771</td>
<td>−0.0560</td>
<td></td>
</tr>
<tr>
<td>within village</td>
<td>(0.0182)**</td>
<td>(0.0183)**</td>
<td>(0.0183)**</td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>−0.0295</td>
<td>−0.0545</td>
<td>−0.0560</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.0085)**</td>
<td>(0.0183)**</td>
<td>(0.0183)**</td>
<td></td>
</tr>
<tr>
<td>Age squared</td>
<td>0.0012</td>
<td>0.0032</td>
<td>0.0035</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.0012)**</td>
<td>(0.0012)**</td>
<td>(0.0012)**</td>
<td></td>
</tr>
<tr>
<td>Years of schooling</td>
<td>−0.0117</td>
<td>−0.0106</td>
<td>0.0100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.0024)**</td>
<td>(0.0024)**</td>
<td>(0.0024)**</td>
<td></td>
</tr>
<tr>
<td>Muslim</td>
<td>−0.2484</td>
<td>−0.5825</td>
<td>−0.5818</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.204)**</td>
<td>(0.437)**</td>
<td>(0.438)**</td>
<td></td>
</tr>
<tr>
<td>Birth order</td>
<td>0.0012</td>
<td>0.0046</td>
<td>0.0050</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.0043)</td>
<td>(0.0091)</td>
<td>(0.0091)</td>
<td></td>
</tr>
<tr>
<td>Mother alive 1 at marriage</td>
<td>−0.0305</td>
<td>−0.0399</td>
<td>−0.0420</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.0255)</td>
<td>(0.0547)</td>
<td>(0.0547)</td>
<td></td>
</tr>
<tr>
<td>Father alive 1 at marriage</td>
<td>0.0201</td>
<td>0.0089</td>
<td>0.0084</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.0181)</td>
<td>(0.0387)</td>
<td>(0.0387)</td>
<td></td>
</tr>
<tr>
<td>Brothers at marriage</td>
<td>0.0124</td>
<td>0.0189</td>
<td>0.0195</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.0050)**</td>
<td>(0.0010)**</td>
<td>(0.0010)**</td>
<td></td>
</tr>
<tr>
<td>Sisters at marriage</td>
<td>−0.0025</td>
<td>0.0068</td>
<td>0.0061</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.0052)</td>
<td>(0.0112)</td>
<td>(0.0112)</td>
<td></td>
</tr>
<tr>
<td>Mother attended school</td>
<td>−0.1573</td>
<td>−0.2322</td>
<td>−0.2297</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.0764)**</td>
<td>(0.1639)</td>
<td>(0.1638)</td>
<td></td>
</tr>
<tr>
<td>Father attended school</td>
<td>0.0351</td>
<td>−0.0864</td>
<td>−0.0866</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.0143)**</td>
<td>(0.0307)**</td>
<td>(0.0307)**</td>
<td></td>
</tr>
<tr>
<td>Log of parents’</td>
<td>0.0036</td>
<td>0.1002</td>
<td>0.1010</td>
<td></td>
</tr>
<tr>
<td>farmland</td>
<td>(0.0013)**</td>
<td>(0.0028)**</td>
<td>(0.0028)**</td>
<td></td>
</tr>
<tr>
<td>Parents’ farmland</td>
<td>−0.0433</td>
<td>0.0962</td>
<td>0.0951</td>
<td></td>
</tr>
<tr>
<td>missing</td>
<td>(0.0322)</td>
<td>(0.0691)</td>
<td>(0.0690)</td>
<td></td>
</tr>
<tr>
<td>Rainfall controls</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>N</td>
<td>4.015</td>
<td>4.015</td>
<td>4.015</td>
<td>4.015</td>
</tr>
<tr>
<td>R^2</td>
<td>0.3394</td>
<td>0.3396</td>
<td>0.3407</td>
<td>0.3308</td>
</tr>
</tbody>
</table>

The variable Log Dowry Value assumes a dowry value of 1 taka if no dowry was paid. All regressions have year of marriage fixed effects where year of marriage is coded as five-year intervals. Standard errors, shown in parentheses, are clustered at the bar-level. Significant at *10%, **5%, and ***1%.
We define transfers as a binary variable that takes the value 1 if the respondent reports that he or she has inherited, or expects to inherit, anything from his or her parents. We exclude transfers as a binary variable that takes the value 1 if the respondent reports that she has received a transfer from her parents in the year preceding the survey. Among our key independent variables, we then consider three mutually exclusive forms of marriages in decreasing order of social distance: marriages to first cousins, marriages to relatives other than first cousins, and marriages to non-relatives from within the village. Our regressions control for our standard characteristics.

Table 3 reports the results of the regressions. The positive and significant estimates for the variable Married a Cousin in columns 1 and 3 are consistent with prediction 2: women in consanguineous unions are more likely to receive or expect to receive inheritances or transfers from their parents. The coefficients for marriage to any relative and marriage to non-relatives within the same village are not always statistically significant in these regressions. This is consistent with the predictions of our theory: it predicts that the commitment to bequeath their assets to their daughters is likely to be weaker when she marries more distant relatives or nonkin in a village, since the costs or consequences of nonpayment are likely to be smaller in such relationships.\(^\text{10}\) The negative coefficient for the variable Log of Dowry Value in columns 2 and 4 also confirm our views that transfers are being optimally timed; women who receive large dowries do not subsequently

<table>
<thead>
<tr>
<th>Correlates of Inheritances and Transfers</th>
<th>(R^2)</th>
<th>(F) statistic</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\beta)</td>
<td>15.6947</td>
<td>14.7908</td>
</tr>
<tr>
<td>(\beta)</td>
<td>14.7908</td>
<td>13.1549</td>
</tr>
</tbody>
</table>

| \(\beta\) | 15.6947 | 14.7908 |
| \(\beta\) | 14.7908 | 13.1549 |

\(^{10}\)This result, in isolation, could also be explained by a higher propensity for parents to make transfers to a consanguineous couple, since they share more genes with them or have better information about in-laws. In our model, this would correspond to having a higher \(\theta\) in consanguineous unions. However, this assumption would not be able to explain the inverse correlation identified in section IVA.
receive inheritances or transfers. The correlation is negative although statistically significant in the case of transfers to younger couples only.\footnote{Since information on transfers consists of five-year recalls, it is not surprising that older couples no longer receive transfers from their parents when these are either deceased or no longer income earners.}

Next, we run the same regressions for the male sample (table 3, columns 5 and 6). We do not run the regression for transfers for this sample because most men live either with their parents or in close proximity to their parents, making transfers between households very difficult to measure. Note that in column 5, the coefficients for the variable Married a Cousin are negative, although the coefficients are not statistically significant. This lack of significance is consistent with our predictions; we expect no association between dowry and consanguinity for the male sample, that is, the extent of father’s farmland and the coefficient is significant at the 5% level in the consanguinity regression (column 2). In other words, consanguineous marriages are more common among poorer (and likely credit constrained) households (prediction 3). This relationship however, is nonlinear. After a point, greater landholdings are actually associated with the negative relationship between bequests and inheritances (for women)—together lend support to our model rather than alternative explanations of consanguinity.

\section*{C. Consanguinity, Credit Constraints, and Wealth}

Our next step examines the determinants of consanguinity and dowry payment. Since our survey lacks direct information on parents’ financial state at the time of a woman’s marriage, we rely on proxy variables. The first of these is the value of the father’s landholdings. To the extent that land markets in rural South Asia are thin (Griffin, Khan, & Ickowitz, 2000), current landholdings (or landholdings at the time of father’s death) may be regarded as a proxy for past landholdings. The results in table 4 confirm that the incidence of consanguineous marriage decreases with the increase in the value of the father’s landholdings. To the extent that land residence frees this group of the commitment problem faced by the bride’s family. Similarly, in column 6, we observe no significant effect of the the magnitude of a dowry on inheritances for the male sample, that is, the woman’s husband and her in-laws, since patrilocal residence frees this group of the commitment problem faced by the bride’s family. Similarly, in column 6, we observe no significant effect of the the magnitude of a dowry on inheritances for the male sample, that is, the woman’s husband and her in-laws, since patrilocal residence frees this group of the commitment problem faced by the bride’s family.

\begin{table}[h!]
\centering
\begin{tabular}{lcccccc}
\hline
 & \textit{Married Cousin} & \textit{Paid Dowry} & \textit{Log Dowry Value} \\
\hline
\textit{\textbf{(1)}} & \textit{\textbf{(2)}} & \textit{\textbf{(3)}} & \textit{\textbf{(4)}} & \textit{\textbf{(5)}} & \textit{\textbf{(6)}} \\
\hline
Age at marriage & -0.0060 & -0.0032 & -0.0088 & -0.0001 & -0.0176 & -0.0021 \\
& (0.0013)** & (0.0016)** & (0.0018)** & (0.0029) & (0.0038)** & (0.0062) \\
Brothers at marriage & -0.0110 & -0.0088 & 0.0109 & 0.0130 & 0.0190 & 0.0186 \\
& (0.0034)** & (0.0039)** & (0.0045)** & (0.0051)** & (0.0097)** & (0.0108)** \\
Sisters at marriage & -0.0061 & -0.0041 & -0.0232 & 0.0029 & 0.0021 & 0.0074 \\
& (0.0038) & (0.0041) & (0.0048) & (0.0052) & (0.0010) & (0.0112) \\
& (3.152)** & (3.280)** & (6.335) & (6.226) & (1.3523) & (1.3329)** \\
Parents’ farmland squared & 0.4116 & 0.4332 & -0.3054 & -0.1599 & -1.1520 & -1.5767 \\
& (1.982)** & (2.060)** & (4.337) & (4.255) & (9.258) & (9.109)** \\
Age & -0.0060 & -0.0123 & -0.0088 & -0.0270 & -0.0176 & -0.0507 \\
& (0.0013)** & (0.0074)** & (0.0018)** & (0.0095)** & (0.0038)** & (0.0203)** \\
Age squared & 0.012 & 0.0099 & 0.0003 & 0.0003 & 0.019 & 0.032 \\
& (0.0009) & (0.0004)** & (0.0005) & (0.0010) & (0.0119) & (0.0525)** \\
Father’s age & -0.0025 & -0.0110 & -0.0024 & -0.0052 & 0.0018 & 0.0518 \\
& (0.0018) & (0.0024)** & (0.0020) & (0.0010) & (0.0019) & (0.0101) \\
Years of schooling & -0.0025 & -0.0110 & -0.0024 & -0.0052 & 0.0018 & 0.0518 \\
& (0.0018) & (0.0024)** & (0.0020) & (0.0010) & (0.0019) & (0.0101) \\
Muslim & 0.1188 & -0.2468 & 1.3523 & -1.5767 \\
& (0.0065)** & (0.2021)** & (0.0429)** & (0.0197) & (0.0548) \\
Mother alive at marriage & 0.0067 & -0.0288 & 0.0256 & 0.0071 \\
& (0.0052)** & (0.0044) & (0.0004) & (0.0010) & (0.0019) & (0.0101) \\
Father alive at marriage & 0.0160 & 0.0239 & 0.0200 & 0.0428 \\
& 0.0067 & 0.0023 & 0.0063 & (0.0032)** & (0.0044) & (0.0094) \\
Birth order & 0.0306 & 0.0293 & 0.0200 & 0.0428 \\
& 0.0052 & 0.0026 & 0.0063 & (0.0032)** & (0.0044) & (0.0094) \\
Mother attended school & 0.0579 & -0.1710 & -2.724 & -1.634 \\
& 0.026 & (0.0763)** & (0.634) & (0.1110) & (0.143)** & (0.203)** \\
Father attended school & 0.0089 & 0.0101 & 0.0143 & 0.0306 \\
& (0.0044) & (0.0010) & (0.0143)** & (0.0306)** & (0.0110) & (0.0143)** \\
Rainfall controls & Yes & Yes & Yes & Yes & Yes & Yes \\
Observations & 4,007 & 4,007 & 4,007 & 4,007 & 4,007 & 4,007 \\
R^2 & 0.0126 & 0.0312 & 0.2998 & 0.3373 & 0.2952 & 0.3291 \\
\hline
\end{tabular}
\caption{Correlates of Consanguinity and Dowry}
\end{table}

Notes i–iii of table 2 apply.
with prediction 1. These results are also consistent with the results of Mobarak, Kuhn, and Peters (2006), who use a difference-in-differences framework to postulate that the construction of an embankment in Matlab several years prior to the 1996 data created a positive wealth shock for some households, who were then able to pay higher dowries for their daughters and were less likely to enter into consanguineous marriages. Their findings thus reinforce the view that as families get wealthier (starting from an initial condition of low levels of wealth), credit constraint s may weaken and the family is able to search for a groom outside the kinship network by providing higher levels of dowries for their daughters.

Finally, we look at alternative proxy variables to test our hypothesis. For example, we could postulate that when marriage takes place at an early age, parents might face steeper cash constraints as they have had less time to accumulate assets. In this case, prediction 3 suggests that a consanguineous union might be chosen instead. We therefore look at the correlation between age of marriage and consanguinity (table 4, columns 1–2) as well as age of marriage and dowry payment (columns 3–6). We find that consanguineous marriages are more likely to be early marriages, while no such association is found with respect to dowry payment. Admittedly, age at marriage, dowry, and consanguinity are joint decisions, so that the results need to be interpreted with caution. Another source of variation in credit is the number of brothers and sisters alive at the time of marriage: a larger number of siblings (or, symmetrically, a smaller number of brothers) would increase the financial burden on the child to be married, so that consanguineous marriage is a more likely option to large dowry payments (prediction 3). The results presented in table 4 are consistent with that hypothesis: an additional male sibling at time of marriage is associated with a lower likelihood that a girl marries a first cousin, though the magnitude of the effect is small, at about 1%. The effect is symmetric when we look at dowry payments (columns 3 and 4) as well as actual dowry values (columns 5 and 6).

V. Conclusion

This paper has argued that consanguinity is a response to a marriage market failure in developing countries. The starting point of our analysis is the recognition that dowries exist across many societies and that consanguinity is also pervasive across many parts of the world. We propose a theoretical model of the marriage market to reconcile the existence of these two facts. We argue that these two social practices together address an agency problem between spouses' families and then provide empirical evidence that are consistent with the central predictions of the model. By focusing on the economic underpinnings of consanguineous marriage, we identified agency problems in marriage markets and documented the existence of institutions designed to overcome them.

REFERENCES

Agarwal, Bina, A Field of One’s Own: Gender and Land Rights in South Asia (Cambridge: Cambridge University Press, 1994).

Fauveau, Vincent (ed.), Matlab Women, Children and Health (Bangladesh: International Centre for Diarrhoeal Disease Research, 1994).

Griffin, Keith, Azizur R. Khan, and Amy Ickowitz, Poverty and Distribution of Land (United Nations Development Programme, 2000).

Iyer, Sriya, Demography and Religion in India (Delhi: Oxford University Press, 2002).

Lee, Suhooyung, “Marriage and Online Mate-Search Services: Evidence from South Korea,” unpublished manuscript, University of Maryland (2009).

APPENDIX: PROOFS

Proof of Proposition 1

To simplify future discussions, we first restrict strategies to payoff-relevant strategies:

Lemma 1: Payoff-relevant strategies. Any match profile \((m, f) \in M \times F\) with associated payments

\[\{(d_{mn}, \tau_m, \tau_n), (D_j, \tau_j, t_j)\}\] \[\{(0, 0, \alpha^m + D_j - D_{mn}), (D_j - D_{mn}, \tau_j, \tau_j)\}\] has an identical payoff profile to match profile \((m, f) \in M \times F\) with associated payments

\[\{(0, 0, \alpha^m + D_j - D_{mn}), (D_j - D_{mn}, \tau_j, \tau_j)\}\]

Subgame perfection implies that grooms will always invest whatever funds are available to them, or \(w_m + D_j - D_{mn}\), while brides will not exceed their initial commitment \(\tau_j\). We can henceforth limit ourselves to profiles \([\{D_j, \tau_j\}]_{m \in M, f \in F}\) to characterize payments associated with a given match profile \((m, f) \in M \times F\).

Proof of Lemma 1. Since, by assumption, separation is not a credible threat, equation (7) implies that constraint (12) is binding for the bride’s family only, so that \(t_m = \alpha^m + D_j - D_{mn}\) and \(t_j = \tau_j\) are the unique solutions to maximization of equation (11) subject to equation (12). It is then straightforward to verify that

\[\{(0, 0, \alpha^m + D_j - D_{mn}), (D_j - D_{mn}, \tau_j, \tau_j)\}\]

also satisfies equations (8–14) and gives the same payoffs to both \(m \in M\) and \(f \in F\) as \([\{D_j, \tau_j\}]_{m \in M, f \in F}\). Consider a deviation from two individuals \((m', f')\), from equilibrium matches \((m', f')\) and \((m, f)\), \([\{D_j, \tau_j\}]\) denotes the associated (payoff-relevant) transfers. On the equilibrium path, indirect utilities for \(m'\) and \(f\) are given by

\[V_{m'}(w_{m'}, w_f, 1) = A(w_{m'}, w_f, 1)(w_{m'} + w_f)\]

and

\[V_f(w_m, w_f, 1) = \theta A(w_m, w_f, 1)(w_m + w_f)\]

Before focusing on the interesting case (case 4), we first dismiss the obvious cases. Since grooms benefit from in-marriage investments, they are not benefiting from a deviation with a poorer bride (case 1) or a bride with equal wealth (cases 2 and 3):

Case 1: If
\(w_m > w_f\), then \(w_f > w_f\), which implies

\[V_m(w_m, w_f, 1) > V_m(w_m, w_f, d_{m'd_f})\]

Since \(V_m(w_m, w_f, d_{m'd_f})\) is the highest utility an individual \(m\) can obtain by marrying a spouse \(f\), the proposed deviation makes \(m'\) strictly worse off. Thus, there is no deviation from the equilibrium such that \(w_m > w_f\).

Case 2: If \(w_m = w_f\) and \(d_{m'd_f} < 1\), then

\[V_m(w_m, w_f, 1) > V_m(w_m, w_f, d_{m'd_f})\]

In such case, \(m'\) is made strictly worse off. Thus, there is no deviation from the equilibrium such that \(w_m = w_f\) and \(d_{m'd_f} < 1\).

Case 3: If \(w_m = w_f\) and \(d_{m'd_f} = 1\), then

\[V_m(w_m, w_f, d_{m'd_f}) = A(w_m, w_f, d_{m'd_f})(w_m + \tau_f + \tilde{D}_j)\]

implies that \(\tilde{\tau}_f = (1 - d_{m'd_f})w_f \) and \(\tilde{D}_j = d_{m'd_f}w_f\) so that

\[V_f(w_m, w_f, d_{m'd_f}) = \theta A (w_m, w_f, d_{m'd_f})(w_m + \tau_f + \tilde{D}_j)\]

Thus, there is no deviation from the equilibrium such that \(w_m = w_f\) and \(d_{m'd_f} = d_{m'd_f}\) and either \(m'\) or \(f\) is made strictly better off.

Case 4: The final case is the case \(w_m = w_f\).

Without loss of generality, we can suppose that \((\tilde{D}_j, \tilde{\tau}_f)\) is such that it leaves \(m'\) indifferent between his equilibrium payoff and the deviation payoff:

\[A(w_m, w_f, 1)(w_m + w_f) = A(w_m, w_f, d_{m'd_f})(w_m + \tilde{\tau}_f + \tilde{D}_j)\]

while making \(f\) strictly better off:

\[\theta A(w_m, w_f, 1) w_m + w_f) < \theta A(w_m, w_f, d_{m'd_f}) (w_m + \tilde{\tau}_f + \tilde{D}_j)\]

Equation (A1) implies

\[\frac{A(w_m, w_f, 1)}{A(w_m, w_f, d_{m'd_f})} (w_m + w_f) - w_m = \tilde{\tau}_f + \tilde{D}_j\]

which can be plugged into equation (A2) and, after rearranging, yields

\[\frac{A(w_m, w_f, 1)}{A(w_m, w_f, d_{m'd_f})} (w_m + w_f) - A(w_m, w_f, 1) (w_m + w_f) < \frac{1}{\theta A(w_m, w_f, d_{m'd_f})} - 1\]

Since \(d_{m'd_f} \leq 1\), we have

\[\frac{A(w_m, w_f, 1)}{A(w_m, w_f, d_{m'd_f})} (w_m + w_f) - A(w_m, w_f, 1) (w_m + w_f) \]

\[\geq A(w_m, w_f, 1) (w_m + w_f) - A(w_m, w_f, 1) (w_m + w_f) \]

Since \(w_m < w_m\), supermodularity implies

\[A(w_m, w_f, 1)(w_m + w_f) - A(w_m, w_f, 1)(w_m + w_f) \]

\[\geq A(w_m, w_f, 1) (w_m + w_f) - A(w_m, w_f, 1) (w_m + w_f) \]

\[\geq 0\]
By transitivity, we thus have
\[A \left(w_m, w_f, 1 \right) \left(w_m + w_f \right) - A \left(w_m, w_f, d_{mf} \right) \left(w_m + w_f \right) \geq 1 \]
\[A \left(w_m, w_f, d_{mf} \right) \left(w_f + w_m \right) - A \left(w_m, w_f, 1 \right) \left(w_m + w_f \right) \geq 1 \]
and
\[\frac{1}{\partial A \left(w_m, w_f, d_{mf} \right)} \leq 2 \] (A4)
for any value of \(\theta \geq \bar{\theta} \) where \(\bar{\theta} = \frac{1}{2 \left(\frac{\theta}{h + 1} \right)} \) and \(\bar{\theta} < \bar{\theta} \) if condition
\[A \left(h, h, 1 \right) < 2A \left(h, h, 0 \right) \]
is satisfied.

For any \(\theta \in \left(\frac{\theta}{h}, \bar{\theta} \right) \), inequalities (A3) and (A4) form a contradiction; the proposed deviation cannot make \(f \) strictly better off while leaving \(m \) indifferent. This concludes the proof of proposition 1.

Proof of Proposition 2

We follow the same strategy as for proposition 1. Consider a deviation from two individuals \((m', f')\), from equilibrium matches \((m', f')\) and \((m, f)\). Similarly, \((\tilde{D}_f, \tilde{z}_f)\) denotes the associated (payoff-relevant) transfers.

On the equilibrium path, indirect utilities for \(m' \) and \(f' \) are given by
\[W_m \left(w_{m'}, w_f, d_{mf} \right) = A \left(w_{m'}, w_f, d_{mf} \right) \left[w_{m'} + (1 - d_{mf}) w_f + (1 - \gamma) d_{mf} w_f \right] \]
and
\[W_f \left(w_{m'}, w_f, d_{mf} \right) = \partial A \left(w_{m'}, w_f, d_{mf} \right) \left[w_{m'} + (1 - d_{mf}) w_f + (1 - \gamma) d_{mf} w_f \right] \].

Case 1: \(w_m > w_f \) Optimality of \(d_{mf} \) implies that
\[W_m \left(w_{m'}, w_f, d_{mf} \right) \geq W_m \left(w_{m'}, w_f, d_{mf} \right) \].

Since \(w_m > w_f \), hence \(w_f > w_f \), so that
\[W_m \left(w_{m'}, w_f, d_{mf} \right) > W_m \left(w_{m'}, w_f, d_{mf} \right) \].

By transitivity,
\[W_m \left(w_{m'}, w_f, d_{mf} \right) > W_m \left(w_{m'}, w_f, d_{mf} \right) \].

Consequently, \(m' \) is always worse off when deviating with some \(f \) such that \(w_m > w_f \). Thus, there is no deviation from the equilibrium such that \(w_m > w_f \).

Case 2: If \(w_m = w_f \) and \(d_{mf} \neq d_{mf} \), then optimality of \(d_{mf} \) implies
\[W_m \left(w_{m'}, w_f, d_{mf} \right) > W_m \left(w_{m'}, w_f, d_{mf} \right) \].

Consequently, \(m' \) is always worse off when deviating with some \(f \) such that \(w_m = w_f \) and \(d_{mf} \neq d_{mf} \). Thus, there is no deviation from the equilibrium such that \(w_m = w_f \) and \(d_{mf} < d_{mf} \).

Case 3: If \(w_m = w_f \) and \(d_{mf} = d_{mf} \), then
\[W_m \left(w_{m'}, w_f, d_{mf} \right) \geq A \left(w_{m'}, w_f, d_{mf} \right) \left(w_m + \tilde{z}_f + D_f - \gamma \tilde{D}_f \right) \]
implies that \(\tilde{z}_f = (1 - d_{mf}) w_f + D_f \) and \(\tilde{D}_f = d_{mf} w_f \) so that
\[W_m \left(w_{m'}, w_f, d_{mf} \right) = A \left(w_{m'}, w_f, d_{mf} \right) \left(w_m + \tilde{z}_f + D_f - \gamma \tilde{D}_f \right) \]
\[W_f \left(w_{m'}, w_f, d_{mf} \right) = \partial A \left(w_{m'}, w_f, d_{mf} \right) \left(w_m + \tilde{z}_f + D_f - \gamma \tilde{D}_f \right) \].

Thus, there is no deviation from the equilibrium such that \(w_m = w_f \) and \(d_{mf} = d_{mf} \) that makes either \(m' \) or \(f \) strictly better off.

Case 4: The final case is the case \(w_m < w_f \). Suppose that \((\tilde{D}_f, \tilde{z}_f)\) is the underlying transfers. Before going further, we state a first preliminary result:

Lemma 2: Subgame perfect strategies. A match profile \((m, f)\) with associated payments \(\{D_m, z_m, t_m\}, \{D_f, z_f, t_f\}\) is an equilibrium only if

\[\begin{align*}
& t_m = w_m + (1 - \gamma) D_f - D_m \\
& t_f = z_f \\
& D_m = 0 \quad \text{and} \quad \gamma < (1 - d_{mf}) w_f \Rightarrow D_f = 0 \\
& \gamma = \min \left\{ D_f, (1 - d_{mf}) w_f - z_f \right\}.
\end{align*} \] (A5)

Proof of Lemma 2. Equalities (A5) are subgame perfect transfers, since \(\theta A \left(w_{m'}, w_f, d_{mf} \right) < 1 \prec A \left(w_{m'}, w_f, d_{mf} \right) \). The spouses’ utilities are given by
\[U_n \left(t_n, t_f \right) = A \left(w_{m'}, w_f, d_{mf} \right) \left[w_m + (1 - \gamma) D_f - D_m + z_f \right] \]
\[U_f \left(t_n, t_f \right) = \partial A \left(w_{m'}, w_f, d_{mf} \right) \left[w_m + (1 - \gamma) D_f - D_m + z_f \right] + w_f + (1 - \gamma) D_m - D_f - z_f \]
(i) Suppose that \(D_f > 0 \). Then take \(\gamma = \min \left\{ D_m, z_f \right\} \). Transfers \(\tilde{z}_f = z_f - \gamma \) and \(\tilde{D}_m = D_m - \gamma \) leave \(m \) indifferent while making \(f \) strictly better off.
(ii) Suppose that \(D_f > 0 \) and \(\gamma < (1 - d_{mf}) w_f \). Then take
\[\epsilon = \min \left\{ D_f, (1 - d_{mf}) w_f - z_f \right\}. \]
Transfers \(\tilde{z}_f = z_f + \epsilon \) and \(\tilde{D}_f = D_f - \epsilon \) make both \(m \) and \(f \) strictly better off.

Therefore (i) and (ii) imply that equation (A6) holds.

Conditions (A6) reflect the fact that in equilibrium, dowry payment is kept to a minimum and thus used only when equation (10) is binding on the bride’s side, while grooms do not pay bride-prices. Finally, equalities (A5) are subgame-perfect conditions for ex post transfers.

Lemma 3: Supermodularity. Equation (15) defines a unique function \(d(\gamma) \) such that for every \((m, f) \in M \times F, d^*_{mf} = d \left(w_{m'}, w_f \right) \). Furthermore, the indirect utility defined by
\[W^* \left(w_{m'}, w_f \right) = A \left[w_{m'}, w_f, d \left(w_{m'}, w_f \right) \right] \left[w_{m'} + w_f - \gamma d_{mf} w_f \right] \]
is supermodular.

Proof of Lemma 3. \(d_{mf} \), when not a corner solution, is implicitly defined by first-order condition
\[f \left(w_{m'}, w_f, d_{mf} \right) = \partial A \left(w_{m'}, w_f, d_{mf} \right) \left(w_{m'} + w_f - \gamma d_{mf} w_f \right) \]
\[- A \left(w_{m'}, w_f, d_{mf} \right) \gamma w_f = 0 \]
and therefore depends on \(\left(w_{m'}, w_f \right) \) only. Since \(A(\gamma) \) is increasing and concave in the second-order derivative,
\[\frac{\partial^2 A \left(w_{m'}, w_f, d_{mf} \right)}{\partial d^2} \left(w_{m'} + w_f - \gamma d_{mf} w_f \right) - 2\gamma w_f \frac{\partial A \left(w_{m'}, w_f, d_{mf} \right)}{\partial d} < 0, \]
for every \(d \), so that for every \(\left(w_{m'}, w_f \right) \) \in \([0, h] \) \(f \left(w_{m'}, w_f, d \right) \) is continuous over \([0, 1]\) and decreasing in \(d \). If the solution is interior, then \(d_{mf} \) is uniquely defined by \(f \left(w_{m'}, w_f, d \right) = 0 \). When \(d_{mf} \) is a corner solution and \(f \left(w_{m'}, w_f, d \right) > 0 \) (resp. \(f \left(w_{m'}, w_f, d \right) < 0 \)) for every \(d \in [0, 1] \), then we
define \(d_{mf}^* = 1 \) (resp. \(d_{mf}' = 0 \)). We can apply the implicit function theorem to determine the derivatives of \(d_{mf} \equiv d \left(w_m, w_f \right) \) with respect to \(w_f \), respectively:

\[
\frac{\partial d \left(w_m, w_f \right)}{\partial w_f} = -\frac{\frac{\partial^2}{\partial w_m \partial w_f} \left(w_m + w_f - \gamma d w_f \right) + \frac{\partial}{\partial w_f} \left(\frac{\partial}{\partial w_m} \left(w_m + w_f - \gamma d w_f \right) \right)}{\frac{\partial^2}{\partial w_f^2} \left(w_m + w_f - \gamma d w_f \right) - 2 \gamma w_f \frac{\partial^2}{\partial w_f^2} \left(w_m + w_f - \gamma d w_f \right) + \gamma \frac{\partial^2}{\partial w_f^2} \left(w_m + w_f - \gamma d w_f \right)}.
\]

(A7)

where we simplified notations for clarity. A necessary and sufficient condition for

\[
W^* \left(w_m, w_f \right) = A \left[w_m, w_f, d \left(w_m, w_f \right) \right] \left[w_m + w_f - \gamma d \left(w_m, w_f \right) \right] w_f
\]

to be supermodular is

\[
\frac{\partial^2}{\partial w_m \partial w_f} \left(w_m + w_f - \gamma d w_f \right) + \frac{\partial}{\partial w_f} \left(\frac{\partial}{\partial w_m} \left(w_m + w_f - \gamma d w_f \right) \right) + \frac{\partial^2}{\partial w_f^2} \left(w_m + w_f - \gamma d w_f \right) - 2 \gamma w_f \frac{\partial^2}{\partial w_f^2} \left(w_m + w_f - \gamma d w_f \right) + \gamma \frac{\partial^2}{\partial w_f^2} \left(w_m + w_f - \gamma d w_f \right) > 0.
\]

(A8)

The first line, equation (A8), is obtained applying the envelope theorem. Given that \(\frac{\partial}{\partial w_f} \left(w_m + w_f - \gamma d w_f \right) > 0 \), \(k \in \left[m, f \right] \), and \(\frac{\partial^2}{\partial w_f^2} \left(w_m + w_f - \gamma d w_f \right) > 0 \), a sufficient condition for \(W^* \left(\cdot \right) \) to be supermodular is for every \(\left(w_m, w_f \right) \in \left[h, \bar{h} \right]^2 \).

\[
1 - \gamma d \left(w_m, w_f \right) - \gamma \frac{\partial d \left(w_m, w_f \right)}{\partial w_f} w_f \geq 0.
\]

(A9) We consider function

\[
g \left(\gamma, d, w_m, w_f \right) = -\frac{\frac{\partial^2}{\partial w_m \partial w_f} \left(w_m + w_f - \gamma d w_f \right) + \frac{\partial}{\partial w_f} \left(\frac{\partial}{\partial w_m} \left(w_m + w_f - \gamma d w_f \right) \right)}{\frac{\partial^2}{\partial w_f^2} \left(w_m + w_f - \gamma d w_f \right) - 2 \gamma w_f \frac{\partial^2}{\partial w_f^2} \left(w_m + w_f - \gamma d w_f \right) + \gamma \frac{\partial^2}{\partial w_f^2} \left(w_m + w_f - \gamma d w_f \right)}.
\]

(A10)

while making \(f \) strictly better off, or

\[
\partial A \left(w_m, w_f, d_{mf}' \right) \left(w_m + w_f - \gamma d_{mf}' w_f \right) < \partial A \left(w_m, w_f, d_{mf} \right) \left(w_m + w_f - \gamma d_{mf} w_f \right) + \left(w_f - z_f - D_f \right). \tag{A12}
\]

From equation (A11), we have

\[
z_f + (1 - \gamma) D_f = \frac{A \left(w_m, w_f, d_{mf} \right)}{A \left(w_m, w_f, d_{mf}' \right)} \left[w_m + w_f - \gamma d_{mf}' w_f \right] - w_m.
\]

(A11)

First, we can substitute for \(z_f + (1 - \gamma) D_f \) into equation (A12) and obtain after rearranging (the same way we did for the proof of proposition 1),

\[
A \left(w_m, w_f, d_{mf}' \right) \left[w_m + w_f - \gamma d_{mf}' w_f \right] - A \left(w_m, w_f, d_{mf} \right) \left[w_f + w_m - \gamma D_f \right] < \frac{\partial A \left(w_m, w_f, d_{mf} \right)}{\partial A \left(w_m, w_f, d_{mf}' \right)} - 1.
\]

(A13)

The numerator on the left-hand side of equation (A13) is therefore bounded by

\[
A \left(w_m, w_f, d_{mf}' \right) \left[w_m + w_f - \gamma d_{mf}' w_f \right] - A \left(w_m, w_f, d_{mf} \right) \left[w_m + w_f - \gamma d_{mf} w_f \right] - \frac{\gamma}{1 - \gamma} A \left(w_m, w_f, d_{mf}' \right) \left[w_f + w_m - \gamma d_{mf} w_f \right] - A \left(w_m, w_f, d_{mf}' \right) \left[w_m + w_f - \gamma d_{mf}' w_f \right] \leq A \left(w_m, w_f, d_{mf} \right) \left[w_f + w_m - \gamma d_{mf} w_f \right] - A \left(w_m, w_f, d_{mf} \right) \left[w_m + w_f - \gamma D_f \right] \leq A \left(w_m, w_f, d_{mf}' \right) \left[w_m + w_f - \gamma d_{mf}' w_f \right].
\]

(A15)
Given the optimality of \(d_{m_f}^* \), we have
\[
A \left(w_m, w_f, d_{m_f}^* \right) \left[w_m + w_f - \gamma d_{m_f}^* w_f \right] \\
- A \left(w_m, w_f, d_{m_f}^* \right) \left(w_m + w_f - \gamma d_{m_f}^* w_f \right) \\
\geq A \left(w_m, w_f, d_{m_f}^* \right) \left[w_m + w_f - \gamma d_{m_f}^* w_f \right] \\
- A \left(w_m, w_f, d_{m_f}^* \right) \left(w_m + w_f - \gamma d_{m_f}^* w_f \right)
\]
and
\[
A \left(w_m, w_f, d_{m_f}^* \right) \left[w_m + w_f - \gamma d_{m_f}^* w_f \right] \\
- A \left(w_m, w_f, d_{m_f}^* \right) \left(w_m + w_f - \gamma d_{m_f}^* w_f \right) \\
\leq A \left(w_m, w_f, d_{m_f}^* \right) \left[w_m + w_f - \gamma d_{m_f}^* w_f \right] \\
- A \left(w_m, w_f, d_{m_f}^* \right) \left(w_m + w_f - \gamma d_{m_f}^* w_f \right).
\]

Lemma 3 states that \(d_{m_f}^* \) can be written as a function of \(\left(w_m, w_f \right) \) only and the indirect utility \(W^* \left(w_m, w_f \right) = A \left(w_m, w_f, d_{m_f}^* \right) \left[w_m + w_f - \gamma d_{m_f}^* w_f \right] \) is supermodular for low enough values of \(\gamma \). Thus, we have the following inequality:
\[
A \left(w_m, w_f, d_{m_f}^* \right) \left[w_m + w_f - \gamma d_{m_f}^* w_f \right] \\
- A \left(w_m, w_f, d_{m_f}^* \right) \left(w_m + w_f - \gamma d_{m_f}^* w_f \right) \\
\leq A \left(w_m, w_f, d_{m_f}^* \right) \left[w_m + w_f - \gamma d_{m_f}^* w_f \right] \\
- A \left(w_m, w_f, d_{m_f}^* \right) \left(w_m + w_f - \gamma d_{m_f}^* w_f \right).
\]

By transitivity, assuming that \(\frac{\gamma}{1 - \gamma} < 1 \), the left-hand side term of inequality (A15) is nonnegative:
\[
A \left(w_m, w_f, d_{m_f}^* \right) \left[w_f + w_m - \gamma d_{m_f}^* w_f \right] \\
- A \left(w_m, w_f, d_{m_f}^* \right) \left(w_f + w_m - \gamma d_{m_f}^* w_f \right) \\
\leq A \left(w_m, w_f, d_{m_f}^* \right) \left[w_f + w_m - \gamma d_{m_f}^* w_f \right] \\
- A \left(w_m, w_f, d_{m_f}^* \right) \left(w_f + w_m - \gamma d_{m_f}^* w_f \right)
\]
and supermodularity yields the following inequality:
\[
A \left(w_m, w_f, d_{m_f}^* \right) \left[w_f + w_m - \gamma d_{m_f}^* w_f \right] \\
- A \left(w_m, w_f, d_{m_f}^* \right) \left(w_f + w_m - \gamma d_{m_f}^* w_f \right) \\
\geq A \left(w_m, w_f, d_{m_f}^* \right) \left(w_f + w_m - \gamma d_{m_f}^* w_f \right) \\
- A \left(w_m, w_f, d_{m_f}^* \right) \left[w_f + w_m - \gamma d_{m_f}^* w_f \right].
\]

We therefore have
\[
A \left(w_m, w_f, d_{m_f}^* \right) \left[w_f + w_m - \gamma d_{m_f}^* w_f \right] \\
- A \left(w_m, w_f, d_{m_f}^* \right) \left(w_f + w_m - \gamma d_{m_f}^* w_f \right) \\
\geq A \left(w_m, w_f, d_{m_f}^* \right) \left(w_f + w_m - \gamma d_{m_f}^* w_f \right) \\
- A \left(w_m, w_f, d_{m_f}^* \right) \left[w_f + w_m - \gamma d_{m_f}^* w_f \right]
\]
and from inequality (A16) we have
\[
A \left(w_m, w_f, d_{m_f}^* \right) \left[w_f + w_m - \gamma D_f \right] \\
- A \left(w_m, w_f, d_{m_f}^* \right) \left(w_f + w_m - \gamma D_f \right) \\
\leq \frac{1}{1 - \gamma} \left\{ A \left(w_m, w_f, d_{m_f}^* \right) \left[w_f + w_m - \gamma d_{m_f}^* w_f \right] \\
- A \left(w_m, w_f, d_{m_f}^* \right) \left[w_f + w_m - \gamma d_{m_f}^* w_f \right] \right\},
\]
so that the ratio
\[
\frac{A \left(w_m, w_f, d_{m_f}^* \right) \left[w_f + w_m - \gamma d_{m_f}^* w_f \right] - A \left(w_m, w_f, d_{m_f}^* \right) \left[w_f + w_m - \gamma D_f \right] \right)}{A \left(w_m, w_f, d_{m_f}^* \right) \left[w_f + w_m - \gamma D_f \right] - A \left(w_m, w_f, d_{m_f}^* \right) \left[w_f + w_m - \gamma d_{m_f}^* w_f \right] \right)} \geq 1 - 2\theta.
\]

Assuming that \(\gamma < \frac{1}{2} \), the same argument as in proposition 1 applies, for every \(\theta \geq \frac{1}{\frac{1}{\gamma} + \sqrt{(\theta^{2} - 1)}} \approx \bar{\theta} \), so that there is no profitable deviation from the equilibrium. If condition \(A \left(h, h, 1 \right) < 2A \left(h, h, 0 \right) \) is satisfied, \(\gamma \in [0, 1] \) \(\gamma < 1 - \frac{\lambda(\bar{h}, 1)}{\sqrt{(\bar{h}^2 - 1)}} \) is nonempty. This in turn yields \(\tilde{\theta} < \bar{\theta} \) so that the set of possible parameters \(\theta \) verifying equation (A18) uniformly with respect to \((m', \bar{f}) \) is nonempty.

By choosing \(\gamma = \inf \left\{ \frac{1}{2} - \frac{\lambda(\bar{h}, 1)}{\sqrt{(\bar{h}^2 - 1)}} \right\} \), where \(\gamma \) has been defined in lemma 3, we have shown that for any \(\gamma < \gamma \) and any \(\theta \in (\bar{\theta}, \tilde{\theta}) \), there does not exist a deviation that makes both spouses weakly better off while making one of the two strictly better off. This concludes the proof of proposition 2.