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Spatial difference-in-differences analysis is used to study the 
impacts of a large-scale development intervention aimed 
at improving energy efficiency in Malawi. The estimation 
strategy takes advantage of the geographical variation in 
the implementation of different project components and 
is based on a combination of remote-sensing (satellite) data 
and national household survey data. The results suggest that 
a combination of demand-side and supply-side interven-
tions was associated with a statistically significant increase 
in electricity access, a decrease in the frequency of blackouts, 

and a switch from traditional fuels to electricity as the main 
source of energy for lighting (but not for cooking). At the 
same time, there is no evidence that the intervention caused 
households to pay more for electricity. The results are con-
sistent with an emerging view in the literature that there 
are synergies between energy efficiency and energy access, 
especially in places where the bottleneck to wider electricity 
access is limited electricity generation capacity rather than 
the cost of connecting more clients to the grid.
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Working Papers are also posted on the Web at http://www.worldbank.org/prwp. The authors may be contacted at 
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I. Introduction 
 
According to recent estimates by the International Energy Agency, global energy demand will rebound to 
its pre-Covid-19 level sometime between 2023 and 2025, and then grow by 9 percent on average each year 
until 2030 (IEA 2020). Since the demand in most advanced economies is on a declining trend, almost all this 
increase will come from developing and emerging market economies, driven by factors such as industrial 
development, demographic change, and changes in consumer behavior. Given limited resources and the 
costs associated with increasing energy generation capacity, energy efficiency (EE)1 projects are increasingly 
seen by policy makers around the world as a critical tool to help meet the rapid growth in energy demand.2 
In addition, improvements in EE are often argued to be a key channel to reduce greenhouse gas emissions 
and achieve the ambitious 2°C stabilization target in the Copenhagen Consensus (World Bank, 2010). In fact, 
improving EE has been called ``the cheapest, fastest, and most environmentally friendly way to meet a 
significant portion of the world’s energy needs’’ (Kaygusuz 2012). Moreover, EE projects are generally 
believed to provide important socio-economic benefits, including reducing countries’ dependence on fossil 
fuels (thus enhancing energy security), easing infrastructure bottlenecks and impacts of temporary power 
shortfalls, improving industrial and commercial competitiveness through reduced operating costs (Sarkar 
and Singh 2010), and facilitating the expansion of energy access (Can et al. 2018). 

Despite these benefits, achieving significant and sustained gains in EE continues to be a challenge 
across countries, especially in many developing economies. An important factor in this context is the scarce 
empirical evidence of the impacts of EE projects in developing economies, whose energy systems and 
associated challenges often differ fundamentally from those in advanced economies (Urban et al 2007; 
Ouedraogo 2017). Recent studies on low and middle income countries (LMIC) find preliminary evidence 
that investments focused on more efficient lighting can be cost-efficient (Iimi et al. 2019; Carranza and 
Meeks 2021). For example, transitioning from kerosene lighting to solar lighting reduces energy 
expenditures by 42 percent in rural households in Kenya (Rom and Günther 2019). There is, however, at 
best mixed evidence in the literature as to whether these interventions cause energy savings,3 and most of 
the existing evidence is based on small-scale interventions with unknown external validity and potential for 
scaling up. As noted by Fowlie and Meeks (2021), there is “tremendous value in ex post evaluations of these 
interventions. Empirical research that objectively evaluates the impacts of these and other programs can 
inform the course of future policy initiatives aimed at improving energy efficiency.” 

This paper contributes to addressing this gap in the literature by providing quasi-experimental 
evidence on the impacts of a large-scale EE project in Malawi which was supported by the World Bank 
between 2015 and 2018. Our estimation strategy is based on a difference-in-differences (DiD) approach 
using a combination of remote-sensing data from satellite images and data from national household 
surveys. The estimation strategy takes advantage of the geographical variation in the implementation of 
different project components, including variation across districts, subdistricts (cities), and individual 
households. Various project components were implemented in different areas across the country, 

 
1 In this paper, EE refers to reductions in the amount of energy required to provide the same output or level of service. For example, 

such reduction can result from the adoption of improved technologies or practices that help to save energy or reduce energy 
losses. 

2 For example, the IEA (2017) estimates that, without the improvements in EE achieved since 2000, the world would have needed 
to generate 12% more energy in 2016. 

3 On the one hand, studies have found that replacing traditional cooking stoves in Senegal with more fuel-efficient versions causes 
a decrease in firewood consumption by 30 percent (Bensch and Peters 2015), and that upgrading to more efficient cookstoves in 
Kenya delivered, on average, 40 percent decrease in charcoal expenditures (Berkouwer and Dean 2020). On the other hand, 
energy savings have been found to be either negligible or negative on investments in LMIC replacing refrigerators, air 
conditioners, and building insulation with more energy efficient alternatives (Davis et al. 2014; Davis et al. 2018; Ryan 2018). One 
factor that could help explain these findings is an energy rebound effect; that is, an efficiency-induced reduction in the cost of 
this service triggering an increase in energy consumption. The existing literature on energy rebound effects focuses mostly on 
high income countries, but there is incipient research that suggests that rebound effects could be higher in LMIC than in high 
income countries (Ouyang et al., 2010; Davis et al., 2014). 
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benefitting households living in (or nearby) project areas relatively more than households residing in non-
project areas. Given that the allocation of project locations was not determined randomly, a simple 
(ordinary least squares) regression of household outcomes on the corresponding treatment indicator would 
clearly suffer from endogeneity, since the treatment indicator would be correlated with (unobservable) 
factors that also tend to affect the considered outcomes. The DiD approach helps to circumvent this issue, 
based on additional assumptions which we discuss in detail below.4 

The analysis shows that a combination of demand-side and supply-side interventions was associated 
with a statistically significant increase in electricity access, a decrease in the reported frequency of 
blackouts, and a switch from traditional fuels to electricity as the main source of energy for lighting (albeit 
not for cooking).5 These results are based both on evidence obtained from national household survey data 
and from the fact that nighttime radiance (as measured by satellite images) increased relatively more in 
grid cells belonging to areas with project components than in non-project areas. There is no evidence that 
the project caused households to pay more for electricity (e.g., due to excessive rebound effects).  

The paper contributes to several strands of literature. First, we add to the literature on the impacts 
of development interventions aimed at improving EE and facilitating the adoption of modern technologies 
to mitigate climate change. Due to limited data availability on EE outcomes, especially at a nationally 
representative level, existing EE project evaluations are often based on information collected during the 
project’s implementation phase or on expert ratings and stakeholder analysis at the end of the project (e.g., 
SENER and World Bank 2015; Agyarko et al. 2020). The methodology and data sources used in this study 
offer several benefits over traditional approaches to project evaluation. Specifically, our evidence is 
obtained from data that are (a) nationally representative, (b) collected independently of the studied project, 
and (c) able to control for improvements in the considered outcomes that might have occurred even 
without the project. The second aspect (b) matters, because using data that are unrelated to the evaluated 
projects minimizes the risk of researcher demand bias (e.g., the risk that beneficiaries of a project provide 
more favorable responses when they are interviewed by someone who is associated with the project). In 
addition, the employed DiD method can separate observed changes in the outcomes of beneficiaries that 
were due to the project from changes that would have also occurred in the absence of the project. 
Moreover, existing research on EE interventions tends to focus on supply-side solutions (Creutzig et al. 
2018) whereas the project studied here represents a combination of demand- and supply-side measures.  

Our findings also relate to studies that argue that there exists a link between EE and energy access 
(Can et al. 2018; Dagnachew et al. 2018). Specifically, these studies argue that improvements in EE can act 
like an increase in energy generation capacity which helps to facilitate the expansion of electricity access, 
especially in areas where the bottleneck to wider electricity access is not the cost of connecting more clients 
to the grid, but limited electricity generation capacity. The results we obtain from the project in Malawi are 
consistent with this view and the existence of synergies between EE and energy access. 

Finally, the paper contributes to the growing literature that uses remote-sensing data from satellites 
to measure economic and energy-related outcomes (Henderson et al 2012; Shi et al. 2018; Falcheta et al 
2019). Such data have been shown to give rise to valid indicators of energy production, energy consumption, 
and carbon emissions (see Jasiński 2019 and the survey in Zhu et al. 2019). Our findings are consistent with 
the view that remote-sensing data may also be useful as a proxy for electricity access and, to some extent, 
even the reliability of electricity (i.e., a reduction in the frequency of blackouts) in developing countries such 
as Malawi. 

 
4 The DiD estimator also requires that (a) the intervention’s design permits the identification of both a treatment and a control 

group (i.e., households that benefited from the program and those that did not benefit), and (b) there is sufficient data available 
on the outcomes for both groups, and both before and after the implementation of the project. For the project studied in this 
paper, (a) is fulfilled based on the variation in the geographical locations of project components, and (b) is achieved by using 
existing, nationally representative household surveys as well as data from satellite images. Both types of data are available for 
years before and after the implementation of the project. 

5 Our data only allow us to study the impact of the project as a whole. Thus, we are unable to disentangle the effects of individual 
project components (including of components focused on the supply side and those focused on the demand side). 
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The rest of the paper is structured as follows. Section II provides more background on the evaluated 
project and country context. Section III describes the data. Section IV explains the empirical strategy and 
different DiD regression models that we estimate. Section V presents the results. Section VI concludes. 
 

II. Background on the Project and Country Context6 
 
Malawi’s electricity access rate was below 10 percent of the population prior to the project (in 2011), and 
mostly concentrated in urban centers. For the 80 percent of the people living in rural areas, access to 
electricity was less than 1 percent. Almost all (98 percent) of Malawi’s grid-supplied electrical power is 
generated by six run-of-the-river hydropower projects on the Shire River. The Electricity Supply Corporation 
of Malawi (ESCOM), a government-owned electric utility, is the main electricity service provider. ESCOM 
owns and operates all the formal generation capacity in the country and operates the national electricity 
grid. In 2011, the transmission network comprised 1,250 km of wood pole lines and 815 km of steel tower 
lines as well as 70 transformers located at 39 substations across the country. ESCOM’s transmission network 
had suffered from many years of under-investment. Malawi’s power grid was characterized by heavily 
loaded transmission lines and transformers, resulting in frequent failures especially during the rainy season, 
and generally poor quality and unreliable supply. Demand for electricity had risen over the years without 
corresponding investments in systems, causing the system to be greatly strained with overloading, 
bottlenecks and load shedding. Overall, the existing system was greatly strained and the frequency of both 
scheduled and unscheduled blackouts or brownouts was increasing, constraining both industrial production 
and reliable provision of electricity to households. 

The Malawi Energy Sector Support Project, on which our study focuses, aimed at improving EE in 
Malawi through a combination of interventions targeted at the supply side and the demand side of 
electricity. The project encompassed several components, including (i) electricity network strengthening 
and expansion, (ii) demand-side management and EE measures, and (iii) capacity building and technical 
assistance. The first component included the construction of new substations and transmission lines, 
uprating of existing substations, rehabilitation of underground cables, extension of peri-urban networks, 
and purchase of spare parts for generation (the disbursed amount for this component was USD 49 million). 
Component (ii) included time-of-use meters and sensitization campaigns, derating of hot water geyser 
(HWG) element ratings, HWG management system with insulation, installation of solar water heaters, radio 
control to switch off water heaters to reduce demand at peak times, SMS messages to manage peak load 
demand, and media campaigns (USD 2 million). Component (iii) provided institutional strengthening and 
technical assistance to ESCOM and the Ministry of Natural Resources, Energy, and Mining (USD 8 million). 
Another project component supported feasibility studies for the development of additional generation 
capacity and transmission lines (USD 10 million). 

The project was implemented in the period 2015-2018 and comprised 26 project sites located in 20 
subdistricts (mainly cities) across 12 of Malawi’s 28 districts.7 Figure 1 illustrates the geographic coverage 
of the project. Many of the project components focused on urban areas with existing (but deteriorating) 
power grid infrastructure and were designed to both improve the quality of electricity supply and support 
higher EE on the demand side. The project’s total amount of USD 69 million was disbursed between the 
years 2015 and 2018. Since some first effects of the project were expected to take place already during this 
period, we consider the year 2014 as the last year of the pre-program period (and the years starting with 
2015 as the post-program period). 

 

 
6 The information and numbers in this section are mostly based on the Project Appraisal Document (PAD) and Implementation 

Completion and Results Report (ICR) (see World Bank 2011; 2019), which are publicly available from the World Bank’s website. 
7  The districts with project sites are: Balaka, Blantyre, Karonga, Kasungu, Lilongwe, Mwanza, Mzimba, Neno, Nkhata Bay, 

Nkhotakota, Ntcheu, and Zomba. 
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Figure 1. Geographic coverage and urban extents of the project locations 

   

Notes: The map on the left shows the geographic coverage of the project (red boxes) overlaid against Malawi’s 
sub-district/city boundaries (administrative level 2). The map in the middle shows the geographic coverage of 
the project (red boxes) overlaid against Malawi’s district boundaries (administrative level 1). The map on the 
right shows the geographic coverage of the project (green boxes) overlaid against Malawi’s urban extents (red 
areas). Urban extents represent the shape and area of urbanized places (defined as places with 5,000 or more 
inhabitants that are delineated by stable nighttime lights). 
Source: Base map (including urban extents) was developed by the Center for International Earth Science 
Information Network (2009). The top layer was added by the authors. 

 
 

III. Data 
 
The data used in this study are publicly available from the following sources. Data on the design and 
geographical locations of the studied projects are obtained from the World Bank’s project documentation, 
including the Project Appraisal Document (World Bank 2011) and Implementation Completion and Result 
Reports (World Bank 2019) available from the website of the World Bank Group. In addition, we use 
household-level data from existing national household surveys and geospatial (grid-level) data from 
nighttime satellite images from the sources described below. 

Data on household outcomes and characteristics come from the Living Standards Measurement 
Study (LSMS). The LSMS is a nationally representative household survey that tracks households over time. 
The closest years before and after the implementation period of the project (2015 to 2018) for which panel 
data are available in the LSMS are the years 2013 and 2019. Our DiD analysis thus uses the survey from 
2013 as the pre-program baseline and the one from 2019 as the post-program endline. Starting with the 
full sample of households, we exclude households that moved or split off during this period. This leaves us 
with a balanced panel of 1,480 households (2,960 observations across 2013 and 2019). Figure 2 illustrated 
the geographical locations and corresponding treatment status of the households. 

Several household-level outcomes are considered. The outcome variable Access to Electricity is a 
dummy that equals 1 if the household reported to have electricity working in their dwelling, and 0 
otherwise. The variable Amount Paid for Electricity is the reported amount paid by the household per month 
for electricity (converted into US dollars using yearly average exchange rates from the World Development 
Indicator database). The variable Regular Blackouts is a dummy that equals 1 if the household reported to 
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have experienced blackouts at least several times a month over the last 12 months, and 0 otherwise. It has 
been argued that EE improvements in developing countries may involve switching away from (or reducing 
the use of) traditional fuels such as kerosene and charcoal, yielding sizeable co-benefits in the form of health 
improvements. To capture such potential co-benefits, we consider two more outcome variables. The 
variable Use Electricity for Lighting is a dummy that equals 1 if the household’s main source of lighting fuel 
was electricity (rather than firewood, grass, paraffin, gas, or others). Analogously, the variable Use Electricity 
for Cooking is a dummy that equals 1 if the household reported to use electricity as the main source of 
cooking fuel. 
 

 

Figure 2. Geographic location of treatment households (blue dots) and control 
households (red dots) in Malawi 

  

Notes: The map on the left shows Malawi’s sub-district/city boundaries (administrative level 2) 
and households’ treatment status according to the indicator Treat (Admin. 2). The map on the 
right shows Malawi’s district boundaries (administrative level 1) and households’ treatment status 
according to the indicator Treat (Admin. 1). 
Source: Authors’ illustration using data from the Living Standards Measurement Study (LSMS). 

 
 

In addition, we make use of the detailed information on household characteristics in the LSMS 
datasets. The control variables at the household level include gender, age, and educational attainment of 
the household head, and household size. We also observe characteristics of the household’s dwelling, 
including the type of construction material used for the dwelling (permanent, semi-permanent or 
traditional), whether the roof was made of grass, whether the dwelling is owned by the household, and the 
distance from the dwelling to the nearest road.  

Data on nighttime average radiance in Malawi were obtained from nightly day/night band (DNB) low 
light imaging data collected by the NASA8/NOAA9 Visible Infrared Imaging Radiometer Suite (VIIRS). More 
specifically, we rely on the V.2 annual composite product developed by the Earth Observation Group (EOG). 
This product is the result of processing nightly observations for each year and applying an initial filter to 
remove cloudy, sunlit, and moonlit, followed by a subsequent filter to remove extraneous features (such as 

 
8 National Aeronautics and Space Administration.  
9 National Oceanic and Atmospheric Administration. 
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biomass burning and aurora). The result is a stable measure of brightness as seen from space (the unit of 
measurement is nW/cm2/sr). The main advantage of this product lies in the consistent processing of the 
data for the period 2012-2020, which makes it well suited for comparisons and change detection analysis 
across multiple years. Figure 3 illustrates the changes in average radiance between 2013 and 2019 in 
Malawi. These data are observed at the grid level, where the size of each grid cell is 100 square kilometers. 

A critical issue regarding the use of nighttime lights data is whether this data can be reliably used as 
proxy for socioeconomic indicators. This is a well-studied issue in the academic literature, where different 
causal-effect inference methods have been applied to estimate the correlation between nighttime lights 
data and various socioeconomic indicators such as energy consumption, GDP, electrification, urban extent, 
or population (Elvidge et al. 1997; Shi et al., 2014; Dugoua et al., 2018). More specifically, studies have 
shown that nighttime satellite imagery can be used to estimate (i) energy consumption at the subnational 
level (Letu et al. 2009; Falchetta et al. 2019), (ii) electric power consumption in developing countries (Zhu 
et al., 2019), and (iii) household electrification at the village level (Dugoua et al., 2018).  
 
 

Figure 3. Nighttime light in Malawi in 2013 (left), 2019 (middle), and change over time (right) 

   

Notes: The map on the right shows the difference in radiance between 2013 and 2019 where blue represents 
more-light, magenta represents less-light, and gray means no change. 
Source: Authors’ analysis using VIIRS data. 

 
 

IV. Empirical Strategy 
 
The strategy for estimating the impacts of the EE intervention on the considered outcome variables relies 
on the geographical variation in the implementation of different project components. Ideally, we would like 
to compare the outcomes across two identical groups of households that differ only with respect to whether 
they benefited from the project or not. Since it is impossible to observe the same household (at the same 
point in time) both with and without a treatment, counterfactual analysis seeks to identify a suitable 
comparison (the “control group”) for the beneficiaries (“treatment group”). In our setting, this identification 
is based on the geographical locations and associated benefits of project components which were 
distributed across different areas of the country, benefitting primarily those households living in these 
areas. Specifically, the DiD approach estimates the impact of a project by comparing the difference between 
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before and after the start of the project for households who were able to benefit from the project as 
compared to households who were unable (or systematically less able) to benefit. 

The regression equation of the household-level DiD estimator in Malawi can be written as:  
 

𝑌𝑖𝑗𝑡 = 𝛽0 + 𝛽1𝑃𝑜𝑠𝑡𝑡 + 𝛽2𝑇𝑟𝑒𝑎𝑡𝑖 + 𝛽3(𝑃𝑜𝑠𝑡𝑡 × 𝑇𝑟𝑒𝑎𝑡𝑖𝑗) + 𝑋𝑖𝑗𝑡𝛾 + 𝜀𝑖𝑗𝑡,                      (1) 

 
where 𝑌𝑖𝑗𝑡  is the outcome of household 𝑖 in district 𝑗 at time 𝑡. 𝑃𝑜𝑠𝑡𝑡 is a dummy time variable that equals 

1 for the post-program year (2019) and 0 for the pre-program year (2013). 𝑇𝑟𝑒𝑎𝑡𝑖𝑗 is a dummy treatment 

variable that equals 1 for households residing in districts with project components, and 0 otherwise. The 
variables 𝑃𝑜𝑠𝑡𝑡 and 𝑇𝑟𝑒𝑎𝑡𝑖𝑗 are interacted to estimate the coefficient 𝛽3, which is the main coefficient of 

interest. 𝑋𝑖𝑗𝑡  is a vector of control variables that are included to account for potential imbalances in 

characteristics between treated and untreated households that might be correlated with the outcome. 
Some specifications also include district fixed effects (FE). 

The estimated coefficients from the model in equation (1) can be interpreted in the following way. 
The coefficient 𝛽1  captures the change in outcome 𝑌  between the pre- and post-program year for 
households residing outside in areas without project components (the control group). The coefficient 𝛽2 
captures the difference between households benefitting from the project and households in the control 
group before the start of the project (pre-program difference). The coefficient of interest is 𝛽3  which 
captures the difference in the change in 𝑌 for the benefitting households and those in the control group. If 
the assumptions underlying the DiD approach (see below) hold, then 𝛽3 can be interpreted as the change 
in 𝑌 that the households in the treatment group experienced because they benefitted from the project, i.e., 
the project’s impact on 𝑌 over the considered time period. 

The DiD strategy relies on the assumption that any pre-existing difference between the households 
benefitting from the project and those forming the control group would be constant over time in the 
absence of the project (“parallel trends assumption”). One of the advantages of DiD is that it can account 
for systematic differences between the treatment and control group that prevailed before the start of the 
intervention. The existence of such differences is to be expected in the context we study, because the 
allocation of project locations was not determined randomly. The estimation of the program effect 𝛽3 in 
equation (1) will be robust as long as these differences are constant over time in the absence of the project 
(i.e., in the absence of the project the households residing in project areas would have featured the same 
time trend as the control group). There is no statistical test to verify (or reject) this assumption. However, 
a notion in the literature is to use data on the time before the start of the intervention to visually verify 
whether trends appear to be parallel. Since the LSMS data are available for Malawi in multiple years (2010, 
2013, 2016 and 2019), we are able to follow this approach (see Section V). In addition, it is possible that the 
parallel trends assumption holds only after conditioning on relevant covariates. Since our data allow us to 
control for a rich set of household characteristics, it will be sufficient for our identification strategy if trends 
are parallel when conditioning on these covariates. 

In addition to estimating equation (1) based on household survey data for two years (pre and post 
program implementation), we use grid-level data from satellites (which are available annually for the period 
2012-2020) to estimate a more general spatial DiD specification of the form: 

 

𝑌𝑐𝑡 = 𝛽0 + ∑ 𝑌𝑒𝑎𝑟𝑡𝑡 +∑ 𝐶𝑒𝑙𝑙𝑐𝑐 + 𝛽3(𝑃𝑜𝑠𝑡𝑡 × 𝑇𝑟𝑒𝑎𝑡𝑐) + 𝜀𝑐𝑡,                      (2) 
 

where 𝑌𝑐𝑡 is the nighttime radiance in grid cell 𝑐 at time 𝑡, 𝑌𝑒𝑎𝑟𝑡 is a set of dummy variables for each year 
(i.e., year fixed effects), 𝐶𝑒𝑙𝑙𝑐  is a set of dummy variables for each cell (i.e., grid cell fixed effects), and 
𝑇𝑟𝑒𝑎𝑡𝑐 is a treatment indicator that equals 1 for grid cells corresponding to project areas and 0 otherwise. 
𝑃𝑜𝑠𝑡𝑡 is defined analogous to equation (1) as a dummy time variable that equals 1 for the years after the 
start of project implementation (2015 in Malawi), and 0 for all earlier years. The variables 𝑃𝑜𝑠𝑡𝑡 and 𝑇𝑟𝑒𝑎𝑡𝑐 
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are interacted to estimate the coefficient 𝛽3, which is the main coefficient of interest capturing the impact 
of the project on nighttime radiance at the grid level.  

Two alternative treatment indicators are considered in the model in equation (2) to capture potential 
spillover effects of project components on the areas surrounding each project location. Many of the (supply 
side) project components may have effects on wider areas around the subdistrict (city) where the 
component was located (e.g., upgrading a power plant or part of a distribution network in a particular city 
may also affect the quality of electricity supply in the surrounding area outside the city). The most 
disaggregated level of information we have about project locations is the subdistrict level (administrative 
level 2). To capture potential spillover effects, we consider two alternative approaches to defining the 
treatment indicator in the model in equation (2). In the first approach, only those grid cells are coded as "1" 
for the treatment indicator that correspond to project areas at the most disaggregated level of information 
about project locations (administrative level 2). We refer to this treatment indicator as Treat(Admin. 2). In 
the second approach, denoted Treat(Admin. 1), also those grid cells are coded as one for the treatment 
indicator that fall into the next higher level of administrative division (administrative level 1, i.e., districts) 
of each project location. For example, if a project component was implemented in city A of district D1, then 
Treat(Admin. 2) will equal one for the grid cells belonging to city A (and zero otherwise), whereas 
Treat(Admin. 1) will equal one for all grid cells belonging to district D1 (including the cells belonging to city 
A). 

 
V. Results 

 
Figure 4 shows the pre-program trends of the five considered outcome variables in project areas 
(treatment) and other areas (control). From eyeballing these graphs, trends appear to be approximately 
parallel for most of the variables prior to the start of the project (in 2015). At the same time, there are large 
differences between treatment and control group in the level of most of these variables. 

Table 1 quantifies these pre-program differences, including for other household characteristics, and 
also reports test statistics for the differences. Columns (1) and (2) in Table 1 show the means of each 
variable, measured prior to the intervention in 2013, for the households residing in project areas (the 
treatment group) and those residing in areas without project locations (control group). The last two columns 
report the t-statistics and p-values for tests on the equality of the means in columns (1) and (2). 
Unsurprisingly, most of these variables show statistically significant differences between the two groups.10 

As discussed in Section IV, these differences are to be expected in the context we study, because the 
allocation of project locations was not determined randomly. This also suggests that simple ordinary least 
squares (OLS) regressions of household outcomes on the treatment indicator would suffer from 
endogeneity, since the treatment indicator would be correlated with factors that also tend to affect the 
considered outcomes. Therefore, a method such as DiD that can account for the differences in levels 
(subject to the parallel trends assumption discussed above) is to be preferred. In addition, the regression 
analysis below will include observable household characteristics as control variables to account for the fact 
that the parallel trends assumption might only hold after conditioning on relevant covariates.11 

 
10 For example, Table 1 shows that project areas were much more often urban (41.8 compared to 0.5 percent) and featured a larger 

share of households with access to electricity (18.6 compared to 3.2 percent) and stronger presence of ESCOM (38.7 compared 
to 21.8 percent) than areas outside the scope of the project. These results are consistent with the project’s stated goals (see 
Section II) to support the rehabilitation, upgrade, and expansion of priority parts of the existing distribution and transmission 
system, which were located predominantly in urban areas. 

11 If trends are still not parallel when conditioning on covariates, then the expected scenario in the absence of the project according 
to the project’s PAD (see Section II) will likely work against us. Specifically, the PAD argues that households residing in project 
areas would have experienced a deterioration in electricity access and quality in the absence of the project (due to the lack of 
maintenance of the existing infrastructure), while the corresponding trends for the control group would have been mostly flat. If 
this is the case, then our DiD framework will tend to underestimate the impact of the project. Thus, to the extent that we still 
find positive and significant results, differences in characteristics between treatment and control group are less of a concern.   
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Figure 4: Pre-program trends in project areas (treatment) and other areas (control) 

Access to electricity 

 

Amount paid for electricity 

 
  

Regular blackouts 

 

Use electricity for lighting 

 
  

Use electricity for cooking 

 

 

Notes: The vertical (red) line indicates the start of the program (2015). The values of “Amount paid for electricity”, and 
“Frequent blackouts” are based on the subset of households that have electricity in their dwelling. 
Source: Authors’ analysis using data from the Living Standards Measurement Study (LSMS). 
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Table 1. Pre-program differences between households residing in project areas and others, 2013 

 Mean  Difference in Means 

Variable Control Treatment  T-Statistic P-value 

 (1) (2)  (3) (4) 

Access to electricity 0.032 0.186  -9.417 0.000 

ESCOM present in village 0.218 0.387  -6.738 0.000 

Amount paid for electricity 10.749 14.964  -0.981 0.328 

Regular blackouts 0.833 0.945  -1.797 0.074 

Use electricity for lighting 0.030 0.186  -9.541 0.000 

Use electricity for cooking 0.000 0.043  -5.409 0.000 

Urban 0.005 0.418  -21.350 0.000 

Distance to road 10.252 5.860  9.093 0.000 

Non-permanent dwelling 0.503 0.271  9.419 0.000 

Grass roof 0.725 0.454  10.888 0.000 

Dwelling owned by household 0.892 0.740  7.526 0.000 

Household size 5.163 5.254  -0.760 0.447 

Male head 0.723 0.777  -2.383 0.017 

Secondary education (head) 0.150 0.328  -8.016 0.000 

Age (head) 44.065 43.681  0.468 0.640 

Observations (households) 658 822    

Notes: Numbers in columns (1) and (2) are raw means. The means in the rows “Amount paid for electricity”, and 
“Regular blackouts” are based on households that have electricity in their dwelling.  
Source: Authors’ analysis using data from the Living Standards Measurement Study (LSMS). 

 
 
Table 2 presents the results of the DiD regressions specified in equation (1) for three different 

outcome variables capturing access to electricity, amount paid for electricity, and regular blackouts. In 
columns (1), (4), and (7), the respective outcome variable is regressed on the time indicator (pre or post 
program), treatment indicator, and the interaction term between the time and treatment indicators. The 
specifications reported in columns (2), (5), and (8) include additional control variables. The regressions in 
columns (3), (6), and (9) further add district fixed effects (FE).  

The interaction term (Post × Treat) is statistically significant in most of the specifications in columns 
(1) to (3) and (7) to (9) in Table 2, indicating that the project was associated with an increase in electricity 
access and a decrease in the reported occurrence of regular blackouts. At the same time, the insignificant 
coefficients of the interaction term in columns (4) to (6) suggest that the project did not cause households 
who were living in project areas to pay more for their electricity. 

According to the results in columns (1) to (3), the change in the share of households with access to 
electricity increased by 5.7 to 5.9 percentage points more in areas with project components than in areas 
without project components. The coefficient (0.057) of the interaction term (Post × Treat) in column (1) is 
statistically significant at the 1-percent significance level. Once the control variables are added in column 
(2), the coefficient increases to 0.059 and remains highly significant. The result is also robust to the inclusion 
of district fixed effects (as reported in column 3) and to clustering standard errors at the district or stratum 
level (not reported here).12 

 
 

 
12 In the LSMS dataset, stratum is defined based on region and a dummy for rural areas. There are three regions in Malawi (North, 

Center, South) so that stratum takes six different values. 
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Table 2. Difference-in-difference estimation (household level) between 2013 and 2019 

 Access to Electricity Amount Paid for Electricity 
(US$) 

Regular Blackouts 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) 
          

Post × Treat 0.057*** 0.059*** 0.057*** 0.019 1.618 0.779 -0.179 -0.216* -0.193 
 (0.000) (0.000) (0.000) (0.996) (0.723) (0.884) (0.141) (0.080) (0.184) 
          

Post 0.016** 0.008 0.009 -4.177 -6.223 -5.215 0.029 0.040 0.008 
 (0.010) (0.323) (0.241) (0.295) (0.138) (0.304) (0.805) (0.738) (0.954) 
          

Treat 0.152*** -0.017 -0.062 4.215 6.735 -0.470 0.112 0.145 0.003 
 (0.000) (0.143) (0.117) (0.320) (0.190) (0.957) (0.216) (0.148) (0.983) 
          

Urban  0.291*** 0.257***  -2.600 -0.783  -0.039 0.017 
  (0.000) (0.000)  (0.380) (0.790)  (0.561) (0.814) 
          

Distance to   -0.001 -0.002***  0.302 0.504*  -0.003 0.005 
Road  (0.361) (0.009)  (0.135) (0.071)  (0.351) (0.135) 
          

Grass roof  0.010 0.018  -5.818*** -3.727  0.048 -0.028 
  (0.457) (0.191)  (0.008) (0.201)  (0.722) (0.849) 
          

Dwelling   -0.048** -0.045**  0.808 0.829  0.014 0.022 
Owned  (0.013) (0.022)  (0.576) (0.588)  (0.692) (0.562) 
          

Male head  0.004 0.004  0.056 0.087  -0.022 0.003 
  (0.703) (0.763)  (0.978) (0.963)  (0.609) (0.952) 
          

Age (head)  0.000 0.000  0.060 0.043  0.001 0.001 
  (0.200) (0.143)  (0.294) (0.464)  (0.670) (0.608) 
          

Secondary   0.151*** 0.146***  2.523 2.610  0.015 -0.011 
educ. (head)  (0.000) (0.000)  (0.102) (0.137)  (0.711) (0.800) 
          

HH size dummies  yes yes  yes yes  yes yes 
Material dummies  yes yes  yes yes  yes yes 
District FE   yes   yes   yes 
          

Observations 2,960 2,943 2,943 364 363 363 388 387 387 

R-squared (within) 0.038 0.031 0.032 0.026 0.043 0.037 0.093 0.128 0.142 

R-squared (overall) 0.076 0.368 0.387 0.034 0.092 0.175 0.040 0.098 0.197 

Notes: Difference-in-difference regressions with robust standard errors. * p < 0.10, ** p < 0.05, *** p < 0.01. p-values in parentheses. Full 
sets of control dummies are included for household size and the type of construction material used for the dwelling (permanent, semi-
permanent or traditional). The dependent variable in columns (7) to (9) is a dummy that equals one for households that report to have 
experienced blackouts at least several times a month over the last 12 months.  
Source: Authors’ analysis using data from the Living Standards Measurement Study (LSMS). 

 
 

According to the point estimates of the interaction term in columns (7) to (9) of Table 2, the project 
was associated with a decrease in the share of households reporting regular blackouts of 17.9 to 21.6 
percentage points (from the baseline of 94.5 percent in 2013 in treated areas; see Table 1). However, only 
the coefficient (0.216) in column (8) is statistically significant at the 10-percent significance level (the same 
holds when standard errors are clustering at the stratum level). One reason for the low (or lack of) 
significance in the regressions in columns (7) to (9) might be the relatively small number of observations, 
which is due to the small share of households with access to electricity in our sample (the survey only asked 
households with electricity in their homes about the frequency of blackouts). 

Table 3 presents the results of estimating equation (1) for the two outcome variables capturing 
whether households relied on electricity as the main source of energy for lighting and cooking or not, 
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respectively. According to the results, the number of households that used electricity as the main source of 
energy for lighting increased by around 4.7 percentage points more in project areas than in areas without 
project components. The coefficients in columns (1) to (3) are statistically significant at the 1-percent 
significance level (the coefficients in columns (2) to (3) remain significant at the 10-percent level when 
standard errors are clustered at the stratum level). This suggest that there may have been co-benefits to 
the program, including the above-mentioned link between health improvements and a reduction in the use 
of traditional fuels for lighting. At the same time, the results in columns (4) to (6) indicate that the 
association between project locations and the use of electricity for cooking was negative. It thus remains 
unclear whether or to what extent the program contributed to an overall reduction in the use of traditional 
fuels and switch to electricity in Malawi.   
 

 

Table 3. Difference-in-difference estimation (household level) between 2013 and 2019 (continued) 

 Use Electricity for Lighting  Use Electricity for Cooking 

 (1) (2) (3)  (4) (5) (6) 
        

Post × Treat 0.048*** 0.049*** 0.047***  -0.019** -0.021*** -0.022*** 
 (0.001) (0.001) (0.001)  (0.016) (0.009) (0.008) 
        

Post 0.023*** 0.017* 0.019**  0.005* 0.007** 0.008** 
 (0.003) (0.061) (0.039)  (0.083) (0.027) (0.017) 
        

Treat 0.156*** -0.024** -0.085**  0.043*** 0.009* 0.021* 
 (0.000) (0.046) (0.031)  (0.000) (0.055) (0.092) 
        

Urban  0.299*** 0.266***   0.059*** 0.056*** 
  (0.000) (0.000)   (0.000) (0.000) 
        

Distance to   -0.001 -0.002**   0.000 -0.000 
Road  (0.310) (0.011)   (0.724) (0.953) 
        

Grass roof  0.017 0.025*   0.022*** 0.028*** 
  (0.238) (0.084)   (0.001) (0.000) 
        

Dwelling   -0.055*** -0.051**   -0.011 -0.009 
Owned  (0.005) (0.010)   (0.253) (0.374) 
        

Male head  0.004 0.003   -0.001 -0.001 
  (0.731) (0.805)   (0.844) (0.800) 
        

Age (head)  0.000 0.000   0.000 0.000 
  (0.265) (0.205)   (0.476) (0.448) 
        

Secondary   0.152*** 0.147***   0.046*** 0.046*** 
educ. (head)  (0.000) (0.000)   (0.000) (0.000) 
        

HH size dummies  yes Yes   yes Yes 
Material dummies  Yes Yes   Yes Yes 
District FE   yes    yes 
        

Observations 2,960 2,943 2,943  2,959 2,942 2,942 

R-squared (within) 0.037 0.027 0.028  0.005 0.005 0.005 

R-squared (overall) 0.072 0.375 0.394  0.015 0.094 0.107 

Notes: Difference-in-difference regressions with robust standard errors. * p < 0.10, ** p < 0.05, *** p < 0.01. p-values in 
parentheses. Full sets of control dummies are included for household size and the type of construction material used for the 
dwelling (permanent, semi-permanent or traditional). 
Source: Authors’ analysis using data from the Living Standards Measurement Study (LSMS). 
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Table 4 reports the results of the spatial DiD regression model specified in equation (2). The 
dependent variable in all columns is the nighttime radiance in each grid cell measured using data from 
satellite images. In columns (1) and (2), a simple DiD specification based on only two years (pre and post 
program) is reported (where the years correspond to those of the household-survey data used for 
estimating the results in Tables 2 and 3). In columns (3) and (4) of Table 4, the regression model with all 
available years (2012 to 2020) as specified in equation (2) is reported. For each model, results for two 
different treatment indicators are reported. The treatment indicator in columns (1) and (3) equals one for 
the grid cells corresponding to project areas at the most disaggregated level of information about project 
locations, which is the subdistrict/city level (administrative level 3). The treatment indicator in columns (2) 
and (4) equals one for all grid cells belonging to the next higher level of administrative division 
(administrative level 2, i.e. district) of each project location, to capture potential spillover effects on the 
area surrounding each project location. 

According to the results in column (1) in Table 4, project areas (defined at the administrative level 3) 
experienced an increase in nighttime radiance between the years 2013 and 2019 that was 0.21 units larger 
than the increase in non-project areas (from the baseline of 1.64 in 2013 in treated areas). When all years 
between 2012 and 2020 are considered in column (3), the coefficient decreases to 0.048 but remains 
statistically significant at the 10-percent significance level. In addition, the significant results in columns (2) 
and (4) suggest that the project also had positive effects on radiance in areas around the cities (or 
subdivisions) in which the project components were located.  

Various studies have shown that remote-sensing data can give rise to useful proxies of energy-related 
outcomes such as energy production, energy consumption, and carbon emissions (see Section I). The fact 
that our results from the spatial DiD analysis are consistent with the results obtained from national 
household survey data suggests that higher nighttime radiance might also serve as a proxy for higher 
electricity access and, to some extent, even the reliability of electricity (i.e., a reduction in the frequency of 
blackouts), at least in countries at a similar stage of development as Malawi. 

Overall, the results are consistent with the view that the project contributed to improvements in EE 
on both the supply side and the demand side of electricity in Malawi. The literature has identified several 

ways in which higher electricity access and quality are linked to improvements in EE. On the supply side, a 
reduction in blackouts is generally associated with a reduction of electricity losses in the grid (the project’s 

ICR estimates that these losses were reduced from 25% at baseline to 17% at the end of the project). A 

similar mechanism applies to the demand side (e.g., a fridge or water boiler interrupted by a blackout must 
restart its cooling or boiling once electricity has been restored, so that part of the generated energy is lost). 

In addition, increased access to electricity can help to improve demand-side EE given that households 

without electricity in their dwelling must rely on alternative, less efficient sources of energy for things like 

lighting and heating, that could otherwise be performed by using electricity. 

The results are also consistent with existing evidence of an (often overlooked) synergy between EE 
and energy access, according to which improvements in EE constitute a channel to also expand access to 

electricity (Can et al. 2018; Dagnachew et al. 2018). These studies argue that improvements in EE can help 

to facilitate the expansion of electricity access. This applies especially to areas where the bottleneck to 
wider access to electricity is not the cost of connecting more clients to the grid, but limited electricity 

generation capacity. According to this view, efforts that increase EE among existing clients essentially serve 

as an energy generation system by increasing the amount of energy that is available for new clients (or 

offsetting the additional generation capacity that would have otherwise been needed to match increases in 

the demand of existing clients if these efforts were not implemented). The fact that our findings in Malawi 

show that a combination of supply-side interventions (including grid expansion) and demand-side measures 

targeted at increasing EE was associated with a statistically significant increase in electricity access seems 

to support the existing evidence in this context. 
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Table 4. Spatial difference-in-difference estimation—Dependent variable: Nighttime radiance 

 Pre-Post (2013, 2019)  All Years (2012–2020) 

 (1) (2)  (3) (4) 
      

Post × Treat (Admin. 2) 0.213***   0.048*  
 (0.000)   (0.061)  
      

Post × Treat (Admin. 1)  0.110***   0.025* 
  (0.000)   (0.052) 
      

Post 0.018*** 0.016***    
 (0.000) (0.000)    
      

Treat (Admin. 2) 1.592***     
 (0.000)     
      

Treat (Admin. 1)  0.800***    
  (0.000)    
Year FE    yes yes 
Grid Cell FE    yes yes 

Observations 1,560 1,560  7,020 7,020 
R-squared (within) 0.150 0.089  0.073 0.072 
R-squared (overall) 0.313 0.103  0.030 0.007 

Notes: Difference-in-difference regressions at the grid-cell level with robust standard errors. The dependent variable is average 
masked nighttime radiance in each cell (where the size of each grid cell is 100 square kilometers). * p < 0.10, ** p < 0.05, *** p 
< 0.01. p-values in parentheses. The administrative level 1 corresponds to districts; the administrative level 2 corresponds to 
subdistricts or cities.  
Source: Authors’ analysis using data from Global VIIRS (Visible Infrared Imaging Radiometer Suite) Nighttime Lights, Annual VNL 
2 Composite.  

 
 

VI. Conclusion 
 

This paper studies the impacts of a large-scale development intervention aimed at improving energy 
efficiency in Malawi, using a DiD approach based on a combination of remote-sensing (satellite) data and 
data from national household surveys. The estimation strategy takes advantage of the geographical 
variation in the implementation of different project components, which allows us to identify treatment and 
control groups to construct a counterfactual.  

We find that a combination of demand-side and supply-side interventions was associated with a 
statistically significant increase in electricity access, a decrease in the reported frequency of blackouts, and 
a switch from traditional fuels to electricity as the main source of energy for lighting (albeit not for cooking). 
These results are based both on evidence obtained from national household survey data and from the fact 
that nighttime radiance (as measured by satellite images) increased relatively more in grid cells belonging 
to areas with project components than in non-project areas. The results are consistent with existing 
evidence in the economic literature of an (often overlooked) synergy between EE and energy access, 
according to which improvements in efficiency constitute a channel to also expand access to electricity.  

Overall, our results support the view that energy efficiency projects in developing countries can have 
significant impacts on relevant outcomes that are measurable both from national household survey data 
and from remote-sensing data from space. At the same time, we stress that the analysis presented in this 
paper focuses on a specific project where the external validity remains generally unclear. More empirical 
research to investigate the impacts of energy efficiency projects, and guide policy decisions, is clearly 
warranted. 
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