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Abstract

The Policy Research Working Paper Series disseminates the findings of work in progress to encourage the exchange of ideas about development 
issues. An objective of the series is to get the findings out quickly, even if the presentations are less than fully polished. The papers carry the 
names of the authors and should be cited accordingly. The findings, interpretations, and conclusions expressed in this paper are entirely those 
of the authors. They do not necessarily represent the views of the International Bank for Reconstruction and Development/World Bank and 
its affiliated organizations, or those of the Executive Directors of the World Bank or the governments they represent.

Policy Research Working Paper 9745

Advances in agricultural data production provide ever-in-
creasing opportunities for pushing the research frontier in 
agricultural economics and designing better agricultural 
policy. As new technologies present opportunities to create 
new and integrated data sources, researchers face trade-offs 
in survey design that may reduce measurement error or 
increase coverage. This paper first reviews the economet-
ric and survey methodology literatures that focus on the 

sources of measurement error and coverage bias in agri-
cultural data collection. Second, it provides examples of 
how agricultural data structure affects testable empirical 
models. Finally, it reviews the challenges and opportunities 
offered by technological innovation to meet old and new 
data demands and address key empirical questions, focusing 
on the scalable data innovations of greatest potential impact 
for empirical methods and research.

This paper is a product of the Development Data Group, Development Economics. It is part of a larger effort by the 
World Bank to provide open access to its research and make a contribution to development policy discussions around the 
world. Policy Research Working Papers are also posted on the Web at http://www.worldbank.org/prwp. The authors may 
be contacted at gcarletto@worldbank.org.   
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1. Introduction 

 

In the past two decades, innovations in data systems have led to the production of more real-time, 

disaggregated, and interoperable data on agriculture than ever before. Increasing data demands and 

emerging policy questions are driving much of this innovation, with fast technological change and 

methodological advances providing an opportunity to collect more and better data at lower costs 

(Akogun et al., 2020; Carletto et al., 2015; Dillon et al., 2021a; Kosmowski et al., 2019; Liao, 

2018; Lobell et al., 2019). Investments in country-level data infrastructure have enabled new 

approaches to methodological innovation, such as incorporating randomized control trials into 

national panel data collection or devising improved methods to ensure greater data interoperability. 

Meanwhile, new types of data – such as remote sensing data and citizen-generated data – and new 

technologies – such as portable sensors, DNA fingerprinting, and computer-assisted personal 

interviewing (CAPI) – provide unparalleled prospects for collecting and analyzing a wide array of 

agricultural constructs in a more granular, timely, and cost-effective manner. These advantages are 

further enhanced by integrating new types of data with traditional data sources such as household 

surveys, censuses, and administrative data.  

 

While other data sources are becoming increasingly important, household and farm surveys are 

likely to remain the centerpiece of policy research for agricultural and development economists. 

Not only are household surveys a key data source in their own right, but they serve as interoperable 

complements and validation instruments for other data sources, such as for the ground-truthing of 

remote sensing data, or for the ex-post adjustment of bias in studies based on citizen-generated 

and other non-probability data. Emerging literature on a wide array of agricultural measurement 

issues in land, production, and gender analysis has relied upon innovations in survey design, as 

fostered in the past decade through data initiatives like the Living Standards Measurement Study-

Integrated Surveys on Agriculture (LSMS-ISA) and the Global Strategy to Improve Agricultural 

and Rural Statistics (GSARS).  

 

The influential publication on household survey data collection by Grosh and Glewwe (2000), and 

in particular the chapter by Reardon and Glewwe (2000) on agriculture, together with other 

chapters on consumption, income, and enterprises, provided an original contribution to the field of 
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survey measurement issues that remains relevant to this day, as does the influential work by 

Sudman and Bradburn (1974) on response effects in the United States. However, significant 

innovations in methodological development for household surveys have taken place in recent 

years, including on the collection of agricultural data in multi-purpose surveys. Agricultural survey 

design continues to evolve through important innovations such as scaling up the collection of plot-

level data in low-income countries, gender-disaggregated agricultural data,1 agricultural panel 

surveys, and the collection of national agricultural household and enterprise data,2 inter alia. 

 

While the importance of household and farm surveys within national agricultural data systems is 

indisputable, it is equally important to recognize their limitations in addressing new data 

challenges. For instance, household and farm surveys may be ill-suited to capture the evolving 

value chains of rapidly transforming agri-food systems (Barrett et al., forthcoming). Surveys 

seldom collect sufficient data on contracting and on the different agents involved in transactions 

with the household and, when they do, they tend to be case studies focused on a few commodities 

in limited geographies or be qualitative in nature3 (Barrett et al., 2020; Minten et al., 2016). 

 

Furthermore, surveys often lack sufficient spatial and temporal resolution and are unable to 

provide the real-time data needed by policy makers, being limited by cost and sample size 

considerations. In higher income countries, remote sensing has been widely used for decades as a 

complement to ground-based measures for an array of applications, including sample frame 

construction, crop area and land use estimation, crop conditions assessment, climate data, and 

production forecasting (Hale et al. 1999). In recent years, the use of Earth Observation data for 

agricultural applications, combined and validated with ground-based measurements, has been 

spreading rapidly in low- and middle-income countries, yielding promise for more accurate and 

timely agricultural data in these contexts (Lobell et al., 2019; Gourlay et al., 2019).     

 

 
1 See Doss and Quisumbing (this volume citation) for an extensive review of gender-disaggregated data.  
2 Agricultural sector censuses such as FAO’s World Programme for the Census of Agriculture includes agricultural 
households and agricultural enterprises.  For a recent review of this program, see WCA (2020).  
3 An exception in national surveys is the collection of network data in a few LSMS-ISA surveys, where information 
is collected from respondents on agents involved in the transaction of agricultural inputs and outputs. 
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Unfortunately, despite impressive progress in both traditional and new data sources, large gaps 

still persist in terms of the availability and quality of agricultural data. Furthermore, mounting 

global challenges such as rising inequality, climate change, and rapid population growth remain 

are likely to disproportionately affect the agriculture sector and rural areas, with more significant 

impacts for low- and middle-income countries. Meanwhile, the ongoing COVID-19 pandemic 

provided a stark reminder of the need to accelerate the production of more timely and accurate 

data to save lives. The pandemic has also exposed growing inequities in data systems across 

countries, with innovation moving at a faster pace in higher-income countries (United Nations and 

World Bank, 2020). Worse still, agricultural data gaps tend to be the largest where good data are 

needed the most, that is, in resource-constrained countries for which agriculture represents the 

lifeline of the majority of households and the whole economy. At the same time, the emergence 

and diffusion of complex farms in higher income countries (Kling and Mackie, 2019; Macdonald, 

2016) creates new layers of difficulty in data collection and measurement. Recognizing that 

individual data sources are often unable to singlehandedly address these complex and multi-

faceted challenges, researchers are increasingly focusing on the potential offered by improved data 

integration and interoperability between data sources. 

 

While appreciating the importance of improving agricultural data in all countries along the entire 

income gradient, this paper intentionally focuses on some of the data challenges and scalable 

applications and tools most suitable to low- and middle-income countries.  Because of this 

geographic focus, we primarily limit our discussion to household and farm surveys, as they are 

likely to remain the instrument of choice and backbone of agricultural data systems in many 

countries for years to come. The attention to surveys is also warranted by the availability of a fully 

developed total survey quality framework around which we develop the narrative of the paper. The 

growing attention to survey design issues and a burgeoning literature on rigorous survey 

methodological experiments (de Weerdt et al., 2020) also provide added motivation for the focus 

of the paper. 

 

In this paper, we will argue and provide evidence that renewed attention to data quality issues –

specifically in terms of measurement error and data coverage – is critical for advancing the 

research frontier in agricultural economics and designing better agricultural policy. Both 
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measurement error and issues of limited data coverage threaten the internal and external validity 

of empirical analysis on agriculture, constraining its efficacy and relevance in informing sectoral 

policies and investments. A better understanding of measurement error and error-generating 

processes is crucial, as errors negatively affect the accuracy and validity of inferences resulting 

from data, and thus limit the usefulness of data to policy making. Given the significance of these 

issues, agricultural economists and survey practitioners have paid increasing attention to 

measurement error in recent years, drawing on insights from existing literature on labor economics, 

survey methodology, and statistics. The fact that this is the first paper is fully dedicated to 

measurement and data is testament to the prominence that data, in general, and measurement 

issues, in particular, have acquired in the profession today. The purpose of this paper is to 

demonstrate that improving agricultural data structures – that is, making agricultural data systems 

more credible and fit-for-purpose – can address both measurement error and coverage issues to 

facilitate better empirical analysis on agriculture. For our purposes, we define data structure as the 

full set of survey design choices that comprise the data production process, including sampling, 

questionnaire design, and fieldwork implementation.  

 

Today, technology and a well-piloted modernization agenda offer the opportunity to push the data 

quality production frontier, both in terms of availability and quality of data. Furthermore, 

increasing demands for evidence-based policy making and accountability have generated the 

tailwind to achieve critical advances in agricultural data in general, and agricultural survey data in 

particular. Addressing existing flaws in survey data would greatly contribute to raising the 

credibility and, ultimately, the quality of the resulting research and analysis (Jerven and Johnston, 

2015). Achieving the “credibility revolution” in empirical research as advocated by Angrist and 

Pischke (2010) calls for better research design choices, which begins with addressing measurement 

error and coverage issues. Making agricultural research more policy-relevant, credible, and fit-for-

purpose begins with improving the quality of its underlying data to expand the set of testable 

empirical models.   

 

This paper highlights the importance of improving agricultural data structures for empirical 

analysis, while accounting for the inherent trade-offs intrinsic to designing data collection for 

agricultural research and policy analysis. In the section that follows, we review sources of 
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measurement error from the perspective of the economics, survey methodology, and statistics 

literatures, referring to this rich bibliography for a more detailed discussion of the issues. In section 

three, we turn to design choices related to coverage, including sampling design, the unit of analysis, 

survey timing, data collection modes, and attrition. The fourth section integrates sources of 

measurement error and coverage biases to assess their implications and trade-offs in the empirical 

specification of a few examples of agricultural models, documenting where innovation in data 

structure has advanced the research frontier. The fifth section offers innovative approaches for 

addressing measurement error and coverage biases in agricultural data, based on recent 

technological advances and foreseen opportunities. In the sixth and final section, we conclude with 

recommendations on priorities for accelerating improvements in the accuracy and coverage of 

agricultural data, ultimately to support higher-quality research for better agricultural policy. 

 

2. Minimizing Measurement Error 

Measurement error and related issues of non-random measurement error have been discussed in 

some of the earliest work by Fisher (1926) and Working (1925). Since then, these topics have been 

extensively articulated and well-documented across many subdisciplines in economics, such as 

health, labor, industrial organization, and applied welfare analysis (Bound et al., 2001; Chesher 

and Schluter, 2002; De Haan et al., 2019; Gottschalk and Huynh, 2010; Hu and Schennach, 2008; 

Hyslop and Imbens, 2001; Pischke, 1995; Schennach, 2016, 2004; Rom et al., 2020). Most of these 

papers consistently highlight that bias induced in parameter estimates depends on the structure of 

the measurement error found in the data, as well as the identifying assumptions that empirical 

economists make when estimating those parameters. Making the right assumptions for these 

structures and tackling the sources of errors, at both the design and analytical stages, can greatly 

improve the accuracy and relevance of agricultural data. 

 

While the field of statistics boasts a rich and longstanding literature on measurement error (Biemer, 

2010, 2009; Biemer et al., 1991; Biemer and Lyberg, 2003; Carroll et al., 2006; Deming, 1944; 

Groves, 1989; Groves and Lyberg, 2010; Kasprzyk, 2005; Kish, 1965; Wansbeek and Meijer, 

2000), we have only more recently witnessed a burgeoning literature in agricultural and 

development economics journals addressing the sources, magnitude, and implications of 
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measurement error, and proposing new ways to validate and correct for measurement error biases. 

Measurement error can result in both bias and variable error, or variance. With non-random 

measurement error biases in parameter estimation come faulty conclusions and misguided policies.  

Even with random measurement error, increased statistical noise requires larger sample sizes to 

identify parameters of interest, increasing the cost of data collection. Hence, we again emphasize 

the importance of understanding the sources of measurement error and attenuating its impact. 

 

In the field of survey methodology, the Total Survey Error (TSE) framework has been the 

dominant paradigm. The framework serves as a useful organizing structure for assessing the extent 

and composition of different sources of errors that affect estimates, guiding researchers and data 

collection practitioners towards appropriate design choices for minimizing measurement error and 

maximizing coverage (Groves and Lyberg, 2010). TSE “refers to the accumulation of all errors 

that may arise in the design, collection, processing and analysis of survey data” (Biemer, 2010). 

The paradigm implies that total errors must be minimized for a given budget and that the major 

sources of errors should be identified and prioritized to achieve maximum accuracy for a given 

cost (Biemer, 2010). Broadly speaking, TSE can be viewed as encompassing the concept of data 

quality which, in statistical terms, is partially captured by the Mean Square Error (MSE), a metric 

of the accuracy of the estimated variable.  

 

Minimizing measurement error in agricultural data has been problematic due to a number of 

inherent features of agricultural processes, particularly for certain crops and agronomic practices 

in smallholder farming. These features include the highly seasonal nature of production and the 

irregularity of inputs required in the sequencing of production. Multiple studies have shown that  

across a variety of issues, farmers’ self-reported information, which often involves long recall 

periods, has proven to be inadequate (Beegle et al., 2013; Deininger et al., 2011; Fermont and 

Benson, 2011; Gourlay et al., 2017).  

 

Although long aware of the existence of measurement error, only recently have agricultural 

economists shown interest in how these errors affect their inferences and the policy 

recommendations deriving from their analysis. Even when measurement errors were considered, 

the common practice was to make rather cavalier suppositions about the property and distribution 
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of the errors by assuming a classical measurement error (CME) – that is, assuming that the error 

in the variable of interest is independent from its true value as well as from the measurement errors 

in all other variables in the model and the stochastic error term. While reliance on the CME 

assumption can be justified in some instances, it is seldom the case for many variables, for which 

the error-generating process appear to follow more complex and systematic patterns that fail the 

classical assumption. The assumption appears to be even more troublesome for non-linear models 

(Bound et al., 2001). More recently, the agricultural economics literature has aptly focused on the 

potential systematic biases resulting from measurement error and how design choices and new 

technologies can help improve measurement (for some recent applications of non-classical 

measurement error in agricultural data, see Abay et al., 2019; Carletto et al., 2013; Desiere and 

Jolliffe, 2018; Gourlay et al., 2017). We argue that addressing potential bias ex-ante through 

appropriate design choices may ultimately be a more effective way to tackle the issue, although 

careful ex-post analysis and modeling may also be helpful in mitigating its impact on estimates 

(Gollin and Udry, 2021; Maue et al., 2020). 

 

Policy researchers hold the power and responsibility to make wiser design choices at the data 

collection stage for given objectives and budget constraints. To this end, the TSE framework 

provides a useful blueprint for understanding the underlying error-generating processes and the 

relative importance of the different components, as well as how to ameliorate their impact on 

estimates. While the TSE framework is useful for this paper, given its focus on sample surveys as 

one of the main sources of data for policy research in agriculture, it is important to note that most 

features of TSE also apply to other data sources. For instance, Biemer (2017) argues that TSE 

provides very useful insights on how to deal with errors in Big Data, drawing clear parallels 

between errors in surveys and the often selective, incomplete, and erroneous nature of Big Data-

generating processes. As researchers increasingly rely on alternative data sources such as citizen-

generated data and crowdsourcing to collect agricultural data, similar data quality frameworks 

should be developed for those types of data. However, even in the case of TSE, full consensus on 

a comprehensive typology of errors is yet to exist. Groves and Lyberg (2010) conclude that this 

lack of consensus is the natural consequence of the continuous evolution of methods and data 

collection technologies, as well as the different objectives and constraints of different data 
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producers and analysts. As a result, any list defining the universe of TSE is bound to be incomplete 

and/or to emphasize certain components over others (Groves and Lyberg, 2010).  

 

We must note here that focusing solely on minimizing total survey error with expensive 

measurement methods ignores the research design cost-variance trade-off and the full set of 

research design choices. For instance, a researcher may be willing to accept some degree of 

measurement error, if reducing such error would also reduce the statistical power of the research 

design. If a researcher is implementing a randomized control trial, measurement error that is not 

correlated with treatment status may not bias estimates, whereas in a non-experimental design, 

measurement error might bias parameter estimates and thus have consequences for internal validity 

and policy recommendations. 

 

To conceptualize these research design trade-offs more clearly, Dillon et al. (2020) build on earlier 

writing in the statistical literature (Biemer, 2010, among others) to introduce the idea of the data 

quality production function. For any given research project, the researcher’s objective is to 

maximize the knowledge or evidence generated from the research project. To do so, the researcher 

makes decisions about the identification strategy, statistical power, and external validity of the 

project, subject to a budget constraint and the data quality production function. The data quality 

production function includes choices on questionnaire design as well as other variables such as 

sampling, empirical approach, and field implementation modes, protocols, and constraints. These 

latter choices include decisions based on the availability of financial resources, personnel capacity, 

and the competing demands and/or mandates of the researcher or agency collecting the data. 

 

Thus, measurement error and bias, which closely relate to the concept of internal validity, must be 

weighed against other important features of model inferences, including the power of the estimates, 

external validity and coverage, and the intended use of the data (Dillon et al., 2020). From a user’s 

perspective, data accuracy (and the costs involved in achieving it) must be weighed against other 

idiosyncratic user preferences related to the broader construct of fitness-for-use of the data (Juran 

and Gryna, 1980) as part of a broader Total Survey Quality (TSQ) framework (Biemer, 2010). 

This more complete construct of survey quality, going beyond accuracy, includes concepts such 

as comparability, relevance, timeliness, accessibility, credibility, usability, interpretability, 
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completeness, and coherence (Biemer, 2010). For instance, the temporal or spatial granularity of 

the estimates and other features related to improved coverage may be more important to some 

users, who may be willing to sacrifice some degree of accuracy in exchange. Another highly 

relevant dimension is the interoperability of the data and how data integration can improve 

accuracy and decrease bias while also playing a role in enhancing and/or reducing coverage. For 

instance, the use of mixed-mode data collection – such as high-frequency phone surveys that are 

fully integrated into a less-frequent face-to-face large-scale survey – has the potential to reduce 

measurement errors due to recall bias, but may introduce other problems such as under-coverage 

due to the incompleteness of sampling frames or higher levels of attrition. As proposed by Biemer 

and Lyberg (2003), one could treat all these additional dimensions of quality as constraints in an 

error minimization problem (Biemer, 2010). While highly relevant for sample surveys, the total 

survey quality paradigm can also be extended to other sources of data (Amaya et al., 2020). 

 

Keeping in mind the specific design choices that researchers face, we define the possible sources 

of measurement errors – corresponding to what Groves (1989) calls errors of observation – into 

five groupings: (1) questionnaire design, (2) interviewer effects, (3) respondent effects, (4) mode 

of data collection, and (5) data processing. Equally important sources of errors may derive from 

incomplete coverage, or lack of representativeness (that is, errors of non-observation), including 

sampling errors as well as non-sampling errors, further categorized into coverage errors and non-

response – we address these in the following section.  

 

This taxonomy of sources of errors can be juxtaposed with a typical data structure – with units of 

observation in the rows and variables in the columns – to show the relationship, and thus potential 

trade-offs, between sources of measurement errors affecting variables (the columns) vis-à-vis non-

coverage errors affecting units of observation (the rows), as well as the trade-offs between 

measurement error and coverage. It must be noted, however, that many of these sources and design 

choices may affect both measurement error and coverage (e.g., mode effects) or be correlated and 

have covariate effects on total error (e.g., interviewer and respondent effects). Furthermore, 

sources of measurement errors are likely to simultaneously affect multiple variables, both 

dependent and independent, generating complex error structures that have differential implications 

on inferences. Hausmann (2001) reviews approaches to dealing with measurement error in either 
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dependent or independent variables and in the case of continuous and discrete variables. Hyslop 

and Imbens (2001) provide a clear and succinct classification of the effect of measurement error 

on either dependent or independent variables, as well as on both. A common approach to 

measurement error in empirical labor economics is to model measurement error as an ‘errors in 

variables’ problem whose proposed solution is an instrumental variable. However, increased 

concerns about weak instruments have caused such methods to be disfavored in labor economics 

and this approach to measurement error in empirical agricultural economics has been rare. Finally, 

continuous dependent variables may lead to reduced statistical precision but not necessarily bias – 

but the cost of increasing sample size (adding more rows), particularly for numerous sample strata 

and domains of inference, is often high.  

 

While econometric approaches are inherently ex-post solutions to measurement error that take the 

data-generating process as given, we see opportunities for ex-ante solutions within current 

international efforts to build capacity in data quality assurance and methodological innovation in 

national statistical offices. These capacity building initiatives provide an opportunity to create 

better agricultural data structures that address research hypotheses and policy concerns by 

maximizing data quality. To this end, with due consideration to the various trade-offs, researchers 

can make design choices in several areas to minimize measurement error in the collection of 

agricultural data. Below, we present in detail the five main sources of measurement errors listed 

above. Understanding these groupings and their potential impact on bias and variance can help 

researchers make the right design choices for their research objectives.     

 

2.1. Questionnaire design 
 

Agricultural questionnaire design requires researchers and policy makers to clearly outline the unit 

of analysis and agricultural processes that they would like to measure. Rozelle (1991) outlined 

various approaches to agricultural survey design, such as production function approaches, income 

state approaches, and balance sheet approaches, each of which require different questionnaire 

designs. Production function approaches map inputs to outputs to estimate the returns to inputs. 

Income statement designs measure farm profits based on revenue and expense information. A 

balance sheet approach values farm assets and liabilities in addition to inputs and outputs. An early 
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resource for agricultural questionnaire design is the Reardon and Glewwe (2000) agricultural 

chapter in Ghosh and Glewwe (2000), which outlines broad principles of agricultural module 

design in multi-topic household surveys. Dillon et al. (2021a) provide a recent updated review 

incorporating recent innovations in survey design choices for agricultural questionnaires, 

including the integration of plot-level crop production and input modules as well as livestock 

production questionnaires. 

 

A broad questionnaire design literature explores best practices to minimize measurement error.  

Errors from questionnaire design may result from unclear wording, poor formatting, priming, 

excessive length of questions and instrument, sequencing and skipping of questions, duration of 

reference period, and differences in reference periods or the coding of responses (Schwarz, 1997; 

Fowler, 1995; Gideon, 2012; Iarossi, 2006; Manski and Molinari, 2008; Payne, 1980; Sudman and 

Bradburn, 1973; Sudman et al., 1996; de Weerdt et al., 2020). The impact of questionnaire design 

choices on data quality can be substantial, with even minor changes having adverse consequences 

on the accuracy and comparability of estimates (Beegle et al., 2020; Das et al., 2012; De Weerdt 

et al., 2016). Specification errors, which occur “when the concept implied by the survey question 

and the concept that should be measured in the survey differ” (Biemer, 2010) can also contribute 

to errors from poorly designed questionnaires. One example of specification error in many 

agricultural surveys is lack of clarity when defining plots relative to parcels, which may have large 

implications for productivity estimates (see section 3.2 on units of analysis for a discussion of plots 

versus parcels). Lack of consistent specification in the definition of household membership or 

contextual differences in the social and economic criteria of household membership may also lead 

to faulty estimates (Beaman and Dillon, 2012). Other examples of questionnaire design choices 

are the use of rosters to collect individual or plot-level data, or the collection of individual 

components of income or profits in lieu of eliciting information in a more aggregated format (De 

Mel et al., 2008; Vijverberg and Mead, 2000). In both paper and CAPI-based questionnaires, visual 

aids are widely used for capturing non-standard units of measurement for more accurate 

estimations of both agricultural production and food consumption (Eisenhower et al., 1991; 

Mathiowetz, 2000; Oseni at al., 2017). Particularly in electronic questionnaires, area maps using 

GPS are increasingly used for estimating land area, for listing dwellings and plots for sampling, as 

well as for supervision and quality control purposes.    
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Questionnaire length and complexity, as well sequencing of the questions and modules, may also 

have important implications on measurement error (Kilic and Sohnesen, 2019; Strack et al., 1988; 

Schuman and Presser, 1981; Schwarz and Hippler, 1991). Furthermore, the use of open or closed 

format may have an impact on responses, where closed questions with clearly identified response 

options can help respondents in both remembering information and choosing appropriate responses 

(Kasprzyk, 2005; Schwarz and Hippler, 1991). Finally, the language(s) and translation of the 

questionnaire, as well as differences in language and cultural background between the survey 

designer and the respondent may also contribute to errors (Vaessen et al, 1987). 

 

Agricultural surveys have attempted to reduce measurement error by leveraging the number of 

visits within the agricultural season to reduce the length of recall and align the visits to key stages 

of production. There are obvious costs to this approach, with a higher number of visits possibly 

increasing respondent and interviewer fatigue as well as field costs. Meanwhile, the potential 

advantages including reducing the length of the recall period, breaking up the length of long, 

complex questionnaires and interviews, or using the first interview to identify respondents for 

specific follow-ups in a second interview or as a temporal reference point to help respondents 

better contextualize their answer (known as bounding questions). Evidence from the measurement 

of consumption clearly points to an excessive number of visits negatively affecting data quality, 

most likely linked both to respondent fatigue and interviewer effect (Engle-Stone et al., 2017 for 

nutrient consumption in a survey employing up to 7 visits over 14 days in Bangladesh; Schündeln, 

2018 for a consumption survey with households visited up to 10 times in Ghana). 

 

Several of the surveys supported by the LSMS-ISA program (Dillon et al., 2021a) have attempted 

to adjust the survey visit schedule to the calendar of the agricultural campaign by scheduling a 

post-planting and a post-harvest visit. This visit structure aimed to ease the cognitive burden of the 

respondents by asking questions on agricultural operations and harvest at most a few weeks or 

months after they occur, instead of 12 months or more, while also limiting the number of visits to 

contain survey costs and respondent burden. Using data for Tanzania and Malawi, Wollburg et al. 

(2020) confirm the presence of non-random measurement error systematically related to the length 

of the recall period. They find evidence of such error in all the main variables of interest in any 
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agricultural survey, including quantities harvested, labor and fertilizer inputs, and even the number 

of cultivated plots. The magnitude of the recall effect typically varies between two and five percent 

per additional month of recall length, rendering its impact on the reliability of key agricultural 

indicators economically significant. Recently, some African national statistical offices such as the 

Uganda Bureau of Statistics are experimenting with an additional visit that can be used to collect 

supplementary objective measures on farm plots, including crop cuts (Ponzini et al., 2021). 

Technology is aiding these innovations by facilitating the transfer of information across survey 

visits via increasingly flexible CAPI applications.  

 

2.2. Interviewer effects 
 
Interviewer effects occur when personal characteristics of the interviewer, such as education, 

ability, motivation, or language barriers, affect the interview process. Proper recruitment, training, 

and monitoring of job performance are used to minimize errors associated with interviewer effects 

(Fowler, 2004). A meta-analysis of the literature (West and Blom, 2017) establishes that 

interviewer behavioral traits and demographic characteristics influence survey responses, and by 

extension, data quality. Response rates and response biases are particularly influenced by specific 

interviewer characteristics (such as age, ethnicity, experience, and education), behaviors (such as 

formal versus conversational interview styles), cognitive and non-cognitive skills (such as 

mathematical ability, reading, attention to detail, and empathy), and interviewer experience. 

Existing literature on interviewer effects finds that data quality can be a function of who is asking 

the questions. Responses vary by the interviewer’s ethnicity (Davis et al, 2010; Davis and Silver, 

2003), gender (Benstead, 2010; Flores and Lawson, 2008) and religion (Blaydes and Gillum, 

2013), especially for questions sensitive to race, gender, and religion respectively. Studies have 

also explored the association of data quality with interviewer skills and behaviors such as probing, 

providing feedback for responses, and rapport building (Belli et al, 2004). Some interviewer 

characteristics are fixed, while skill-based characteristics may change in response to training.   

 

Responses and measurement error may also vary based on the interviewer’s adherence to a script.  

For instance, in the context of the Agricultural Labor Survey in the United States, Ridolfo et al. 

(2021) show how interviewers’ lack of adherence to the script resulted in significant measurement 

errors. Similarly, using the same survey, Rodhouse et al. (2019) quantify the extent to which 
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deviating from the script affects the likelihood of measurement errors and conclude that the 

presence of measurement error is highly associated with the interviewer’s ability to adhere to the 

script. Biagas et al. (2019), using the same data, use a novel multi-method approach to identify 

patterns of interviewer behavior and its contribution to total survey error. 

 

Recent research on interviewer effects in a randomized experiment in Uganda by Di Maio and 

Fiala (2019) found that interviewer characteristics and their differences from respondent 

characteristics affected survey responses and ultimately data quality for sensitive topics. On the 

contrary, responses to less sensitive topics were much less, or not at all, susceptible to interviewer 

characteristics. This is supported by additional research suggesting that the salience and sensitivity 

of the questions influence the nature and magnitude of interviewer effects (Himelein, 2015; Laajaj 

and Macours, 2021). Marx et al. (2018) provide evidence on the impacts of team composition and 

ethnic diversity on interviewer performance. Data on the time use of field teams suggests that 

teams composed solely of interviewers organize tasks more efficiently than teams that include 

supervisors, interviewers, and data monitors, which demonstrate lower levels of effort. In a review 

of several studies, Groves (1989) suggests that demographic traits result in interviewer effects only 

when the specific question is related to the demographic characteristics of the interviewer (i.e., an 

interviewer effect based on the race of the interviewer may be found for questions about race).  

This may be particularly relevant in contexts with large ethnic and racial diversity. 

 

The effect of priming in surveys and the inconsistent application of interviewing protocols and 

wording across interviewers is also likely to generate systematic biases (Lavrakas, 2008). 

Similarly, the interview setting may also affect interviewers’ recording of responses and result in 

systematic errors. Collecting detailed metadata on the interview process is often used to partially 

control for potential biases generated by poor interview settings; unfortunately, this practice is not 

consistently applied across surveys. 

 

2.3. Respondent effects 
 
Respondents can also contribute to TSE in several additional ways, either intentionally or 

unintentionally. Assumptions about the structure of those respondent biases are often uninformed 

by empirical evidence, although Hyslop and Imbens (2001) provide a categorization of different 
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types of potential biases. For instance, respondents may intentionally under-report the amount of 

land they own because of taxation concerns or may conversely over-report their land holdings 

because of prestige considerations or social desirability. Social desirability concerns are likely to 

result in the under-reporting of “socially undesirable” behavior, and the over-reporting of socially 

desirable occurrences (Bound et al., 2001). For some agricultural statistics such as child labor, 

context may determine whether children’s work in agriculture carries social stigma and hence 

potential reporting bias. Similar response behavior may also occur with the reporting of income 

variables (Tourangeau et al., 2000). Respondents may also round up the amount of land owned to 

integer values, resulting in a phenomenon known as heaping. Research on land area measurement 

consistently finds systematic errors in farmers’ self-reporting, with farmers that own smaller land 

holdings systematically over-reporting (and farmers with larger land holdings under-reporting), as 

well as considerable heaping in reporting (Carletto et al., 2015, 2013).  

 

Errors in responses may be unintentional, resulting from limited knowledge or recall bias due to 

memory decay as the length of the recall period increases. Errors may also derive from limited 

understanding of the questions, potentially correlated with the cognitive level of the respondent 

(Laajaj et al., 2019; Laajaj and Macours, 2021). The use of bounding techniques, providing an 

easy-to-remember temporal reference point in respondents’ memory to better contextualize the 

answer, can be used to reduce the effect of telescoping in recall (Abate et al., 2020; Neter and 

Waksberg, 1964). Recall biases are also affected by the salience of the event being recalled (Beegle 

et al., 2012; Gaddis et al., 2020; Kilic et al., 2021; Wollburg et al., 2020). Gaddis et al. (2020) and 

Arthi et al. (2017) analyze the impact of recall on the measurement of agricultural labor. Their 

findings suggest that a seasonal recall approach to agricultural labor measurement may result in 

underestimated labor productivity. In their cross-country study, Beegle et al. (2012) find no 

evidence of bias in harvested quantities for both staple and cash crops. Recall bias, however, was 

present in hired labor reporting, although the direction of these biases varied by country. As already 

mentioned, similar findings emerge from Wollburg et al. (2020) related to the design choices of 

number and timing of field visits, as more visits and shorter roll-out periods reduce the length of 

the recall period.  
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Interestingly, at least in domains outside of agriculture, perceptions of salience may be influenced 

by the length of the recall period (Winkielman et al., 1998) and may vary by the income level of 

the respondent (Das et al., 2012). Understanding respondents’ cognitive strategies is crucial for 

choosing the most appropriate length of recall and thus minimizing measurement errors in 

responses. Evidence suggest that beyond a certain recall length, respondents switch from 

enumeration to estimation, each translating into different errors (de Nicola and Giné, 2014; Scott 

and Amenuvegbe, 1991). 

 

The use of proxy respondents and widespread reliance on the most informed respondent – often 

the male head of the household – is also likely to result in biased responses (Dillon and Mensah, 

2020; Doss et al., 2019; Kilic et al., 2020; Kilic and Moylan, 2016; Krosnick, 1999; Moore, 1988). 

Bardasi et al. (2011) find that using proxy responses led to the under-reporting of men’s 

participation rates in agricultural activities. Kilic et al. (2020a) show significant impacts of 

respondent selection strategy in the collection of labor data. Kilic et al. (2020b) also find that the 

common practice of proxy reporting results in different reporting of land assets relative to those 

reported by self-respondents. The use of proxy reporting by the “most knowledgeable household 

member” results in higher rates of exclusive ownership of agricultural land among men, and lower 

rates of joint ownership among women, as compared to the gold standard approach of individual, 

self-respondent interviews (Kilic et al., 2020b). In this context, interview setting has also been 

shown to greatly affect responses. For instance, the common practice of non-private interviewing 

(i.e. where other members of the household and community may be present during the interview), 

more often conducted through proxies, results in significant under-reporting of employment 

relative to measurement through private, self-respondent interviews, with stronger effects for 

women than men (Kilic et al., 2020a). Dillon and Mensah (2020) note that when proxies report 

household-level agricultural variables as opposed to individual-level responses, proxy response 

bias is composed of both aggregation errors and asymmetric information within the household. 

Thus, their findings suggest that proxy response bias is not solely due to asymmetric information 

within the household, as is commonly assumed in the literature on proxy response bias for 

individual-level variables. 
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Measurement error can also derive from the use of peers (e.g. neighbors, co-workers, key 

informants, etc.) as proxy respondents, potentially resulting from projection or false consensus 

biases, among other things (Hogset and Barrett, 2010). Despite the potential biases of proxy 

reporting of peer behaviors (Ashenfelter and Krueger, 1994), the practice is widely used (Hogset 

and Barrett, 2010). In some cases, however, it may be justified when gathering data from peers 

may be sub-optimal yet preferable, such as in the case of collecting highly sensitive information. 

While the use of proxy respondent should be minimized to the extent possible, one must also 

acknowledge the trade-offs between respondent bias and coverage, as restricting interviewing to 

the selected respondents is likely to result in higher attrition and unit missingness. Furthermore, 

the use of proxy respondents is often unavoidable due to logistics or cost considerations. In such 

cases, the proxy respondent selection process should be conducted based on strict standardized 

field protocols. 

2.4. Mode of data collection 
 
The mode of data collection – whether face-to-face, self-administered or interviewer-led, by 

phone, or by web, and whether on paper or in electronic format – can have substantial effects on 

measurement error as well as coverage. In terms of measurement error, several studies have shown 

that the effect depends on the type of question as well as interviewer ability and respondent 

characteristics (Biemer and Lyberg, 2003; Caeyers et al., 2010; De Leeuw, 2005; De Leeuw and 

Van der Zouwen, 1988). While errors of coverage may result from incompleteness of frames and 

respondent selection, phone or web surveys may allow more frequent data collection for greater 

temporal granularity and lower measurement error due to recall bias. Similarly, crowdsourcing and 

other forms of citizen-generated data are increasingly used in agriculture and potentially offer 

enormous opportunities for collecting data at greater temporal and spatial resolution. However, 

these modes of data collection also exhibit serious limitations in terms of representativeness as 

well as overall data quality which, if left unaddressed, are bound to produce biased inferences 

(Aceves-Bueno et al., 2017; Japec et al., 2015; Wiggins et al., 2011; Ambel et al., 2021; Brubaker 

et al., 2021). Using data from several African countries, Brubaker et al. (2021) address the issue 

of representativeness of phone surveys for gender-level estimates based on individual non-random 

respondents in the household, most commonly the head of the household, and propose ways to 

mitigate the bias. 
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Gibson et al. (2017) summarize the literature on data quality comparing phone to face-to-face 

interviewing, much of which focuses on health rather than agricultural variables. A significant 

increase in methodological work related to data quality on phone surveys occurred in response to 

the COVID-19 pandemic. Das et al. (2021) and Dillon et al. (2021b, c) provide summaries of 

random digit dialing phone surveys related to improving response rates, optimal timing of phone 

survey call attempts, and the impact of pre-survey text messaging. 

 

Greenleaf et al. (2020) estimates a difference of 20 percentage points in reported contraceptive 

use, with higher reported use for phone interviewing. In this case, presumably because sensitive 

subjects may induce lower reporting, phone interview modes may decrease measurement error by 

providing respondents more anonymity. In Lamanna et al. (2018), phone interviewing methods 

also induced higher reporting in dietary measures, with increases that varied between 28 

percentage points, 14 percentage points, and 18 percentage points for minimum dietary diversity, 

minimum meal frequency, and minimum acceptable diet measures, respectively. Mahfoud et al. 

(2014) compared estimates of alcohol consumption and exercise, finding a four percentage point 

increase in alcohol consumption and a seven percentage point decrease in exercise level reported 

with phone survey mode relative to face-to-face interviewing. However, not all studies find 

statistically significant impacts on data quality by survey mode; for example, Gallup (2012) finds 

no differences between survey modes in an experiment in Honduras. Furthermore, much of the 

existing evidence does not test behavioral mechanisms that might explain why responses differ by 

survey mode (Tourangeau and Yan 2007).   

 

2.5. Processing errors 
 

Finally, processing errors include possible errors generated during data entry, editing, coding, 

weighting, and analysis of data. New technologies and data processing power have transformed 

the set of opportunities and ways to reduce processing errors. Unfortunately, the relatively faster 

growth in the volume of data being generated, combined with the complexity of the new data 

landscape, have created additional challenges in terms of processing errors. For a review of 

processing errors and how they may impact total error, see Biemer and Lyberg (2003).  
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Many authors emphasize and empirically demonstrate how new data sources, methods, and 

technologies have proven instrumental to attenuating the sources of measurement error in data 

collection, as discussed in section 5 of this paper (Abay et al., 2019a, 2020; Dillon et al. 2019; 

Gourlay et al., 2019; Kosmowski et al., 2019; Lobell et al., 2020). In particular, the recent 

proliferation of well-designed validation studies, relying on complementary data sources and 

readily available technology, is contributing to a better understanding of the relationship between 

the measured and true value of the variable of interest, as well as providing insights on the 

magnitude and direction of potential bias. For instance, recent advances in CAPI, the use of sensors 

and other direct measurements, and the use of metadata and paradata, are increasingly being used 

to offset the threats to data quality of more traditional data collection techniques that rely heavily 

on farmers’ self-reporting (Akogun et al., 2020; Pratt et al., 2020; Sinha et al., 2020). 

 

3. Trade-offs in Maximizing Coverage 

As described in the previous section, measurement error can be addressed ex-ante through design 

choices, or ex-post through proper analysis and modeling, particularly when error-generating 

processes are non-random, thus potentially resulting in biased inferences. Aside from measurement 

error due to the poor design and administration of survey instruments, there are several other non-

sampling errors which negatively affect researchers’ analyses if left unaddressed. Of particular 

concern are coverage errors, which occur when individuals or units of interest are excluded from 

the sample, resulting in serious repercussions for the validity of the estimates, as they fail to 

represent the entire population or area of interest. Most troublingly, errors of coverage are seldom 

random and tend to exclude subpopulations of interest, such as female farmers, smallholders living 

in remote areas, pastoralist and nomadic populations, and more distant plots, among other marginal 

groups. They may also result from the use of particular sampling frames such as population-based 

listings (based on the population living in the area covered by the survey) or area frames (based 

on geographic area covered in the survey) which, by construction, exclude or undercount certain 

subgroups. For example, using population-based listings to collect agricultural data for the 

estimation of total national agricultural production or the farm size-productivity relationship 

prevents the inclusion of larger commercial farms in the list. The exclusion of commercial farming 
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from population-based listings may also hamper the analysis of the potential spillovers in terms of 

labor and other inputs for neighboring smallholders. For instance, Ali et al. (2019), using data from 

Ethiopia, find little or no benefits in terms of job creation, input market access, or technology 

transfer due to the presence of large farms. The possible exclusion or undercounting of medium- 

and large-scale farms from population-based listings may also constrain analysis on the rapid 

process of agricultural transformation and land consolidation occurring in many countries (Jayne 

et al. 2019). The advantages of population-based sampling frames relative to area frames have also 

been questioned, based on the assertion that respondents tend to under-report on plot ownership 

and use, thus leading to the underestimation of total production. On the other hand, the use of area 

frames may result in systematic biases in the collection of socioeconomic variables from the plot 

owners. The use of multiple frame sampling is often advocated as a way to overcome the 

limitations of either approach (Gonzalez Villalobos and Wigton, 2011; FAO, 2015b).  

 

Coverage errors can also derive from omitted variables in model specification due, for instance, to 

missing environmental variables affecting production decisions (Sherlund et al., 2002). As seldom 

collected in surveys, information on environmental conditions and capturing inter-farm 

heterogeneities affecting farmers’ choice is often missing, potentially resulting in biased estimates 

of both estimates and coefficients. With the widespread availability of inexpensive geospatial data 

that can be linked to household-level data, filling these gaps and potentially reducing the risk of 

omitted variable bias has become increasingly easier. However, the georeferencing of survey data 

at farm and plot level is yet to become common practice in many low- and middle-income 

countries. Furthermore, many of the hurdles related to data privacy for secure and confidential 

dissemination and use remain unresolved. 

 

In addition to non-coverage errors due to a priori exclusion from the frame, non-response and other 

reasons for attrition are also likely to affect the validity of the estimates. Non-response can be 

further divided into unit and item non-response. Unit non-response occurs when a unit of concern 

is included in the frame but is either not reached or is unwilling to participate in the survey. This 

missingness is seldom random and is often treated ex-post through imputation methods (Kilic et 

al., 2020; Rubin, 1996, 1987). Conversely, item non-response occurs when a respondent fails to 

provide information to a question during interviewing. This missingness is most often handled at 
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the data processing stage through complex imputation methods. However, the lack of consistent 

guidelines and practices of value imputation, combined with poor documentation on how missing 

values have been treated – potentially leading to systematic errors – once again highlights the 

potential trade-offs between coverage and measurement error. 

 

In line with the broader total survey quality framework, we review the issue of coverage error 

found in the statistical literature, considering several of the dimensions of coverage related to 

fitness-for-use. As postulated above, researchers are likely to be faced with trade-offs between 

measurement error and other dimensions of data quality. Furthermore, these trade-offs are also 

related to the particular data source. For instance, the feasibility of various possible decisions on 

the unit of analysis, timing, or level of disaggregation will vary based on whether data is being 

collected through an agricultural census, a national survey, or a randomized control trial. Coverage 

error is also affected by the mode of data collection, such as face-to-face, phone, or web-based 

interviewing, which can also lead to mode effects, another factor contributing to total error. In this 

section, we describe some of the design choices related to sampling frames, units of analysis, 

survey timing, modes of data collection, and attrition, all of which have implications for data 

coverage and the trade-offs between measurement error and coverage.  

 

3.1. Sampling frame 
 

The sampling frame used for agricultural surveys, whether based on population listing or 

geographic areas, may often be missing some sub-populations or units of concern. Under-coverage 

could be accidental or intentional and, if deliberate, may be driven by many motives. Of particular 

relevance to smallholder agriculture is the issue of under-coverage of more remote areas, farm 

holdings, or individual plots, driven by either cost considerations or convenience (Kilic et al., 

2017). Capturing pastoralist and transient populations is also particularly challenging, and their 

exclusion is likely to result in biased estimates (Himelein et al., 2014).   

 

As stated above, coverage will also depend on the type of sampling frame chosen. Multi-purpose 

household surveys like the LSMS-ISA use a population-based listing, with the household as the 

unit of analysis. More recent agricultural surveys, particularly in more developed economies, have 
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increasingly relied on area or point frames, which presents advantages when the objective is to 

estimate production at the national or sub-national level. In fact, one concern with using 

population-based listings is the possibility of missing some plots due to misreporting, thus 

resulting in lower total production. This problem is further compounded for pastoralist and semi-

nomadic populations which are entirely missing from or hard to reach using population frames; in 

these cases, using area frames in combination with population listings may be more appropriate 

(Himelein et al., 2014). However, collecting socioeconomic information on the farm household 

starting from a given area or point is particularly challenging, and hardly ever done in 

socioeconomic studies, thus limiting the analytical use of the data. Finding ways of reconciling the 

choice of frames and maximizing coverage by linking multiple frames has been the subject of 

recent research under the 50x2030 Data Smart Agriculture initiative (D’Orazio, 2020).  

 

One key shortcoming of using a population frame for agricultural data collection is the wholesale 

exclusion of medium and large commercial farms. This has been the practice in agricultural 

household surveys such as those conducted under the LSMS-ISA initiative, which has raised 

concerns about the validity of inferences made on a truncated distribution of farm holdings 

(Muyanga and Jayne, 2019; Ali and Deininger, 2014). On the other hand, agricultural censuses 

and farm surveys that focus on both farming households and commercial farms may be more 

suitable for sector-level estimation of agricultural indicators, but fall short of meeting the analytical 

objectives of surveys of households as both production and consumption units (Singh et al., 1986). 

The use of multi-frame sampling strategies, combining the strengths of the individual sources, is 

gaining ground in lower-income countries, albeit at a slower pace due to capacity constraints and 

the technical difficulties involved. 

 

By choosing a household listing as a population-based frame, the definition of household and 

household membership have important measurement implications, in part because social and 

economic definitions of the household diverge (Beaman and Dillon, 2012). This is especially the 

case in communities with extended farming families with land inheritance claims, common 

production of family lands, or complicated land use rights. The household definition matters from 

an agricultural perspective, as household membership defines the individuals that will be included 

in modules on agricultural land holdings, labor, assets, and marketing decisions. Unsurprisingly, 



26 
 

reported values of agricultural production are lower when the household definition excludes some 

agricultural producers. Residency requirements also complicate the measurement of pastoralist 

activities when households are involved in transhumant pastoralism. 
 

3.2. Units of analysis 
 

Agricultural data is often collected at different units of analysis, including at national or sub-

national levels, geospatial area units, and at the household, farm, plot, or plot-crop-season-manager 

levels. Depending on the frame used, selection may be based on population listing or a map, 

subdivided into grids. It may be the case that, for a specific application, both types of frames may 

be used, which requires reconciling the estimates at the national or sub-national level. For instance, 

Pelletier et al. (2020) use small area estimation (SAE) to reconcile deforestation estimates from 

area-based frames with smallholders’ use of modern inputs drawn from a population-based frame. 

In fact, it is conceptually appealing to use area frames when the focus is the measurement of land 

area and related agronomic features, as a population-based survey may result in under-counting 

plots and farming activities. On the other hand, the use of population-based listings may be more 

appropriate than area frame sampling in capturing data from hard-to-reach farmers living far away 

from the plots. The use of multiple frames, which in the agricultural domain involves the combined 

use of both area and list frames, has been advocated as a way to ensure completeness of the frame 

and full coverage of the sector (FAO, 2015b; Gonzalez Villalobos and Wigton, 2011). However, 

avoiding duplication and overlapping units is often a challenge when constructing multi-frames.   

 

Indirect sampling has also been proposed as a way to overcome the shortcomings intrinsic to 

household listings as frames for agricultural statistics, by applying Generalized Weighted 

Sampling Methods (GWSM) to obtain estimates for landholdings (the unknown and more relevant 

universe) from a household listing (the known population) (Falorsi et al., 2016; Gennari et al., 

2013). 

 

Any livestock sector outcomes should be recorded at the herd level rather than at the household 

level, particularly for nomadic populations. Household surveys with population-based sampling 
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frames will never capture herd-level outcomes, for which area-based-sampling measures may be 

a better unit of analysis.   

 

In an example of innovative survey design, LSMS-ISA surveys redesigned agricultural modules 

by recognizing that the unit of observation for agricultural production is often not the household 

but the plot, which may be managed by differing household members, with significant implications 

for sex-disaggregated analysis. In early versions of LSMS surveys and many other multi-topic 

household surveys, agricultural activities were not detailed at the plot level, as this requires a 

higher respondent burden relative to household level recall. However, a plot-level approach more 

accurately measures the relationship between inputs and outputs in agricultural production. 

Production heterogeneity results from differences in crops cultivated that require different levels 

of inputs and may not be managed by the household head. The level of detail required in 

subsequent modules makes this survey design choice non-trivial. For example, plot-level data 

collection requires not simply measuring land area at the plot level, but also production, labor, 

capital, chemical inputs, and land management techniques. 

 

Choosing to measure production at the plot level requires a wider series of choices in identifying 

the unit of analysis, which has implications for both design and implementation. First, agricultural 

production is seasonal and multiple crop cycles on a given plot need to be measured. Second, plots 

are not always associated with a single crop, as multi-cropping or inter-cropping is a common land 

management practice for increasing yield and land quality. In contexts such as smallholder 

agriculture in Sub-Saharan Africa, inter-cropping is the norm, not the exception. For instance, two-

thirds of maize plots in Uganda include multiple crops (authors’ calculations based on the 2018 

Uganda National Panel Survey). Third, property rights are not necessarily well established in many 

rural contexts, and multiple family members may work on the plot or cultivate the plot in different 

seasons. The landowner may be different than the person making decisions to cultivate the land, 

as sharecropping, land leasing, or land lending may mean that landowners are not making 

agricultural decisions. Holden et al. (2016) describe survey design choices in modules used to 

describe land tenure. Depending on the empirical applications of data collected, information on 

the sources of land acquisition including inheritance and legal status, land transactions, formal and 

informal property rights, land conflicts, perceptions of tenure security, and trust in land-related 
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institutions may all be important additional questions complementary to the land roster. This is 

especially true if the survey aims to monitor the Sustainable Development Goals (SDGs) related 

to land tenure, particularly SDGs 5.a.1 and 1.4.2. Recognizing the importance of land tenure 

security as it relates to the control of and access to other assets, through access to credit and 

investment in land, for example, these SDG indicators seek to measure specific aspects of land 

tenure at the individual level, rather than at the household level. 

 

In summary, the key innovation in conducting plot-level production analysis is not to simply 

measure inputs and outputs at the plot level, but to distinguish the unit of analysis as plot-crop-

season-manager. This unit of analysis facilitates comprehensive measurement of household 

production, allowing multiple analytical strategies from seasonal, crop, and gender perspectives, 

but also has some limitations, particularly in the context of a panel survey, given the changing 

demarcation of plots across seasons. Tracking parcels over time is often a more feasible option. 

 

Across different agricultural systems, the vocabulary associated with an agricultural landholding 

may also differ. Farmers use different words to indicate their farms, parcels, and plots, often with 

contradictory meanings. It is important that any agricultural survey design reflects a clear 

conception of the hierarchy of units consistent with the agricultural system that is being measured. 

Carletto et al. (2016) provide an overview of land area measurement survey design issues, noting 

differences in units of land measurement as well as variation across LSMS-ISA surveys in land 

reporting units. Holdings, parcels, fields, and plots all have internationally accepted definitions, 

although their interpretations by both academics, NSOs, and policy makers often lead to 

ambiguity. The definition of the agricultural holding is the primary unit of analysis in agricultural 

surveys, whereas the household is the primary unit of analysis in household surveys. The Food and 

Agriculture Organization of the United Nations (FAO) (2015) defines the agricultural holding as 

an “economic unit of agricultural production under single management comprising all livestock 

kept and all land used wholly or partly for agricultural production purposes, without regard to title, 

legal form or size...” Holdings can be divided into parcels, and the FAO notes that “a distinction 

should be made between a parcel, a field and a plot”, where “a field is a piece of land in a parcel 

separated from the rest of the parcel by easily recognizable demarcation lines such as paths, 

cadastral boundaries, fences, waterways or hedges. A field may consist of one or more plots, where 
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a plot is a part or whole of a field on which a specific crop or crop mixture is cultivated, or which 

is fallow or waiting to be planted” (FAO 2015). However, when designing and implementing an 

agricultural survey, practitioners should confirm the tiers and definitions used by the national 

statistical office, as these may not always coincide with the FAO definitions. As suggested above, 

tracking parcels may be a more practical option for longitudinal studies, given the changing size 

of plots across seasons. 

 

Recording agricultural information at the household level inherently aggregates individual 

production and imposes a linearity assumption across plots for input utilization and asset use. The 

main trade-off in recording agricultural information at the plot level is that farmers must recall 

input allocation at the plot level, which requires more cognitive effort and response time. These 

recall biases may be compounded by proxy response bias, as plot-level self-reporting is time-

consuming in the field and may be not feasible for all survey responses. Proxy respondents may 

have incomplete information on plots managed by other household members. For farmers who 

purchase inputs collectively with their family for multiple plots, it may be difficult to accurately 

assess how much fertilizer, seed, or other input was applied to a particular plot. Consistent with 

time use data, it may also be difficult for a farmer to recall individual household labor allocations 

to particular plots over an agricultural season or with respect to particular agricultural tasks. While 

more research is needed to understand the measurement implications of the disaggregation of input 

and production data to the plot level from the household level, the known analytical advantages of 

doing so – such as analysis of male-managed plots vis-à-vis female-managed plots – outweigh the 

unknown risk of aggregation in many surveys, including LSMS-ISA surveys.  

 

Due to variation in land tenure status and land use rights, it is also important to account for 

seasonality in production on plots and changes in plot management when considering the unit of 

analysis. Depending on the agricultural season, a plot may be cultivated by a different member of 

the household and use different levels of inputs along with different cropping choices. Researchers 

have often cited asymmetries in crop type and input use, and therefore productivity and earnings, 

by the gender of the plot manager. O’Sullivan et al. (2014) estimate that, after controlling for plot 

size and region, productivity differences across male- and female-managed plots in Africa ranged 

from 23 to 66 percent. In order to appropriately account for plot-level production, and to enable 
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analysis of the timing of production and gender asymmetries, both season and plot manager should 

be considered. The plot manager may differ from one season to the next, often depending on 

gender-based norms.  

 

Just as there are trade-offs in empirical specifications among units of analysis, differences in units 

of analysis also imply different constraints when repeated observations are an objective of the 

survey design.     

 

3.3. Survey timing  
 

Survey timing is a critical design choice that affects coverage as well as measurement error due to 

questionnaire design or respondent effects. Survey timing can refer to the timing of visits within a 

single agricultural season, as well as the timing of visits between seasons. LSMS-ISA surveys 

feature an innovative survey design that includes repeated visits both within and between seasons 

(Carletto et al., 2010). New international surveys such as those produced under the 50x2030 

Initiative will also feature multiple within- and between-season observations. Here, we review 

survey timing decisions that increase coverage across certain dimensions of time. 

 

As a research and policy issue, seasonality and the presence of multiple cropping cycles within the 

agricultural calendar imply that multiple agricultural surveys may be best timed according to 

cropping cycles or the agricultural calendar. Survey timing choices can decrease recall bias, 

particularly for agricultural choices such as input decisions, labor allocation, or sales, which are 

often frequent and difficult to recall. LSMS-ISA surveys collect agricultural information during 

the post-planting and post-harvest periods, but timing could be more frequent to correspond to 

multiple cropping periods which may overlap, particularly when agricultural systems have fewer 

water constraints. When variables such as labor inputs are a research objective, higher frequency 

surveys may reduce recall bias as well as increase statistical power depending on the auto-

correlation of the variable over periods of time (McKenzie 2012).  

 

Agricultural panel surveys most frequently track households between seasons to capture changes 

in production decisions over time, and their correspondence to changes in welfare. Despite interest 
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in understanding changes in agricultural activities over time, plots are rarely tracked in panel 

surveys, as tracking plots over time is a time-intensive field activity that limits coverage. For 

example, LSMS-ISA surveys are conducted as a household panel (or household-parcel panel in 

select countries), with repeated cross-sections of a tracked household’s plot, production, and input 

information.  
 

Variation in production and other agricultural variables as well as the ability to monitor shocks 

and household resilience could also be captured through community sentinel sites complementing 

less frequent surveys (Barrett and Headey, 2014). The authors convincingly argue for establishing 

a multi-country system of sentinel sites in selected communities as a way to improve the timeliness 

and coverage of agricultural data, in the face of ever more frequent shocks affecting the resilience 

of rural households.  

 

3.4. Mode of data collection 
 

As discussed in the previous section, the choice of survey mode may have significant implications 

in terms of measurement error, either directly or through its interaction with other design choices 

related to questionnaire design, interviewer selection, and respondent features. Similarly, certain 

modes of data collection may also affect survey coverage. Poor representativeness because of 

inadequacy of the sample frame, selectivity, and potentially high attrition is a major challenge for 

phone surveys (Ballivian et al., 2015; Gibson et al., 2019). For instance, the use of mobile phones 

or the web affects not just how responses are elicited, but also whether respondents agree to 

participate in the survey, and/or whether respondents are included in the frame in the first place. 

In terms of frames, phone surveys predominantly rely on three options: (1) recent representative 

surveys with phone numbers of respondents; (2) lists of phone numbers from mobile phone 

providers, and (3) random digit dialing (Kastelic et al., 2020; McGee et al., 2020). Each option 

involves significantly different implications for both coverage and attrition. Proper tracking and 

field protocols, combined with the collection of selected information for ex-post weighing and bias 

adjustment, can greatly enhance the representativeness and usability of phone surveys and reduce 

mode bias.  
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Irrespective of the type of frame used, phone surveys are more likely to miss more remote and 

poorly connected households, as well as poorer households who do not own a phone or live in 

areas with poor mobile coverage. This is particularly relevant for agricultural data, where large 

shares of respondents live in remote and poorly connected areas and are more likely to be poor and 

technologically illiterate. Educational level, age, and technological literacy will also systematically 

affect overall coverage. Similarly, selection bias for respondents in citizen-generated data and 

crowdsourcing makes collecting agricultural data using those modes particularly concerning in 

terms of representativeness and coverage, especially when it comes to their use in official statistics.   

These concerns, combined with the huge opportunities that these new modes of data collection 

provide, are generating significant attention in recent literature (see Hill et al., 2019 and some of 

the papers cited therein, including Buil-Gil et al, 2020; Diego-Rosell et al., 2020; Salganik, 2017). 

 

Coverage biases related to phone survey modes may be due to either non-response or non-

completion. Little literature exists on response rates in phone surveys in low-income countries, but 

recent studies due to COVID-19 restrictions on face-to-face interviewing are generating new 

evidence. Dillon et al. (2021b) conducted random digit dialing surveys in nine countries, 

demonstrating variation in response rates as high as 60 percent and as low as 7 percent. They find 

most coverage biases are due to non-response when respondents do not answer their telephone. 

Hence, a key survey design feature in telephone surveys is decreasing non-response. Dillon et al. 

(2021c) evaluated choices on pre-contact notification via text message and time-of-day/day-of-

week as potential telephone survey protocol decisions that might reduce non-response. They found 

that pre-survey text messages did little to improve non-response but did increase survey 

completion. In the Philippines, pre-survey text messages actually increased non-response, while 

having no effect in the Colombia, Mexico, or Rwanda samples. In those countries, pre-survey text 

messaging increased survey completion by between one and four percentage points. In nine 

countries, time-of-day and day-of-week effects were estimated, with midday interviews increasing 

participation and evening calls reducing participation (Das et al. 2021). These effects were 

relatively small, with an effect size of four and eight percentage points over the base pickup and 

completion rates, respectively. The day-of-week effects varied substantially between countries, 

with few generalizable day-of-week effects between countries. Within countries, effect sizes were 

substantial, but often in different direction by country. More country-specific evidence may need 
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to be generated to reduce non-response, underscoring the importance of understanding local 

contexts and the differences in time distributions between work and leisure within a country.       

 

The impact of mode of data collection on coverage extended to other survey design features. For 

instance, the use of diaries, while possibly more accurate than recall modes when properly 

implemented, may lead to greater under-coverage among illiterate respondents as well as higher 

non-response among richer households that face higher opportunity costs for answering lengthy 

diaries. Also, differences in record-keeping across groups of respondents, such as between 

smallholders and larger-scale farmers, may result in systematic variations based on the chosen 

method (Lyberg and Kasprzyk, 2004; Silberstein and Scott, 2004). In the next section, we discuss 

in detail how measurement error and coverage bias affect the empirical estimation of common 

agricultural models.  

 

3.5. Attrition 
 

Significant coverage biases due to attrition affect both the internal and external validity of 

empirical work for both randomized control trials and observational panels (Beegle et al., 2011; 

Falaris, 2003; Outes-Leon and Dercon, 2008; Rosenzweig, 2003; Thomas et al., 2012, 2001; Zabel, 

1998). Millan and Macours (2019) discuss attrition in the context of randomized control trials 

where tracking protocols may affect intent-to-treat effects. In a 10-year panel from Nicaragua, they 

find that excluding attrited individuals led to an overestimate of their intent-to-treat effect by 35 

percent. 

 

Tracking the same respondent over time is challenging in large national surveys. Thomas et al. 

(2012) and Witoelar (2011) discuss minimizing attrition and improving tracking in the context of 

a large-scale national survey. The integration of mobile phones and household geo-referenced data 

increases the traceability of households, but also raises concerns about privacy and data protection.   

While multiple papers suggest ex-post methods of dealing with attrition (see for example, DiNardo 

et al., 2006; Millan and Macours, 2019; Wooldridge, 2002), little consensus on ex-ante methods 

of reducing attrition have been covered in the literature. One notable exception is Olsen (2005), 

who discusses design features relevant to attrition reduction in the National Longitudinal Survey 
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of Youth. Thomas et al. (2012) also discuss planning for attrition and protocols for reducing 

attrition. They find that success in tracking movers depended not only on observable characteristics 

of respondents, but also the characteristics of interviewers who initially interviewed respondents. 

Reducing coverage bias due to attrition is likely to be most successful not simply when surveys 

are designed to track respondents who have moved, but also when initial interviews collect 

tracking data and interviewers are trained to establish connections with survey respondents. 

 

4. Empirical Specification, Data Structure, and Measurement Error 

For any empirical analysis, the set of theoretical models that can be tested is defined by the 

available data. Each data set has its own data structure, which we defined above as the full set of 

survey design choices that comprise the data production process, including sampling, 

questionnaire design, and fieldwork implementation choices. National production surveys such as 

agricultural censuses imply a specific subset of production models that can be tested. Household 

surveys that integrate agricultural data, such as LSMS-ISA surveys, are implicitly informed by 

producer models or agricultural household models, but measurement error or coverage bias can 

reduce the precision and utility of estimates and restrict the set of testable models. In this section, 

we review trade-offs in the empirical specification of agricultural models and data requirements. 

We discuss how survey design choices that increase data coverage present a trade-off in potentially 

increasing measurement error in prominent empirical models. 

 

While we cannot review the interaction of data structure and empirical specification across all 

prominent models in agricultural economics given the focus of this paper, it is illustrative to choose 

a few common specifications to demonstrate how innovations in data structure have expanded the 

set of testable models. For this purpose, we review examples from the profit and production 

function literatures and the agricultural household model literature. The estimation and 

improvements in estimating these models over the last few decades as international household 

surveys have emerged are directly cited as motivation in Ghosh and Glewwe (2001) among others.  

 

4.1. Profit and production functions 
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A large literature examines models of the producer problem (Chambers, 1988; Chambers and 

Quiggin, 2000; Mundlak, 2001) and the specification of the agricultural production function (Pope 

and Just, 2001). Pope and Just (2003) provide a summary of production technologies and their 

functional forms. In this earlier production literature, measurement error and coverage bias were 

central concerns in the field.  Pope and Just (2003) specifically discuss coverage bias and its effect 

on production function specification, as well as the modeling of measurement error. Aggregated 

district or national data sources led to misattribution of the returns to inputs, as the unit of analysis 

in the data was not at the producer level where profit-maximizing decisions were made in the 

theoretical model.    

 

Measurement error due to unobservable decision variables is also a source of bias in production 

function estimation, but distinguishing measurement error from unobserved heterogeneity and 

potential misallocation is challenging. Yields can be biased by output or land size measurement as 

noted by Abay et al. (2020). Inputs such as fertilizer or labor can be biased by errors in both 

quantity and quality over the relevant recall period. In the case of livestock production, inputs such 

as medical care and feeding practices may be difficult to attribute within herds. Measurement error 

in these input and output variables is likely correlated with unobserved heterogeneity in farmer 

ability. As agricultural production is also characterized by stochastic disturbances such as weather 

shocks which require similar modeling assumptions to address unobserved farmer heterogeneity, 

error terms capture multiple sources of stochastic shocks. In principle, researchers can model such 

errors in the producer problem depending on the data structure.  

 

Pope and Just (2003) consider the case where measurement error found in demand and supply 

functions is uncorrelated between input and output – i.e., 𝑌𝑌 = 𝑓𝑓(𝑋𝑋∗,𝐾𝐾, 𝜐𝜐), as opposed to 𝑌𝑌 =

𝑓𝑓(𝑋𝑋∗ + 𝛿𝛿,𝐾𝐾, 𝜐𝜐) where input disturbances affect output directly. The latter case is called errors in 

optimization or misallocation, where disturbances are interpreted as errors in decision making. 

Pope and Just (2003) distinguish misallocation from additive measurement error, their errors in 

variables case, and the errors in uncontrolled conditions case, when disturbances are modeled as 

errors that affect production after producer decisions are made. For the producer problem, 

𝜋𝜋(𝐼𝐼,𝐾𝐾) = max
𝑋𝑋

{𝐸𝐸𝐼𝐼[𝑃𝑃𝑓𝑓(𝑋𝑋,𝐾𝐾, 𝜀𝜀) − 𝑅𝑅𝑋𝑋]}, the supply and demand equations are 𝑋𝑋 = 𝑋𝑋∗(𝐼𝐼,𝐾𝐾) + 𝛿𝛿 +

𝜍𝜍 and 𝑌𝑌 = 𝑓𝑓(𝑋𝑋∗ + 𝛿𝛿,𝐾𝐾, 𝜀𝜀) + 𝜐𝜐 where 𝛿𝛿 is misallocation, 𝜍𝜍 is the errors in measurement of inputs 
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that do not affect outputs, 𝜀𝜀 represents stochastic production shocks such as weather, and 𝜐𝜐 

represents measurement of outputs. Using agricultural data from the United States, Pope and Just 

(2003) estimate the model, finding no evidence for measurement error, but cannot reject 

misallocation.   

 

In a similar spirit, Gollin and Udry (2021) model measurement error, unobserved heterogeneity, 

and misallocation using panel data from Tanzania and Uganda. Several important identification 

challenges are addressed due to data structure, in particular, a unit of analysis at the farmer-crop-

plot-season level. After explaining differences in production across farms due to observable 

differences, Gollin and Udry (2021) note that unobserved variation could be due to unobserved 

land characteristics, risk, measurement error, or misallocation. With repeated panel data of farmers 

over time, a production function, whose error term is disaggregated among these different 

unobserved components, can be estimated. Gollin and Udry’s (2021) estimates suggest that 

measurement error and heterogeneity explain two-thirds to three-quarters of productivity 

differences, while misallocation affects productivity only modestly. In considering the advances 

in the identification of measurement error and misallocation in the production function, we note 

from a data structure perspective the trade-off between improved empirical specification of 

misallocation and measurement error due to survey design. Recall of input allocations at the 

farmer-crop-plot-season level is ideal, as it permits researchers to map inputs to outputs, but 

measurement error may actually be increased if farmers do not recall inputs at the farmer-crop-

plot-season level.  For example, farmers may make bulk fertilizer purchases within their household 

that are then divided within the household and across the farmer’s plots. Precisely recalling the 

amount of fertilizer applied to a farmer’s maize field relative to their inter-cropped legumes may 

be impossible, even if the farmer knows exactly how much fertilizer was purchased in total.  

 

We note that the Gollin and Udry (2021) identification strategy capitalizes on a farmer panel to 

disentangle the effects of measurement error from misallocation and farmer unobservables, but we 

also note that assumptions about the production technology, as in Pope and Just (2003), are 

required. Estimates of misallocation using different production functions would certainly vary, 

along with the level of measurement error estimated for each. This provides an important example 

of the trade-offs between data structure and empirical modeling. Advances in farmer panels allow 
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Gollin and Udry (2021) to estimate misallocation and measurement error addressing farmer 

unobservables through farmer fixed effects in their production function.    

 

Coverage biases in profit and production functions also largely depend on the unit of analysis. In 

national surveys, units of analysis for agricultural data include the household (Reardon and 

Glewwe, 2000), the agricultural holding (FAO, 2016), or the plot (Carletto et al., 2016). When 

land is recorded at the household level, aggregation bias and asymmetric information among 

household farmers may cause landholdings to be misreported (Dillon and Mensah, 2020). 

Coverage biases could be significant when commercial farms or large farms are omitted using 

household sampling frames (Muyanga and Jayne, 2019). The improved coverage of plot-level 

information may also increase measurement error in input reporting, as noted above. High-

frequency agricultural surveys are rare and as such, much knowledge about seasonality is due to 

post-harvest recall rather than within a production season. Models of sequential agricultural 

decision-making such as Fafchamps (1993) are few.    

 

Foster and Rosenzweig (2010) discuss coverage and measurement error biases in the estimation 

of profit functions, particularly in the inference of returns to inputs in technology adoption 

problems. Cross-sectional inference of returns to fertilizer are biased, as farm heterogeneity and 

low price variation make it difficult to disentangle the marginal product of fertilizer and land 

quality in explaining differences in profits. Panel data with increased coverage of farmers across 

seasons do not necessarily improve the identification of returns to inputs even if measurement error 

is low, because multiple sources of unobserved heterogeneity remain as correlated biases in the 

production function residual, such as plot unobservables, between-season misallocation, or 

climatic variation which may be unobservable ex-post. 

 

While coverage biases are a significant constraint in improving estimates of agricultural profit 

functions, measurement error remains a significant bias, primarily due to labor recall, input quality, 

and estimating the use of and return to agricultural assets. Akogun et al. (2020), Carletto et al. 

(2012), and Dillon et al. (2020) document the challenges of agricultural labor recall in household 

surveys. Not only is plot-level detail of person-days challenging for respondents to recall, but 

agricultural wages are difficult to accurately measure in household surveys, since much 
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agricultural labor is household labor. Physical activity measurement of agricultural labor for 

particularly physical tasks, may be one approach to better measuring labor quality or effort, a key 

variable in much of the off-farm labor and contracting literatures. Differentiating between adult 

and child labor on the farm is another important dimension of labor input quality.  National surveys 

of child labor are often conducted as standalone surveys, rather than integrated into agricultural 

surveys. As much child labor is crop-specific, detailed child labor data is often difficult to collect 

in national surveys. Input quality is also not limited to labor, as chemical inputs often face 

questions of quality due to inappropriate mixing, as in the case of pesticide use/exposure and 

fertilizer which may be adulterated (Michaelson et al., 2021, Norton et al., 2020). Asset ownership 

and use also vary considerably by respondent type (Doss and Quisumbing, 2019). We note 

advances in measuring labor and assets in section five.  

 

4.2. The agricultural household model 
 

A second class of models frequently used in agricultural economics link agricultural production 

decisions with household welfare. We sketch an agricultural household model to motivate 

measurement error and coverage biases when welfare analysis of production decisions is an 

empirical objective. In cases where separability is assumed, the model reduces to a profit 

maximization and utility maximization problem given production choices. The agricultural 

household model is a useful example of trade-offs in measurement error and coverage because we 

implicitly cover a range of producer models within the agricultural household model.     

 

Household decisions are constrained by an agricultural production function, time endowment, and 

an intertemporal budget constraint (see Bardhan and Udry, 1999; LaFave et al., 2013; Singh et al., 

1986). The household’s problem is to choose own-produced agricultural goods (𝑥𝑥𝑎𝑎𝑎𝑎), purchased 

market goods (𝑥𝑥𝑚𝑚𝑎𝑎), agricultural inputs (𝑉𝑉𝑎𝑎), and leisure (𝑙𝑙𝑎𝑎) to maximize the discounted stream of 

expected utility, given observed (𝜇𝜇𝑎𝑎), and unobserved household characteristics (𝜀𝜀𝑎𝑎). 

 

In a non-separable formulation of the agricultural household model, production factors such as 

input prices also influence the household’s consumption choices. Coverage biases may exist in the 

collection of input price data if household surveys do not measure market prices faced by farmers. 
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Imputed input price data for fertilizer, seed, or pesticides/herbicides ignore substantial price 

variation within input class correlated with product quality and efficacy.  

 

Equation 1 provides the reduced form purchased market goods demand, which can be derived from 

the first order condition:   

𝑥𝑥𝑚𝑚𝑎𝑎 = 𝑥𝑥𝑐𝑐𝑎𝑎(𝑝𝑝𝑚𝑚𝑚𝑚𝑎𝑎,𝑝𝑝𝑎𝑎𝑚𝑚𝑎𝑎,𝑤𝑤𝑚𝑚𝑎𝑎, 𝑟𝑟𝑎𝑎+1,𝜋𝜋𝑎𝑎(𝑝𝑝𝑚𝑚𝑣𝑣𝑎𝑎,𝑝𝑝𝑎𝑎𝑣𝑣𝑎𝑎, 𝑝𝑝𝑣𝑣𝑎𝑎,𝑝𝑝𝐴𝐴𝑎𝑎;𝜃𝜃𝑎𝑎  ),𝑝𝑝𝑚𝑚𝑣𝑣𝑎𝑎 ,𝑝𝑝𝑎𝑎𝑣𝑣𝑎𝑎,𝑝𝑝𝑣𝑣𝑎𝑎,𝑝𝑝𝐴𝐴𝑎𝑎, 𝑦𝑦𝑣𝑣𝑎𝑎, 𝜆𝜆𝑣𝑣𝑎𝑎;  𝜇𝜇𝑎𝑎, 𝜀𝜀𝑎𝑎)             

(1) 

where good m consumption depends on market (𝑝𝑝𝑚𝑚𝑚𝑚𝑎𝑎) and own produced agricultural good prices 

(𝑝𝑝𝑎𝑎𝑚𝑚𝑎𝑎), the price of variable inputs (𝑝𝑝𝑚𝑚𝑎𝑎) such as agricultural labor, fertilizer, pesticides, or 

herbicides, interest rates (𝑟𝑟𝑎𝑎+1), farm profits (𝜋𝜋𝑎𝑎) conditional on climate variability (𝜃𝜃𝑎𝑎), exogenous 

income (𝑦𝑦𝑣𝑣𝑎𝑎), and future prices via the marginal utility of wealth (𝜆𝜆𝑣𝑣𝑎𝑎). Consumption also depends 

on household characteristics, both observed (size and composition) and unobservable (food 

preferences). Input prices affect household consumption when markets are incomplete, and we 

cannot assume that income alone affects household consumption demand. Therefore, the 

consumption demand equation includes not only variables that affect household income, but also 

those that affect production decisions.  

 

While we have discussed above the challenges in measuring agricultural variables in the demand 

equation, we now highlight coverage biases and measurement error in the estimation of equation 

1.  First, coverage biases could have significant effects on consumption demand when consumption 

is measured substantially after agricultural variables are realized and/or uses a different reference 

period. For example, annual household surveys that record production data from the last 

agricultural season may be lagged by months relative to household food consumption data, which 

is often recorded for the last seven-day reference period. Second, measurement error in food 

consumption aggregates can be substantial, due to the conversion of non-standard units and the 

subsequent imputed food prices (Oseni et al., 2017). Deaton and Zaidi (2002) provide a detailed 

description of consumption aggregate choices. As documented by Beegle et al. (2012), survey 

design choices related to different recall periods and survey modes (such as diaries versus in-

person recall) have substantial effects on measured household consumption and consequently on 

imputed food prices and welfare. Third, an important specification issue in the demand equation 

is the inclusion of prices of consumption goods, own-produced goods, and inputs. As agricultural 
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surveys are often collected at a single period of time, capturing the relevant prices to correctly 

specify equation 1 could result in substantial measurement error given seasonal price fluctuations 

in both inputs and outputs.    

 

In the next section, we discuss advances in measuring agricultural variables that are paramount to 

the producer and agricultural household models described above, but also to a wide set of models 

in agricultural economics that are beyond the scope of this paper. We note that the two models 

chosen in this section are examples, but issues of identification, measurement error, and coverage 

are not limited to producer and agricultural household models. Advances in data infrastructure 

improve internal and external validity by expanding the possibilities for improved identification 

and coverage, providing data sources for testing a wide range of potential empirical models.   

 

5. Advances in Data Collection 

The combined availability of new data sources, affordable computing power and data storage 

options, and digital technologies allowing for innovative modes of data collection (such as mobile 

and smart phones, tablets, and sensors of all kinds) have created a new data landscape with novel 

opportunities for more accurate, affordable, and timely data collection (Hill et al., 2019). In some 

cases, new data collection modes or innovations may help correct for existing biases – for example, 

measuring land area using GPS alongside farmers’ self-reported information – while in others, 

they may introduce new biases via under-coverage or response biases – for example, phone surveys 

or citizen-generated data (Amaya et al., 2019; Hill et al., 2019). Integration of new data collection 

modes with household surveys requires assessing trade-offs between cost, measurement error, 

coverage bias, and knowledge generated from testing new empirical models. A recent surge in the 

number of survey experiments, including on issues related to agriculture and food, has greatly 

contributed to making rigorously evaluated progress in survey design in areas of interest to 

agricultural economists (De Weerdt et al., 2020). 

 

In sections 2, 3 and 4 of this paper, we covered measurement error, coverage bias, and provide 

some examples of the expanded frontier of empirical models. In this section, we discuss advances 

in data collection with a focus on their impact on reducing measurement error and/or increasing 
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coverage.4 With this context in mind, we organize this section around (1) advances in specific 

thematic areas of relevance to agricultural economists, and (2) modes or data structures that 

provide new solutions and address challenges to reducing error and increasing coverage. For both 

topics, we highlight how these advances speak to the issues highlighted in the previous sections, 

including Total Survey Error, bias, measurement error, coverage, inter alia. Many recent advances 

in data collection have resulted from addressing constraints to data collection in low- and middle-

income countries, but we also highlight experiences from high-income settings to emphasize how 

these issues are in fact globally relevant. 

 

5.1. Advances in selected thematic areas 
 

 Land area measurement 
  
Recent evidence from studies in Africa (Abay et al., 2019a; Carletto et al. 2017b, 2016; Desiere 

and Jolliffe, 2018) and Asia (Dillon and Rao, 2021) that included both GPS and self-reported 

measures of land area, all following the type of survey experiment set-up advocated in De Weerdt 

et al. (2020), found remarkably consistent presence and patterns of non-classical measurement 

error in farmers’ self-reporting. The superiority of GPS with respect to self-reported measures has 

been confirmed by studies that also included the more expensive compass-and-rope method, such 

as Carletto et al. (2016) and Dillon et al. (2019). The integration of hand-held GPS devices in 

survey work for land area measurement has since become commonplace to overcome this 

prototypical example of respondent effect. While GPS measurements are not entirely free of error 

(Dillon et al., 2019; Cohen, 2019), the associated measurement error is larger in relative terms for 

very small plots but is not correlated with land size (Carletto et al., 2017b, 2016).  

 

Innovation is now proceeding in the direction of integrating GPS measurement in CAPI 

applications through the testing of features allowing plot delineation on preloaded satellite imagery 

(Masuda et al., 2020) or on printed high resolution imagery (Dillon and Rao, 2021), or through the 

use of the GPS receivers integrated into interviewer tablets for in situ land area measurement. In 

geographies where accurate knowledge of land area by respondents is commonplace, similar 

 
4 A more comprehensive, and prescriptive, treatment of agricultural survey design choices is provided in Dillon et 
al. (2021a), which builds on the guidance in Glewwe and Reardon (2000). 
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technological developments are being pursued to enable the efficient delivery and evaluation of 

programs tied to land area and land use, such as the Land Parcel Identification System (LPIS) in 

the European Union (Pluto-Kossakowska et a., 2008; Devos 2011; Tarko et al., 2015), or in the 

area survey implemented by the National Agricultural Statistics Service (NASS) in the United 

States, which is also successfully experimenting with the use of a mobile plot delineation 

application (Abreu et al., 2017).  

 

In the coming years, these developments can be expected to be brought to scale to address some 

of the drawbacks of measuring land area with GPS units, such as the cost of plot visits and the 

inability to measure all plots, particularly those that are more distant or particularly large. While 

in situ GPS measurement certainly reduces bias, some of these concerns about item non-response 

can be mitigated through imputation methods, which have been shown to effectively predict GPS 

plot measures for all plots by using farmers’ self-reporting alongside other plot characteristics 

(Kilic et al., 2017), or by further technological development if plot delineation on high resolution 

imagery can reduce the drudgery of the field visit that typically plagues GPS measurement. 

 

 Agricultural output and yields 
 

Recent empirical work has reviewed the quality of agricultural output data, related to both the 

level of data collection as well as biases in farmers’ self-reporting of agricultural output. Abay et 

al. (2019a), Desiere and Jolliffe (2018), Gourlay et al. (2019), and Lobell et al. (2020) all point to 

the presence of non-classical measurement error in farmer’s self-reporting of crop output, with 

farmers substantially over-reporting production on small plots and under-reporting production on 

larger plots. Currently, these biases can be corrected through the use of crop cuts on sub-samples, 

and looking ahead, through Earth Observation data calibrated with ground-truthing from field 

observations. Two levels of integration will be key to moving the agenda forward: integration 

between subjective (recall) and objective (crop cuts) data, and between ground and satellite data. 

Where available, administrative data can also be combined with survey data (as well as with 

satellite imagery and climate data) to produce disaggregated model-based yield estimates (see for 

instance Erciulescu et al., 2019 for county-level yield estimates in the United States).  
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Meanwhile, challenges persist in the measurement of yields in fields using mixed or inter-cropping 

planting techniques (Dillon et al., 2020; Wineman et al.; 2018). Estimating land area apportioned 

to a specific crop as well as its production is particularly difficult. Most household surveys 

acknowledge the complications of production and input estimates on inter-cropped plots by 

identifying these plots and apportioning the area planted, to divide reports of plot-level inputs by 

production reported by crop. However, proportional input attribution implies crop input demands 

including fertilizer, weeding, and harvest time are similar by crop, which may not always be an 

accurate assumption.  

 

The Global Strategy to Improve Agricultural and Rural Statistics provides methodological 

guidance on implementing the above methods to measure the area under a given crop in inter-

cropped systems (GSARS, 2018). Unfortunately, guidance on best practices supported by evidence 

from methodological survey experiments is not currently available. Remote sensing or crop cut 

production estimates are possible alternatives, but these measures are also challenging to 

implement.  For instance, crop cutting, in addition to its high costs due to the need for closer 

supervision and multiple visits over the growing period, can only be done in a very restricted time 

window which may be difficult to plan correctly in a large survey operation. It also carries 

implementation difficulties that are associated with specific error generation mechanisms 

(Kosmowski et al., 2021). Furthermore, Wahab (2020) find a substantial discrepancy between 

crop-cuts and self-reported output measures, which he ascribes in part to the variability in crop 

performance within plots, leading to plot area loss in the course of the season.   

 

Yield prediction models based on remote sensing data clearly face bigger challenges the smaller 

the plots and the more complex the cropping patterns, particularly related to the degree of 

intercropping or the presence of canopy cover. Lobell et al. (2019) report lower accuracy of 

remotely sensed production estimates compared to crop cut production estimates for maize inter-

cropped plots in Uganda. However, they also clearly show the benefit of properly calibrating the 

spatial model through accurate ground-truthing based on high-quality crop cutting, even if only on 

a small sub-sample of plots. Řezník et al. (2020) compare yield predictions from satellite data with 

measured yield data on spring barley, winter wheat, corn, and oilseed rape in the Czech Republic, 
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finding the yield predictions to be credible, with only two out of nine measures reporting 

differences between measured and predicted yields larger than 5 percent. 

 

 Agricultural labor 

 

SDG 2.3, which defines productivity in terms of output per unit of labor, has increased attention 

to the measurement of labor productivity. At the same time, results from survey methods research 

have unearthed the staggering magnitude of recall bias (a respondent effect) in measures of 

agricultural labor, with one influential study showing hours worked per person-plot being 3.0 and 

3.7 times higher in recall surveys compared to benchmark estimates based on weekly visits (Arthi 

et al., 2018).  

 

Agricultural labor data have been typically sourced through labor force surveys or national 

censuses (with information generally limited to the primary occupation) and used primarily in 

aggregate-level productivity analysis and macro-level comparisons of national agricultural GDP 

with labor shares. The availability of higher quality labor data in the last decade has raised 

questions about the validity of evidence that shows a six-fold labor productivity gap between 

agriculture and non-agricultural sectors of the economy (Gollin et al., 2014). Studies that use more 

carefully collected labor data from household surveys have shown that the measured labor 

productivity gap is substantially reduced when data allow for measuring production per hours 

worked, as opposed to just per person per year (McCullough, 2017), and for individual fixed effects 

(Hamory et al., 2021). In the US, where data on agricultural labor are collected via a dedicated 

survey, farm labor hours have historically been difficult for respondents to report, as a low 

percentage of operators based their responses on formal records (National Research Council, 2008; 

Ott, 1999). Difficulties in this case refer also to capturing the complexity of the pay structure, 

recording information on different tasks, since many agricultural workers perform multiple tasks 

on the farm (Ridolfo and Ott, 2021), and collecting data on contract workers (Ridolfo and Ott, 

2020). 

 

Advances in the measurement of labor inputs in recent years have been based on both technology-

enhanced and low-tech innovations, including by leveraging mode of data collection to ease the 
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cognitive response burden. Notable technology-enhanced innovations include the use of mobile 

phones for high-frequency interviews (Arthi et al., 2018; Dillon, 2012), and the use of wearable 

accelerometers for the measurement of physical effort (Akogun et al., 2020). Arthi et al. (2018) 

find that phone surveys can be a more accurate alternative to face-to-face interviews for measuring 

labor inputs, and this finding remains consistent when the research question calls for collecting 

high-frequency data or repeated measures. In such cases, the cost of additional phone interviews 

is a fraction of the cost that would be implied by additional face-to-face visits (Table 1).   

 

Table 1. Per-Household Interviewing Cost Increases 

 
Source: Arthi et al., 2017. 

 

Akogun et al. (2020) measure the physical activity of sugarcane cutters using accelerometers, 

which is a direct measure of effort in their piece rate wage setting. They find a high correlation 

between administrative data on output per worker recorded by the firm and the worker’s physical 

activity, as well as large changes in the intensity of such activity in response to malaria testing and 

treatment. Integrating objective physical activity measures into a sub-sample of observations in 

national surveys may be used to calibrate biases in reported time as well as to predict effort-based 

measures of agricultural labor productivity. 

 

Aside from the mode of data collection, substantial recent advances in methodologies relate to the 

key set of survey design choices in agricultural labor measurement. Bardasi et al. (2011) 

investigate how survey design elements such as screening questions and proxy response results in 

biased estimates of labor force participation, hours worked, and income by gender and sector of 

employment. Female labor participation statistics are not affected by the use of proxy respondents 
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in their survey experiment from Tanzania, but male employment rates are, due to the under-

reporting of agricultural activity by proxy respondents. Using data from Malawi, Kilic et al. (2020) 

find that employment is further under-reported when recall periods increase and when women are 

the subject of proxy reporting. Recent advances in data collection software and the ubiquitous use 

of CAPI can also make it easier to avoid another source of coverage-related bias unearthed by 

Ambler at al. (2020). They show that the fact that household members are not listed randomly in 

the labor module, coupled with respondent fatigue, leads to age and gender related biases in 

employment measures. Software that allows for randomizing the ordering of household members 

when collecting data on the labor module can mitigate this source of systematic bias, as can 

avoiding the use of proxy respondents. Avoidance of proxy respondents to minimize measurement 

error, however, can potentially lead to greater errors of coverage. 

 

The effects of different recall periods for measuring agricultural labor are investigated by Arthi et 

al. (2018), who use Tanzania data to compare weekly agricultural labor reporting with end-of-

season reporting. The latter is associated with a fourfold increase in the hours reported by 

individuals at the plot level, in comparison to reports obtained via weekly visits, their preferred 

benchmark. However, they note that aggregation to household-level reporting causes the 

differences in reported hours between the weekly and end-of-season recall periods to disappear. In 

interpreting these findings, the authors note how different recall biases are associated with memory 

decay (which shorter recall would help address), but also by the mental burden of reporting that 

varies by the level of aggregation. In their study, aggregating plot-person hours to the household 

level happens to compensate for competing biases arising from over-reporting at the intensive 

margin and under-reporting at the extensive margin. However, this is not a result that can be 

extrapolated to other settings. Understanding the level of disaggregation at which individuals 

provide the most accurate reports on their agricultural labor inputs should be an area of focus for 

future research. Research by Gaddis et al. (2020) in Ghana find much less dramatic differences in 

the magnitude of the recall bias compared to Arthi et al. (2018), but also discover that an important 

source of bias is the omission of plots and farm workers at the listing stage, which can be mitigated 

by explicit attention to this specific aspect of survey design.   
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In the United States, a substantial amount of randomized testing (Reist et al., 2019) and cognitive 

interview piloting (Ridolfo and Ott, 2020; Ridolfo and Ott, 2021) is routinely devoted to testing 

innovations aimed at easing response burden and addressing complex questions about workers’ 

remuneration and tasks. The findings suggest that the optimal design of instruments to collect labor 

data will likely require a fair amount of adaptation based on the context and the intended use of 

the data. For instance, while respondents in the United States appear comfortable separating base 

and overtime hours, they had difficulties distinguishing base pay from bonuses – the concept being 

hardly applicable to respondents paying piece rate (Ridolfo and Ott, 2021). For low-income 

settings, Sagesaka et al. (2020) have systematized recent findings from survey research into 

practical data collection guidance for survey practitioners. 

 

 Non-labor inputs 
 

One empirical regularity that has recently come to the fore is that measurement error in land area 

is strongly correlated with farmers’ self-reporting of their application levels of agricultural inputs 

(Abay et al., 2019b; Bevis and Barrett, 2019; Burke et al., 2019). These patterns in the data 

naturally raise questions on the mechanisms that drive the relationship between non-classical 

measurement error (NCME) for land area and self-reported input application rates. One such 

mechanism could be that farmers have a mental heuristic for input application rates and thus self-

report, for example, seed or fertilizer quantities based on the amount of land they believe they 

cultivated, along the lines of the optimal error prediction model of measurement error. Such a 

heuristic is easy to imagine in the case of fertilizer or seed, for which extension agents and 

agricultural input dealers commonly offer recommendations in the form of application rates per 

unit of land cultivated. If this is indeed the mechanism behind the observed correlation between 

area NCME and agricultural input levels or application rates, it could imply either of two 

possibilities. On the one hand, NCME in land area might propagate into NCME in agricultural 

input data – that is, the measurement error in inputs would merely reflect the error in land area, 

permitting statistical correction using observed area measurement error. On the other hand, land 

area NCME could actually affect agricultural input use by farmers, if farmers’ decisions on input 

intensity are based on misperceived land area (Abay et al., 2019b). Eliciting input use information 

after the collection of objective land area measures to better understand how the mental heuristic 
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of optimal application rates may be influencing farmers’ self-reporting is a key methodological 

research area for improving data collection on input use. 

 

Aside from application rates, measuring the quality of inputs is an important and often unobserved 

characteristic of input investments. The fact that input quality is often not directly observable poses 

a problem not only for the analysis of agricultural productivity, but also for farmers in making 

decisions on input use. Perceived quality may influence input demand and use more than actual 

attributes of quality. Such questions have been difficult to explore until recently, as economists 

have begun complementing traditional data collection from farmer respondents with laboratory 

analysis. The latter is also not free from error, however. An early study by Bold et al. (2017) 

finding widespread problems with nutrient quality in Uganda has since been contradicted by a 

series of large-scale sample surveys finding limited evidence of widespread quality issues in 

synthetic urea in East Africa. There is also evidence that perceptions of quality are influenced by 

other factors that in turn influence productivity, such as rainfall patterns (Hoel et al., 2021; 

Michaelson et al., 2020; Ashour et al., 2019a; Sanabria et al., 2018).  Collecting better data on both 

perceived and actual fertilizer quality is essential to explain farmers’ behavior with respect to their 

adoption, and the extent to which possible remedial action for low levels of fertilizer use may come 

from certification or the use of other policy levers (Hoel et al., 2021). 

 

For herbicides, Ashour et al. (2019b) find that there are widespread quality issues with the 

herbicides available in local markets in Uganda, but that farmers’ perceptions of poor herbicide 

quality are overstated, and poorly correlated with actual measures of product quality from 

laboratory testing. Prices correlate with measured quality, but very weakly. In a technical report 

using the same data set, Ashour et al (2019a) report poor correlation between tests in two different 

labs and ascribe the difference to flawed procedures in one of the facilities, a reminder to 

researchers that ‘objective’ measures conducted with the aid of technology are, as with any 

measurement operation, not immune from error. 

 

In countries that have administrative data systems around the use of agricultural inputs such as 

pesticides, these offer the potential to be combined with survey data to both improve the accuracy 

of the data compared to respondents’ recall, while also reducing the burden on survey participants. 
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This is for instance the case in the United States, where at least some states (Arizona, California) 

are using data from mandatory pesticide use reporting systems instead of asking farmers (NRC, 

2008). However, these methods may be more difficult to implement when the objective is to collect 

crop or field level data: in such cases, the US National Agricultural Statistical Service (NASS), 

collects data from respondents on one randomly selected field for selected crops of interest (NASS, 

2021). A similar type of use of multiple data sources may also be more difficult to implement in 

poorer countries, where administrative data systems suffer from low quality and credibility.    

 

These studies are examples of ways in which administrative or market-level data collection can be 

combined with household-level survey data to provide evidence on the use and quality of inputs 

available to farmers.  In terms of our conceptual framework, this implies efforts towards improving 

the accuracy of input quality (via objective testing) and quantity (via the use of administrative 

records) estimates as well as the coverage (e.g. via market-level sampling for quality testing which 

can be linked to farm level behavioral variables), but also to the collection of additional (omitted) 

variables related to farmers’ perception of quality, as these may be only tenuously linked to actual 

quality attributes. 

 

 Soil quality and soil health 
 

Stevens (2018) writes that soil health “is a straightforward concept in the abstract, but difficult to 

define in practice”. Not only do soils have many attributes that require multiple, complex 

measures, but these attributes are also interdependent, and the attributes (or their combinations) of 

significance can vary depending upon the application for which an assessment of soil health is 

needed.  

 

In Europe, the ‘Land Use/Cover Area Frame Statistical Survey Soil’ (LUCAS Soil) is a regular 

topsoil survey that is implemented every three years on approximately 20,000 soil samples 

collected across the European Union (Orgiazzi et al., 2018). The United States Department of 

Agriculture’s Natural Resource Conservation Service (NRCS) maintains a century-old soil survey 

of the United States (NRCS, 2021). While both these data sets have relatively good national 

coverage and are spatially explicit, their use in conjunction with the main farm surveys in the 
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European Union and United States for economic and policy analysis remains limited, partly due 

to the difficulty of overcoming confidentiality concerns in data dissemination preventing record 

linkage across data sets (NRC, 2008).  

 

In low-income settings, where large-scale soil surveys are not usually available, recent research 

has cast serious doubts on the reliability of farmers’ self-reporting on soil quality and soil health, 

with findings for Ethiopia (Carletto et al., 2017a; Kosmowski et al., 2020a), Kenya, and Tanzania 

(Berazneva et al., 2018) consistently finding poor or no correlation between farmers’ assessments 

of soil quality and objective measures based on lab analyses or portable spectrometers. Unlike land 

area measurement, there are no clear systematic biases emerging in the case of soil quality 

attributes; the concern is mainly with the lack of explanatory power of the traditional measures 

relying on farmers’ assessments. While some predictive power has been reported for soil type 

(Berazneva et al., 2018) and soil color and texture (Gourlay, 2017), the reported correlations are 

very weak.  

 

Efforts to pilot the use of portable spectrometers for in situ objective measurement of key soil 

health features such as organic carbon, PH, nitrogen, potassium, and clay percentage have been 

shown to perform well when compared to Conventional Soil Analysis (Carletto et al., 2017a; 

Kosmowki et al., 2020; Vasques et al., 2020). While portable spectrometers are not nearly as 

widely available as GPS units, their cost and weight are expected to decline rapidly as technology 

advances, making the prospects for their use at scale ever more attractive, particularly when soil 

attributes are important for the research question at hand. In lieu of field-ready soil sensors, some 

survey efforts have moved towards smartphone-based soil assessments such as LandPKS (Herrick 

et al., 2013), but these have largely been on pilot-level or small-sample surveys (see for example 

Nord and Snapp, 2020).  

 

The other related avenue through which advances in soil health data can be expected to rapidly 

materialize is the integration of remote sensing data with georeferenced survey data. The 

correlation between available modeled georeferenced data such as AfSIS (see Hengl et al., 2015 

for details) has been shown to be encouraging but far from perfect, particularly when there are 

high variations in soil quality within a given geography (Gourlay et al., 2017). As more objectively 
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measured ground data on soil health is collected and used to train models based on Earth 

Observation data, however, the quality of the modeled data will increase (Kosmowski et al., 

2020a).  

 

 Agricultural machinery and farm implements 
 

Agricultural capital in the form of machinery and farm implements can increase the production 

capacity of smallholder farmers. Understanding the mechanization of agriculture is critical to 

understanding changes in farm size and profitability over time. While it is generally regarded as 

easy for farmers to recall agricultural capital within the household, the plot-level attribution and 

control of such capital are measurement challenges. Plot-level attribution of machinery use is often 

avoided, as it may be assumed by the survey designer that agricultural capital is shared equally in 

the household.   

 

A large literature on women’s empowerment in agriculture has focused on accurately measuring 

women and men’s ownership of assets relative to their use rights (Alkire et al., 2013). Doss and 

Kieran (2014) provide a comprehensive review and guidelines for collecting gender-disaggregated 

asset data which apply generally to agricultural capital modules. Kilic and Moylan (2016) provide 

experimental evidence on the effects of variation in respondent selection protocols and 

questionnaire design compared to commonly used approaches for eliciting information on the 

individual ownership of and rights to assets. These studies all emphasize the importance of 

respondent selection and the method of collecting ownership and use rights. Lessons learned from 

this body of work have been consolidated in the recently published Guidelines for Producing 

Statistics on Asset Ownership from a Gender Perspective (United Nations, 2019). Data from the 

machinery and farm implements modules can be linked to plot-disaggregated production and other 

inputs modules to assess differences in the intra-household allocation of inputs (Udry, 1996).   

 

Recall periods for agricultural machinery and implements usually focus on the availability of assets 

over the previous 12 months. Differences in input use by crop-plot-season are important to capture, 

but this may not be possible if the frequency of survey administration is annual rather than 
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seasonal. The age of machinery is usually collected with the intention of calculating depreciation, 

but much depreciation of machinery depends on their maintenance and frequency of use. 

 

 Crop variety identification 
 

Possibly the most important technological choice farmers face is that of choosing which crop, and 

specifically which crop variety, to plant. A good proportion of the budget for agricultural research 

globally is directed at breeding crops and livestock with desirable traits. While the uptake and 

impact of improved varieties has traditionally been collected by eliciting information from either 

farmers or panels of experts, the shortcomings of such methods have become evident in the past 

decade; as a result, they are gradually being replaced or combined with more objective methods 

(Maredia et al., 2016; Stevenson et al., 2018; Wossen et al., 2019). The method that is currently 

being more widely adopted is DNA fingerprinting, which entails the collection of plant material 

that is subsequently sent for lab analysis. While logistically cumbersome, its implementation has 

been shown to be possible at reasonable scale, and protocols for its adoption are emerging (Poets 

et al., 2020).  

 

Asking farmers to identify the crop variety they are planting has often been shown to be utterly 

inaccurate, even when augmented with photo aids or phenotypic trait-related questions aimed to 

improve the accuracy of the data. This holds true for different crops across different settings, 

including sweet potato (Kosmowski et al., 2019), wheat, maize, barley and sorghum in Ethiopia 

(Jaleta et al., 2020; Kosmowski et al., 2020b; Yirga et al., 2016), cassava in Ghana and beans in 

Zambia (Maredia et al., 2016), maize in Uganda (Kilic et al., 2017) and Tanzania (Wineman et al., 

2020), and cassava in Vietnam (Le et al., 2019), Colombia (Floro et al., 2017) and Nigeria (Wossen 

et al., 2019). A few studies report more encouraging self-reported results, with farmers in 

Bangladesh being most able to discern modern from traditional varieties for both rice (Kletzschmar 

et al., 2018) and lentils (Yigezu et al., 2019). The latter study is also of interest in that the panel of 

experts was, on the contrary, found to overestimate adoption by 89 percent compared to DNA 

fingerprinting.  
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Even in the studies where farmers’ self-reporting is close to the objective benchmark, DNA 

fingerprinting was found to have advantages for the analysis of determinants of adoption (Yigezu 

et al., 2019) as well as for detecting lack of authenticity in modern varieties present in seed markets 

and in the field (Kletzschmar et al., 2018). When technology adoption is an important component 

of research design, researchers should consider adopting DNA fingerprinting as a data collection 

method. The option of conducting such objective, yet more costly, measurement could be more 

routinely considered on a sub-sample or for priority crops of interest. When field visits for area 

measurement or crop cuts for output measurement are being performed, the research design can 

exploit significant economies of scale by performing additional tasks during the same visit to the 

plot. This does pose other constraints to data collection processes, as such field work needs to be 

performed within a specific time window (i.e., while crops are still in the field). Ethiopia has been 

able to incorporate DNA fingerprinting at scale in a national socioeconomic survey for three main 

crops: wheat, barley, and sorghum (Kosmowski et al., 2020b). Barriga and Fiala (2020) use DNA 

lab analysis to investigate seed quality along the seed supply chain, looking at genetic variation, 

physical purity, and performance, focusing for the latter on germination rate, moisture level, and 

vigor. This allows them to identify issues with the handling and storage of seeds, rather than 

counterfeiting or adulteration. 

 

In addition, Kosmowski and Worku (2018) report promising results for the use of spectrometers 

for varietal identification on cultivars of barley, chickpea, and sorghum in Ethiopia, with an overall 

correct classification accuracy of respectively 89, 96, and 87 percent in their sample. Sinha et al. 

(2020) report similarly encouraging results from a study on banana varieties in Uganda by 

extrapolating the ground-based hyperspectral measures to high-resolution satellite imagery, 

therefore creating the potential of mapping the distribution of banana varieties at a higher spatial 

resolution. This is an exciting area of innovation which is currently at the experimental stage but 

is likely to become mainstream over the next few years, provided validation efforts continue and 

implementation protocols are devised. 

 

 Measurement of farm level food losses 
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While research on food losses has increased in recent years, the available data is extremely 

heterogeneous with respect to the measurement approaches used, the stages of the value chain 

investigated, and the conceptual framework adopted. Bellemare et al. (2017) propose a different 

conceptualization of food waste from that used by others in this domain, whose estimates of food 

losses would be largely overestimated according to their definition (Table 2). 

 

Table 2. A Comparison of Quantity and Cost Estimates of Food Waste Across Definitions 

Source : Bellemare et al., 2017. 

 

In the existing literature, storage is the stage of the value chain where most food losses are 

concentrated (FAO, 2019).5 Xue et al. (2017) attributes differences in food losses to different 

storage conditions, and research from Bachewe et al. (2018) and Minten et al. (2015) also point to 

the importance of storage losses. Despite the interest and prominence that the debate on food losses 

has acquired, data of sufficient quality and robustness on storage losses is lacking, hindering the 

design and implementation of interventions to reduce them systematically and at scale. 

 

Comparisons between objective and self-reported measurements of food losses routinely find 

systematic differences between the two. While objective measures are more accurate, they are also 

more costly, time-consuming (selecting, sorting, and weighing samples of grains), and logistically 

challenging. Model-generated methods of estimation are therefore being researched, as they offer 

a possibility to deliver measurements in a more cost-effective manner (FLW Protocol Steering 

Committee, 2016). Model-based estimates could be used in conjunction with rather than as a 

replacement for survey data, for instance, by estimating losses between survey rounds. These 

 
5 The discussion on food losses below draws on text provided by Marco Tiberti and FAO, based on unpublished 
material. 
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estimates can determine storage outcomes by taking into account the effect of variables related 

directly to storage conditions (e.g., the type of storage facility, the application of pest protection 

products, or the moisture content at which the grain is stored) as well as contextual variables (e.g., 

weather conditions, crop variety, or farmer skills), and the interaction between the two. The 

African Postharvest Losses Information System (APHLIS) is one example of the production of 

losses estimates based on the modeling of agronomic and bio-physical relationships of factors 

including the presence of rain at harvest time, as well as agricultural storage and marketing 

practices. 

 

 Livestock production and management 
 

The bias of agricultural economists for crops over livestock is reflected in the relatively limited 

efforts seen to date on developing better data collection methods for livestock (Barrett et al., 2008; 

Kristjanson et al., 2014; Little et al., 2008; McCarthy et al., 2004; Pica-Ciamarra et al., 2014). 

Most methodological work has been directed at pastoral or agro-pastoral systems, which is to be 

expected, given both the specific challenges these systems pose to data collection and the 

importance of livestock for people living in regions where pastoralism is prevalent. Recent work 

in this area has focused on herd mobility, to address the challenges that it poses for enumerating 

nomadic or semi-nomadic populations, as well as to study mobility patterns linked to the state and 

management of natural resources (e.g., grazing, water) upon which livestock and their herders 

depend. 

 

For example, Himelein et el. (2014) conducted a pilot in the Afar region of Ethiopia to explore the 

use of random geographic cluster sampling as an alternative to conventional sampling methods. 

The approach is based on the random selection of points around which circles are drawn and all 

eligible respondents found inside those circles interviewed. The approach aims to reduce the 

under-coverage of mobile populations expected when samples are drawn based on lists of 

dwellings within a primary sampling unit, as is typically the case for household surveys. 

Otherwise, methods have not evolved significantly from the surveys at enumeration points (i.e., 

water, dipping or vaccination points, stock routes) and aerial surveys recommended by ILCA in 

the 1970s and 1980s (FAO, 1992; GSARS, 2016; ILCA, 1990), except for the fact that these aerial 
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surveys can now also be implemented using higher-resolution imagery captured by drones 

(Chamoso et al., 2014) or satellites. However, these methods are still in the experimental stage and 

have not to our knowledge been applied at scale. 

 

Advances in spatial data, both from satellites and on the ground, is creating opportunities for the 

collection of data on the interaction between livestock, mobility, and natural resources. On the 

ground, GPS trackers placed on cattle have been used to characterize the mobility of herds and 

their use of rangeland resources (Bailey et al., 2018; Liao et al., 2018, 2017; Swain et al., 2011; 

Turner et al., 2000), although few of these applications have appeared in economics journals. From 

space, satellite imagery is being used to characterize the state of rangeland resources (Reinermann 

et al., 2020) and we expect that the potential for applications in agricultural and natural resource 

economics will expand dramatically as a result. 

 

On improved measures of livestock productivity, recent studies led by economists are limited. 

Specialized livestock surveys often select a random animal in the herd and ask questions about 

that animal. In household surveys, this is not generally done, as the herd may not be present, and 

a visit would add to the interview time. Livestock experts also tend to measure productivity using 

the reproductive capacity of the herd, and thus their focus is on demographic parameters (Lesnoff 

et al., 2014). For milk off-take, a methodological study conducted in Niger comparing different 

types of recall to an objective measure provides some confidence in the accuracy of recall measures 

(Zezza et al., 2016a). Other technologies, such as 3D and thermal cameras, are being used to assess 

livestock weight and health (Song et al., 2018; Stajnko et al., 2008), but mostly by animal scientists 

rather than economists or statisticians. Nonetheless, there is a clear potential for economic 

applications to emerge, as the value of livestock is primarily determined by parameters linked to 

weight and health, which are notoriously difficult to elicit from survey respondents. Guidance for 

data collection on livestock in low-income countries has been systematized in recent years in 

GSARS (2016) and Zezza et al. (2016b). Model-based estimates of livestock populations have 

been developed by researchers at the FAO (Robinson et al., 2014) and are continuously being 

updated as new spatial data sets become available and modeling techniques evolve (Nicolas et al., 

2016; Da Re et al., 2020). 
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 Land tenure 
 

Holden et al. (2016) document that few low- and middle-income countries have nationally 

representative data that can be used to understand how land tenure policies or tenure reforms may 

affect land market activity, land productivity, technology adoption, or changes in the distribution 

of farm size. Measurement challenges in this area are primarily related to the complexity of the 

concept of tenure and the different set of rights that define it (FAO, 2002; United Nations, 2019), 

as well as to the fact that different individuals may have different perceptions of tenure, particularly 

in the case of joint ownership (Ambler et al., 2020; Kilic and Moylan, 2016). In high-income 

countries, increasing challenges for data collection arise for more complex forms of ownership, 

linked to the rise of corporate land ownership and of complex company arrangements for corporate 

farms (National Academies of Sciences, Engineering, and Medicine, 2019; MacDonald, 2016).  

 

With respect to adequately capturing the different dimensions of tenure, the consensus has 

converged towards the need for survey data to cover a bundle of ownership rights, including 

documented ownership, reported ownership, and the rights to sell and bequeath (United Nations, 

2019), and survey instruments have been developed to implement this guidance (FAO et al., 2019).  

In the United States, where corporate farms account for an increasingly important share of 

agricultural value added, the Agricultural Census form includes a specific set of questions on the 

type of farm organization (whether a Limited Liability Company) and their legal tax status (family, 

partnership, incorporated, or other). The census information is then integrated with a separate 

Tenure, Ownership, and Transition of Agricultural Land (TOTAL) Survey, which focuses 

specifically on all land rented out for agricultural purposes, whether by farmers and ranchers 

(operator landlords) or by non-operator landlords. Given the complexity of some operations, the 

surveys face challenges in the definition of the landlord, the identification of the owners 

particularly when incorporated, and in assessing the location and size (combined acreage) of 

landowners (Hamer, 2016). 

 

For household farms, whenever individual-level data are of interest, such as when the research 

objective is to study gender gaps in productivity, wealth, or vulnerability, land ownership should 

be reported by self rather than proxy respondents, owing to well-documented and large 
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discrepancies between proxy and self-responses. While research on the implication of different 

possible approaches is still needed, the primary issue is the method of respondent selection, where 

researchers increasingly favor interviewing multiple individuals per household. Approaches may 

vary, and will also depend on the objective of the analysis, but they can be reduced to essentially 

three options: (1) interview all household members, (2) focus on the members of the principal 

couple if one is present, or (3) select a random age-eligible household member and his/her partner 

if applicable (Doss et al., 2019). When multiple household members are interviewed, they should 

be interviewed separately and whenever possible concurrently or consecutively, so as to avoid the 

possibility of contamination in their responses (United Nations, 2019). 

  

 Climate: weather events, perceptions of and adaptation to climate change 
 

Climate data have experienced a revolution in recent decades which continues to the present day. 

While climate and weather have always been central to explanations of agricultural productivity, 

attention has increased with the emergence of debates on climate change, climate-smart agriculture 

(Lipper et al., 2018), and index-based insurance (Benami et al., 2021; Carter et al., 2017; Jensen 

and Barrett, 2017; Rosenzweig and Udry, 2014). Dell et al. (2014) and Auffhammer et al. (2013) 

provide excellent reviews of the types of available climate data as well as their accompanying 

measurement bias and coverage concerns, which economists should consider when relying on 

climate data for making inferences. In terms of the production and availability of climate data, 

there has been a surge in data from remote sensing and in situ sensors (which are discussed later 

in the paper), as well as concerns in Africa and small island states regarding the decline in the 

availability of traditional meteorological stations (Dinku, 2019; Dobardzic et al., 2019).  

 

Weather data are commonly classified into four categories: ground station data, gridded data, 

satellite data, and reanalysis data. Data from ground stations offer direct observation of key 

weather variables, but their coverage is neither universal nor constant over time, with weather 

stations being relatively sparse in many low- and middle-income countries. Additionally, their 

coverage and trends are often related to the distribution of weather variables, posing estimation 

problems similar to those of selective attrition. Gridded data provide complete coverage at 

different resolutions by interpolating weather station data and assigning a value for weather 
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variables for each cell on the grid. They present the desirable advantages of balanced panels, but 

analysts should be aware that results will differ for different products, particularly for outcomes 

that have greater spatial variation such as precipitation. The presence of missing values in the 

underlying station data and the spatial correlation introduced by extrapolation algorithms all create 

potential biases in the estimated coefficients and standard errors when gridded products are used 

as independent variables in econometric analyses (Dell et al., 2014).  

 

Satellite data use readings from satellite-borne sensors but do not directly measure weather events. 

Their time series are shorter than those for station and gridded data (starting in the 1990s and 

increasing since the 2000s), and their quality may not be uniform, due to changes in satellites and 

sensor features. Reanalysis data combine information from other weather data sources and 

elaborate them with a climate model to estimate (not simply interpolate) weather variables across 

a grid. Analysts should consider whether such modeled data are preferable to interpolated gridded 

data, given the objective of the analysis, and should be aware that the correlation across models is 

often weak, particularly for rainfall data. Dell et al. (2014) and Auffhammer et al. (2013) provide 

a more detailed discussion, while Michler et al. (2020) and Parkes et al. (2019) provide examples 

of empirical applications testing the behavior of different gridded products as explanatory 

variables in agricultural productivity analyses for India and Sub-Saharan Africa, respectively. 

 

Analysts must also identify the most appropriate set of climatic variables to use when specifying 

explanatory models for outcomes heavily dependent on climatic inputs. Advances have come from 

the increased cross-fertilization between crop science and statistical models, which has expanded 

the range of climate variables used in empirical analysis beyond standard rainfall and temperature 

measures. Newly included climate variables include growing degree days (GDD) and extreme heat 

degree days (EHDD) as well as measures to better account for humidity and evapotranspiration 

such as vapor pressure deficit (VPD), wind speed, and sunshine duration (Roberts et al., 2013; 

Zhang et al., 2017). Challenges remain for statistical models in accounting for the effects of carbon 

dioxide (CO2) that accompany warming or the concentration of ozone (O3) that may be associated 

with the burning of fossil fuels (Lobell and Asseng, 2017).  
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In parallel, there have also been increased efforts to capture both subjective perceptions of climate 

change, as well as practices reflecting the adoption of adaptation practices by farmers. While 

several researchers have engaged in collecting data with this objective in mind (e.g., Di Falco, 

2011) there have been few attempts (McCarthy, 2011) to systematize data collection instruments 

in this domain; as such, this remains an area in need of further development. However, recent 

studies comparing self-reported data on weather events to recorded, observed weather data find a 

very weak correlation between the two. More importantly, they find that self-reported weather data 

are influenced by variables of interest such as the involvement in off-farm activities (Nguyen & 

Nguyen, 2020; Waldman et al., 2019). Self-reported data hold more promise for investigating 

perceptions and adaptation actions by farmers, whereas indicators referring to realized weather 

events should be based on objective data whenever possible. Researchers of smallholder, rain-fed 

production systems face particular challenges in achieving the granular resolution required for 

conducting plot-level analysis of the determinants of productivity, yield variability, and other key 

outcomes. 

 

5.2. Advances in data collection modes and data structures 
  

Earth Observation 
  

The ever-increasing number of satellites orbiting the Earth has exponentially increased the 

availability of satellite-borne sensors supplying a variety of data at high temporal and spatial 

resolution. A classification of the satellite sensors categories, with their main features, as per the 

classification of the European Space Agency is provided in Table 3.  

 

Table 3: Classification of satellite sensor categories, based on the European Space Agency 

(ESA) nomenclature  
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Source: GSARS (2017). 

 

Remote sensing data are being used and adapted for countless purposes in farm management, 

agricultural programs, agricultural statistics, and empirical agricultural economics. GSARS (2017) 

provides a comprehensive overview of the uses of remote sensing in agricultural statistics, 

including land cover mapping, the design of sampling frames, crop mapping, crop area and yield 

estimation, and early warning systems. With Earth Observation data becoming available more 

frequently and at increasing granularity, recent research has focused on facilitating and validating 
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the use of these data for different cropping systems, at scale, and in a timely fashion (Defourny et 

al., 2019). Recent studies have also focused on developing and validating methods and standards 

for the efficient collecting of in situ ground-truthing data for model calibration (Azzari et al., 2021; 

d’Andrimont, 2018; Paliwal and Jain, 2020).  

 

For empirical applications in agricultural economics, remote sensing data offer the promise of far 

greater accuracy, objectivity, temporal resolution, and coverage, than could be achieved through 

traditional survey methods relying on farmers’ self-reporting. However, remote sensing data sets 

are not immune from measurement error. Michler et al. (2020) identify three sources of error when 

using remote sensing weather data in conjunction with survey data. Errors can be introduced 

through the measurement technology, the algorithm to convert the measurement into a variable for 

analytical use (e.g., rainfall), or the resolution of the data. Errors can also occur in linking remote 

sensing data to the household, plot, or farm on which the analysis is run, as well as by using 

variables that are not ‘fit for purpose’ from an agronomic perspective.  

 

The use of remote sensing for crop area estimation and crop and yield mapping is now widespread, 

with a continuous flow of new competing products being developed by public sector agencies, 

academics, and the private sector, often in partnership. However, remote sensing presents specific 

challenges in smallholder systems, which require high resolution and often incorporate inter-

cropping patterns that are hard to characterize based on satellite data (Burke and Lobell, 2017; Jain 

et al., 2016; Jin et al., 2019; Rustowicz et al., 2019). Thus, remote sensing and ground data are 

much more productively seen as complements rather than substitutes. The use of survey data, 

particularly objective measures such as crop cuts, for ground-truthing and training models based 

on satellite data can greatly increase the accuracy of the remote sensing predictions (see Lobell et 

al., 2019; d’Andrimont, 2018; Paliwal and Jain, 2020 for yield measurement and Hengl et al., 2020 

for global soil mapping). The combined use of multiple sources is the most promising avenue for 

agricultural data systems to minimize error and maximize coverage. As for climate variables, users 

should be aware of the error structures present in modeled estimates when using them as 

independent variables in econometric analyses. One key obstacle to using Earth Observation data 

in conjunction with spatially explicit survey data is that of overcoming confidentiality concerns. 

For some years now, the United States Department of Agriculture has been aware of the lack of 
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precise spatial information as a major weakness of their flagship ARMS survey, limiting its value 

for a range of applications. Other international survey programs such as the Demographic and 

Health Survey (DHS) and the Living Standards Measurement Study (LSMS) adopt protocols to 

publicly disseminate ‘masked’ coordinates while preserving anonymity. However, researchers and 

the global statistical community are still searching for dissemination standards that can maximize 

the value of spatially explicit data for analytical applications while also preserving anonymity 

(Croft et al., 2021).  

 

 Crowdsourced and citizen-generated data 
 

An innovative source of data that is likely to be increasingly used for research in the coming years 

is citizen-generated data (Lämmerhirt et al., 2018). This includes data generated via 

crowdsourcing, that is, by enlisting a large ‘crowd’ of individuals (volunteers or for pay) or 

devices (e.g. sensors) to collect and share data. In the cognitive science discipline, one third to one 

half of the scientific papers in top tier journals are now based on crowdsourced data sets (Stewart 

et al., 2017). However, at the time of this writing, crowdsourced data are still relatively underused 

in agricultural economics and are more often employed for operational purposes rather than 

academic work. In economic research more broadly, the disciplines most likely to use such data 

are those more amenable to the wholesale enlisting of respondents through dedicated platforms, 

such as labor market or consumer research. Citizen-generated data are already contributing or 

demonstrating the potential to contribute to advancing the global data agenda (Fraisl et al., 2020). 

Their supply and use can be expected to expand rapidly in the coming years, but this will require 

solutions to overcome issues around quality control and validation (Balázs et al., 2021; Wiggins 

et al., 2021.) 

 

In the agriculture and food domain, crowdsourced data are more common in price data collection 

efforts, where agents or volunteers can be recruited to survey markets (UN Global Pulse, 2015; 

Zeug et al., 2017; Ochieng and Baulch, 2020). They are also used for obtaining climate data, such 

as rainfall, which is less correlated in space (Minet et al., 2017) and can be crowdsourced by 

connecting micro rain gauges to the internet (Van de Giesen et al., 2014). Another option is soil 

data collection, which can be crowdsourced to farmers using smartphone apps to collect soil profile 
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information (Herrick et al., 2013). One study crowdsourced the visual interpretations of satellite 

imagery from popular mapping applications to estimate the global distribution of field size (Lesiv 

et al., 2019). In a review article, Ebitu et al. (2021) identify data collection as the main current 

thrust for citizen science in agriculture, with key challenges including validation procedures, but 

primarily the recruitment, motivation, and retention of volunteers. 

 

Citizen-generated data are attractive due to their potential to return data at high levels of spatial 

and temporal resolution with relatively limited costs. However, these data present significant 

limitations in their representativeness and the quality of the data generation process that must be 

understood and managed for statistical inference. Based on a review of survey data, Wiggins et al. 

(2011) propose a quality assurance framework for citizen science data organized along two 

categories of sources of errors (which may derive from participants or field protocols) and three 

entry points in the data production process. While recognizing the huge potential of citizen science 

data for agriculture and beyond, it is clear that before it can become mainstreamed in data 

production, more effort must go into ensuring that data collected through “volunteers” with 

varying levels of expertise and commitment are of acceptable quality (Bonter and Cooper, 2012).    

 

Mehrabi et al. (2021) warn of an emerging global divide in data-driven farming, linked to the 

differential access to mobile data technologies for low-resourced farmers, particularly in Africa, 

as a result of a combination of differential ownership of mobile devices, poorer data connection, 

and connectivity costs. However, the rapid increase in both mobile phone ownership and phone 

coverage in most countries bodes well for a more widespread adoption of phone data collection. 

In the cognitive science literature, where crowdsourced data are mainly generated via the Amazon 

Mechanical Turk platform, concerns have arisen on the professionalization of the individuals 

contributing the data, with many of them sharing information on internet fora in ways that pose 

concerns for the independence of the observations (Stewart et al., 2017). Statistics Canada is one 

of a few statistical offices that have actively published data generated through crowdsourcing, for 

public policy applications ranging from urban planning to gauging the price of marijuana on the 

illegal market ahead of its legalization. Tellingly, such data are not accompanied by indications 

regarding their accuracy (including bias and coverage) that accompany other published statistics 

(Statistics Canada, 2021).  
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Methodologies for validating and correcting crowdsourced data through post-stratification efforts 

(Arbia et al., 2020) or other efforts to assess and improve the bias and variability of the estimates 

are now starting to emerge (Buil-Gil et al., 2020). With their further development, crowdsourced 

data will surely become an increasingly important source of data for agricultural economics 

applications. 

 

Phone surveys  
 

Phone surveys have been around for decades and are in fact part and parcel of the survey data 

collection in several high-income countries (NRC, 2008; Slavec and Toninelli, 2015). In low-

income countries, phone surveys were for some time confined predominantly to the collection of 

data in conflict- or disaster-affected areas where ground operations are more constrained 

(Hoogeveen and Pape, 2020), or in urban areas where phone ownership and coverage is higher. 

However, their adoption has quickly become ubiquitous with the onset of the COVID-19 pandemic 

in 2020, as statistical offices and practitioners increasingly recognize how phone surveys can 

become an integral part of a modernized survey system beyond the contingency of the pandemic 

response period (Glazerman et al., 2020; Young Lives 2020; Josephson et al., 2021).  

 

There are specific coverage concerns for phone surveys linked to the extent and patterns of 

(mobile) phone penetration, which can be expected to be correlated with variables of interest. Such 

concerns are far more severe in low-income countries, where phone penetration has been 

increasing but is still far from universal, and specifically in rural areas, where agricultural 

economists often focus their research interests (Dillon, 2012; Ballivian et al., 2015; Leo et al., 

2015; Lamanna et al., 2019; Mehredi et al., 2021; GSMA, 2020; Dabalen et al., 2016). 

 

During the COVID-19 pandemic, phone surveys allowed for the possibility to contact respondents 

amid widespread travel and social distancing restrictions, without exposing them or the 

enumerators to a health risk. Phone surveys can also generate much more frequent data relative to 

face-to-face interviews, due to their reduced cost and simplified logistics (e.g., not requiring 

travel). This can limit survey error for variables that are more prone to recall error (such as 
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agricultural labor (Arthi et al., 2018) or continuous crop production estimates (Kilic et al., 2021), 

as well as increase the temporal dimension of data collection for outcomes that have low 

autocorrelation (McKenzie, 2011), or where short-term overtime changes are of the essence, as is 

the case for the study of resilience (Knippenberg et al., 2019). 

 

Concerns remain for the representativeness and coverage of phone surveys, not only for specific 

households that may be less likely to have access to a phone connection, but also for individuals 

who are less likely to be phone owners or are otherwise less represented in phone survey samples 

(Leo et al., 2015; Brubaker et al., 2021). Such issues can be mitigated when the phone survey 

sampling frame is based on an adequate set of information on observable household and individual 

characteristics, as is the case when the phone survey is tied to a recent representative face-to-face 

survey that collected respondent phone numbers (Ambel et al., 2021). While the sample size of 

phone surveys using this approach is limited by the sample size of the existing representative 

survey, phone surveys that use a sampling strategy based on sampling numbers from a list or via 

Random Digit Dialing (RDD) usually lack sociodemographic information associated with each 

phone number, making it harder to assess and improve their representativeness (Henderson and 

Rosenbaum, 2020; Himelein et al., 2020).  

 

Other limitations of phone surveys are related to the type of information that can be asked over the 

phone, both because of content that respondents may not feel comfortable sharing over the phone, 

as well as the overall interview length (Abay et al. 2021). Even so, recent experience has 

demonstrated the value of collecting information over the phone on issues related to agriculture 

and food security (Amankwah and Gourlay, 2020; Hirvonen et al., 2021), charting the way for a 

survey research and implementation agenda to leverage the integration of high-frequency data 

collection via phones and other mobile technology with traditional face-to-face surveys. Such a 

mixed-mode approach can carry the added advantage of freeing up space in face-to-face surveys 

from items that can be collected via remote data collection to generate data that are characterized 

by both reduced survey error and higher temporal resolution. Mixed-mode models can also be 

instrumental for achieving the temporal resolution needed for many indicators, as well as for 

providing a low-cost platform to collect more accurate data on high-frequency, repeated 

occurrences, such as labor allocation in agriculture and other time use data. This is a likely 
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direction for investment in the survey research agenda in the coming years, where the involvement 

of agricultural economists in influencing the structure and features of the resulting data will be 

paramount.  

 

Panel data 
 

Understanding agriculture and the fast transformation processes ongoing in all countries at 

different stages of development requires panel data. Partly in response to this renewed awareness, 

we have recently witnessed a surge in the availability of panel data related to agriculture and rural 

development in low- and middle-income countries. While for decades, the ICRISAT village study 

(Walker and Ryan, 1990) was one of the few longitudinal data sets allowing research on 

agricultural and rural livelihoods, over the past two decades the availability of such data sets has 

increased substantially, even if they remain limited in numbers and geographic coverage. 

Examples include the panel data set for Ghana collected by researchers at Yale and the Institute of 

Statistical, Social, and Economic Research in Ghana, the panel data sets collected by statistical 

offices in eight Sub-Saharan African countries under the World Bank’s LSMS-ISA program, the 

National Income Dynamics Study (NIDS) in South Africa, the Kagera Health and Development 

Survey in Tanzania, the Family Life Surveys in Indonesia and Mexico, and the panel data collected 

by IFPRI in several countries in Asia and Africa, by the Tegemeo Institute in Kenya, and by 

Michigan State in Zambia, among others. These surveys have generated an invaluable wealth of 

research and contributed to answering key policy questions that cross-sectional data have been 

unable to convincingly address.   

 

We have discussed above (see section 3.5) several actions that can be taken to manage attrition in 

panel data, whether ex-ante by improving the design and implementation of tracking protocols, or 

ex-post. The availability and penetration of mobile phones and the growing adoption of CAPI have 

been important innovations that have enabled implementing and improving the tracking outcomes 

for longitudinal surveys in low-income countries. Collecting as many contact numbers as feasible 

at baseline greatly improves the likelihood of being able to recontact households that move 

between survey waves, and has also played a fundamental role in allowing the longitudinal 

tracking of households for phone surveys during the COVID-19 pandemic (Glazerman et al., 2020; 
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Gourlay et al., 2021). Georeferencing households is an additional technology-based solution that 

can help relocate the site of the dwelling in areas where these are not otherwise clearly marked or 

identifiable (Witoelar, 2011). 

 

Additionally, the technology embedded in CAPI applications is providing new approaches for 

survey designers and implementers to understand and manage attrition (Kreuter, 2013) as well as 

to improve data quality through better remote supervision. Specifically, the paradata produced 

during CAPI interviews enables the understanding of certain features that predict attrition as they 

materialize during the course of the interview, including enumerator effects. These paradata can 

inform actions to minimize attrition and monitor individuals at higher risk of dropping out of the 

sample, thus countering the predominant coverage issue for longitudinal data (Mercer, 2012; 

Roßmann and Gummer, 2016).  

 

Finally, following the onset of the COVID-19 pandemic, the availability of well-established long-

term longitudinal studies put countries at an advantage for rapidly shifting to high-frequency phone 

surveys to monitor the impact of the pandemic. This served to fill critical data demands, while also 

reducing the potential coverage biases of phone surveys by providing better sampling frames and 

a wealth of information for the ex-post mitigation of bias.    

 

6. Conclusions 

 

Agricultural data continue to suffer from lack of availability, poor quality, and incomplete 

coverage. However, in recent years, increasing data demands and emerging policy questions such 

as climate change and demographic trends, among others, have driven innovation in the sector, 

with rapid technological change and methodological advances providing an opportunity to collect 

more and better data at lower cost. In the past two decades, technology has expanded the data 

production frontier to generate more accurate, granular, and frequent data within shrinking budget 

envelopes. These innovations have been accompanied by greater attention to issues of 

measurement error and coverage, focused on ways to attenuate trade-offs and achieve both high 
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accuracy and high representativeness to the greatest extent possible, and by greater rigor in testing 

the validity of changes in methods via randomized validation exercises. 

 

This paper is a testament to the increased importance of data and data quality issues within the 

agricultural economics profession. Researchers hold the power and responsibility to make wiser 

design choices throughout the data production process. However, reaching the full potential of 

improvements in data structures for producing policy-relevant empirical analysis may require 

changes in researchers’ incentives and priorities to generate knowledge that is accurate, relevant 

and credible. For instance, a recent evidence synthesis paper exposes a striking disconnect between 

empirical agricultural and social science research and policy questions (Porciello et al., 2020). 

 

Throughout the paper, we have highlighted the importance of improving agricultural data 

structures for empirical analysis, while accounting for the inherent trade-offs involved in 

designing data collection for agricultural research and policy. Measurement error creates both 

internal and external validity issues that limit causal inference and descriptive understanding of 

national agricultural systems. Coverage biases also create internal and external validity issues, 

particularly when limited coverage biases the testing of underlying mechanisms that drive 

agricultural choices.  

 

While surveys remain the linchpin of agricultural policy analysis, other traditional data sources 

such as administrative data and agricultural censuses, as well as new data like Earth Observation 

and remote sensing data, play equally important roles in improving the coverage of agricultural 

data in its many domains. Additionally, alternative data sources such as citizen-generated data 

and methods such as machine learning, while not yet mainstreamed in agricultural data 

production, offer tremendous opportunities for the future. To achieve their potential, these newer 

data sources require fully developed quality assurance frameworks to address multiple sources of 

errors and biases, just as traditional ones do.  

 

As data users become more integrated into data system design, data systems can be better designed 

for empirical research and policy to minimize measurement error. As emphasized by many authors, 

non-classical measurement error and its effects vary by sample and are not necessarily adequately 
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treated and corrected using ex-post econometric tools. Nonetheless, trade-offs are inevitable, as 

increased coverage can lead to measurement error and internal validity concerns, while low 

coverage reduces policy relevance and the external validity of parameter estimates.  

 

To promote more systemic learning, validation studies and experimentation must be carried out 

more systematically within or in parallel to other data collection efforts, and lessons learned from 

the existing vast body of research in the impact evaluation literature must be streamlined and 

systematized to offer guidelines on best practices for researchers. Specifically, we propose 

bridging the gap between the impact evaluation literature and observational studies by 

methodically incorporating survey experiments to validate new methods and types of data 

collection. The empirical standard in many validation studies is to use a “gold standard” as 

numeraire, although such “gold standard” metrics are also likely to be measured with error. As a 

result, many of the available validation studies tend to measure error relative to a standard deemed 

“closer to the truth”. While technology presents an opportunity to benchmark agricultural measures 

and generate more objective benchmarks for validation purposes (e.g., DNA fingerprinting to 

measure improved seed variety), these processes are often considered too costly to be conducted 

at scale.  However, the rapidly decreasing costs and diffusion of new technologies bode well for 

the future. Furthermore, future survey experiments need to expand the set of econometric 

techniques to identify unbiased effects of survey design choices beyond pairwise comparisons 

(Dillon et al., 2019), as has been the case in labor economics, where even the ‘gold standard’ of 

United States administrative data has been challenged (Abowd and Stinson, 2013).  

 

Fostering greater integration and interoperability across data sources would also allow for more 

opportunities for minimizing measurement error while maximizing spatial and temporal coverage.  

As shown, sample surveys have been used to ground-truth remote sensing imagery for the 

estimation of crop productivity and other agricultural metrics from space. These experiments are 

examples of how reducing measurement error and improving coverage can simultaneously be 

achieved through better data interoperability. This is best done when proper design choices are 

made ex-ante, so as to also minimize the measurement errors of the ground data. Achieving greater 

reliability of remote sensing data could radically improve the geographic granularity, timeliness, 

and frequency of agricultural estimates, while also potentially constraining costs. Attaining such a 



71 
 

goal will require the better coordination and acceleration of research efforts, including the 

production of multi-purpose ground layers of high-quality measurements.  

 

Maximizing coverage of agricultural data also requires improving other traditional sources such 

as routine data systems and agricultural censuses. The weak data quality of both sources, as well 

as the low periodicity and predictability of agricultural censuses, particularly in lower-income 

countries and regions, remain matters of concern. With regards to administrative data, 

underfunding and the persistent neglect of extension services in past decades are responsible for 

the current unenviable state of affairs. Digitalization and the adoption of technological solutions 

can accelerate progress in this area. Furthermore, linking administrative data to newer data sources 

such as crowdsourced data or high-frequency community surveys through sentinel sites could go 

a long way towards enhancing the statistical rigor of administrative data. Rethinking administrative 

data collection and its interoperability with other data sources, while also ensuring better access, 

should be prioritized to contribute to minimizing error and maximizing coverage of agricultural 

data.  The trend towards greater reliance on administrative data is well advanced in more developed 

economies, with low- and middle-income countries lagging behind. 

 

New data sources and modes of data collection such as phone or web surveys as well as 

crowdsourcing and other forms of citizen-generated data offer tremendous potential to improve 

the availability and frequency of agricultural data.  However, to fully exploit these opportunities, 

better methods are needed to account for likely biases due to selectivity and under-coverage. It is 

also important to raise awareness, particularly among young researchers, of the pitfalls of ignoring 

these potential errors and to build their capacity in addressing them, both at the design and 

analytical stages.  

 

Finally, relying on direct measurements in contrast to the more common practice of asking farmers 

to self-report, often based on long recalls, has become steadily more feasible due to the declining 

cost of technology. Nonetheless, cost considerations remain an issue in implementing such 

methods on a full sample or, in the case of agricultural censuses, on the entire population of 

concern. Using direct measurement on a sub-sample of households, combined with the rigorous 

use of imputation methods, may be a more viable way to improve the accuracy of agricultural data. 
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